Quantum LDPC codes Problem session 1

Nicolas Delfosse

Norah Tan

2D toric code

Consider the 3×3 toric code.

- Prove the rank of the group generated by the Z stabilizers if |F|-1.
- Prove the rank of the group generated by the X stabilizers if |V|-1.
- Prove that $k=2$.
- Find a logical basis.

Consider the $\ell \times \ell$ square cellulation of the torus.

- What are the parameters of the associated Kitaev code?
- What is the limit of $\frac{k}{n}$? $\frac{d}{n}$?

3D toric code

- Find a logical basis for the 3D
 toric code.

HGP codes

- Compute parameters $\left[n_{1}, k_{1}, d_{1}\right]$ of the Hamming code.
- Compute parameters $\left[n_{1}^{T}, k_{1}^{T}, d_{1}^{T}\right]$ of the transposed code of the Hamming code
(the transposed code is obtained by swapping bits and checks).
- What are the parameters [$[n, k]$] of the hypergraph product of the Hamming code by itself.
- What is the lower bound on its distance.

LDPC HGP codes

Suppose that for all n, we can generate classical linear codes such that

- Their parameters are $[n, R n, \delta n]$ for some constants $R, \delta>0$,
- Their transposed code contains only the zero vector,
- Their Tanner graph has maximum degree w.
- What are the parameters of the HGP of two such codes?
- What is the maximum weight of a stabilizer generator of this HGP.

Minimum distance of CSS codes

```
Define the X minimum distance as the minimum weight of a non-
trivial logical error in {I,X}}\mp@subsup{}{}{\otimesn}\mathrm{ .
Define the Z minimum distance as the minimum weight of a non-
trivial logical error in {I,Z}}\mp@subsup{}{}{\otimesn}\mathrm{ .
```

- Prove that if Q is a CSS code, then $d=\min \left(d_{X}, d_{Z}\right)$.

Counting logical qubits of a stabilizer code.

Consider a stabilizer group $S=\left\langle S_{1}, \ldots, S_{r}\right\rangle$ with r independent generators. Our goal is to prove that its stabilizer code $Q(S)$ has $k=n-r$ logical qubits.

- Prove that for all $u \in\{0,1\}^{r}$, the group $S_{u}=\left\langle(-1)^{u_{1}} S_{1}, \ldots,(-1)^{u_{r}} S_{r}\right\rangle$ is a stabilizer group.
- Prove that for all $u \in\{0,1\}^{r}$, there exists $E_{u} \in \mathcal{P}_{n}$ such that for all $i=1, \ldots, r$ we have, $\left[E_{u}, S_{i}\right]=u_{i}$.

Hint. Use a generating set of S obtained by applying Gaussian elimination to the S_{i}.

- Prove that for all $u \in\{0,1\}^{r}, Q\left(S_{u}\right)=E_{u} Q(S)$.
- Prove that $\left(\mathbb{C}^{2}\right)^{\otimes n}=\bigoplus_{u} Q\left(S_{u}\right)$.
- Prove that for all $u \in\{0,1\}^{r}$, $\operatorname{dim} Q\left(S_{u}\right)=2^{n-r}$.
- Prove that $\operatorname{dim} Q(S)=2^{n-r}$

