Quantum LDPC codes Problem session 3

Nicolas Delfosse Norah Tan

PCMI Summer School 2023 July 27th 2023

LUT decoder

- What is the complexity in number of bit operations to build a LUT table for a stabilizer code with length n.
- Assume that we use a code with length n = 10,000.
 - How many bits are needed to store a n-qubit Pauli operator?
 - Assume that we want to implement a decoder with 1 GB of memory. How many Pauli errors can we store at most with this memory.
 - What is the cost of storing all weight-1 errors? Weight-2 errors?
 - \bullet Find a bound on the maximum weight M that we can use in the LUT construction algorithm.

.

Classical Peeling decoder

Input: syndrome + erased qubits (?).
Output: bit value for each erased qubit.
1. While there exists an erased bit do:

- 2. Loop over all checks and select a dangling check c.
- If there is no dangling check return failure.
- 4. Use the dangling check to correct an erased bit.

Consider the pseudo code for the peeling decoder.

- What is the worst-case complexity of this algorithm?
- Modify the pseudo-code to reduce the complexity.\
- Can you achieve a linear time complexity?

Repetition code

- Write the pseudo-code for an efficient decoding algorithm for a distance-d repetition code.
- What is the complexity of your decoder.

Bacon-Shor decoding

Consider a quantum state $|\psi\rangle$ on a grid of $\ell \times \ell$ qubits encoded in a stabilizer code with stabilizer generators acting as ZZ on vertical edges.

Assume that $|\psi\rangle$ suffers from a Z error $|\psi\rangle \rightarrow E_Z |\psi\rangle$.

• Show that this error E_Z is equivalent to an error acting on the first row of qubits.

We measure the operators S_i such that S_i acts as X on all qubits of columns i and i+1. The outcome of S_i is a bit σ_i .

- Design a decoding algorithm to corrects the errors ${\it E}_Z$.
- How many Z error can you correct at most with using this l×l grid of qubit.

MW decoder

- Show that A MW decoder corrects all Pauli errors E with weight $|E| \leq \frac{d-1}{2}$.
- Assume that the decoder D find an error with weight at most m + c for some constant c where m is the weight of the correction returned by a MW decoder. What is the max weight w such that D corrects all Pauli errors with weight up to w.
- Consider a classical decoder for a binary symmetric channel (bit flip channel). If the bit flip rate is p < 0.5, show that any MLE decoder is a MW decoder and vice-versa.