Quantum LDPC codes Lecture 4

Nicolas Delfosse
Microsoft

PCMI Summer School 2023
July $28^{\text {th }} 2023$

Overview

- Brief overview of quantum Tanner code
-Conclusion: Should we abandon surface codes?

Quantum Tanner codes

Some constructions of QLDPC codes

Topological codes:

- 1997: Kitaev.
- 2002: Freedman, Meyer, Luo
- 2009: Bravyi, Poulin, Terhal bound: constant $\times n$

Hypergraph-product codes and generalizations:

- 2009: Tillich, Zémor. HGP

$$
\begin{gathered}
\mathrm{d}=\Omega(\sqrt{n}) \text { but } k=1 . \\
\mathrm{d}=\Omega(\sqrt{n \sqrt{\log n}}) \\
\mathrm{kd}^{2} \leq
\end{gathered}
$$

$\mathrm{d}=\Omega(\sqrt{n})$

- 2013: Bravyi, Hastings. Homological products
- 2020: Hastings, Haah, O'Donnell: Fiber bundle codes
- 2020: Panteleev, Kalachev: Lifted products
- 2020: Breuckmann and Eberhardt: Balanced products
$\mathrm{d}=\Omega\left(\frac{n^{\frac{3}{5}}}{\text { polylog }}\right)$
$\mathrm{d}=\mathrm{n}^{1-\varepsilon} / \log n$
$\mathrm{d}=\mathrm{n}^{1-\varepsilon} / \log n$
$\mathrm{d}=\Omega\left(n^{\frac{3}{5}}\right)$

Decoder for good LDPC codes

Good LDPC codes:

- 2021: Panteleev and Kalachev. Good QLDPC codes
- 2021: Dinur, Evra, Livne, Lubotzky, and Mozes. LTC codes
- 2022: Leverrier, Zémor

Linear time decoders for quantum Tanner codes:

- 2022: Gu, Pattison, Tang
- 2022: Dinur, Hsieh, Lin, VIdick
- 2022: Leverrier, Zémor

Left-Right Cayley Complex

Local structure

$$
\begin{aligned}
& G=\left\{g_{1}, g_{2}, \ldots\right\} \\
& A=\left\{a_{1}, a_{2}, \ldots\right\} \subseteq G \\
& B=\left\{b_{1}, b_{2}, \ldots\right\} \subseteq G
\end{aligned}
$$

Type A edge:

- - - $\boldsymbol{a} \times$.

Type B edge:

$$
\cdot \times b
$$

Neighborhood of a vertex

Consider $v=(g, 0)$

- Neighboring vertices: $(a g, 1)$ with $a \in A$ and $(g b, 1)$ for $b \in B$
- Neighboring faces: $\{(g, 0),(a g, 1),(g b, 1),(a g b, 0)\}$ for each pair $(a, b) \in A \times$ B.

Abstract representation the faces neigh

$$
F(v)=A \times B=
$$

Intersection of two neighborhoods

Question. What is $F(v) \cap F\left(v^{\prime}\right)$ for two vertices $v=(g, 0)$ ($g^{\prime}, 1$)?

- If $F(v) \cap F\left(v^{\prime}\right) \neq \emptyset$, then v and v^{\prime} must share an edge.
- Why?
- If they share a type A edge: $v=(g, 0)$ and $v^{\prime}=(a g$,
- Then $F(v) \cap F\left(v^{\prime}\right)$ is the set of faces:
$\{(g, 0),(a g, 1),(g b, 1),(a g b, 0)\}$ for $b \in B$
- If they share a type B edge:

$$
F(v) \cap F\left(v^{\prime}\right)=B=
$$

Tensor codes of two classical codes

Def. A codeword of $C_{1} \otimes C_{2}$ is bitstring forming a $n_{1} \times n_{2}$ matrix x such that

- each column of x is in C_{1},
- each row of x is in C_{2},
$\begin{array}{ccc} & 0 \\ \text { Ex. } & 0 \\ 0\end{array} \begin{aligned} & 1 \\ & 1 \\ & 1\end{aligned} \begin{array}{llllll}1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0\end{array}$
is in the product of the Hamming code and the 3 -repeti \square on \square ode

Prop. The code $C_{1} \otimes C_{2}$ has parameters $\left[n_{1} n_{2}, k_{1} k_{2}\right]$.

Definition of quantum Tanner codes

$F(v)=$

- Select a finite group G.
- Select $A, B \subseteq G$ such that $A^{-1}=A$ and $B^{-1}=B$.
- Select two codes C_{A} and C_{B} with length $|A|$ and $|B|$.
- Place a qubit on each face of the left-right Cayley complex (V, E, F)
- For each $v=(g, 0)$, for each $c \in C_{A} \otimes C_{B}$, define a X generator on $F(v)$ acting on the support of c.
- For each $v=(g, 1)$, for each $c \in C_{A}^{\perp} \otimes C_{B}^{\perp}$, define a Z generator on $F(v)$ acting on the support of c.

Prop. The generators commute because $F(v) \cap F\left(v^{\prime}\right)$ is either empty, or a row of $F(v)$ or a column of $F(v)$.

The sets must satisfy the TNC condition for all $a, g, b: a g \neq g b$

Example of Cayley graphs

- $G=\mathbb{Z}$,
- $A=\{ \pm 1\}$

Example of Cayley

- $G=\mathbb{Z}^{2}, A=\{(\pm 1,0),(0, \pm 1),(\pm 1, \pm 1)\}$
- $G=\mathbb{Z}_{8}, A=\{ \pm 3\}$

Why do we need $A=A^{-1}$?

Double cover of a Cayley graph

It is the graph with

- $V=V_{0} \cup V_{1}$ with $V_{0}=G \times\{0\}$ and $V_{1}=G \times\{1\}$
- Two types of edges: $\{(g, 0),(a g, 1)\}$ and $\{(g, 1),(a g, 0)\}$

Ex. $G=\mathbb{Z}, A=\{ \pm 2\}$
$G \times\{0\}=$
$G \times\{1\}=$

Example

$$
G=\mathbb{Z}_{6}, \mathrm{~A}=\{ \pm 1\}, B=\{ \pm 2\}
$$

$G \times\{0\}$
$G \times\{1\}$

A square

$$
\text { Example - } G=\mathbb{Z}_{9} \quad G=\mathbb{Z}_{9}, A=\{ \pm 1\}, B=\{ \pm 2\}
$$

Type A edge:
$(+1$, flip $)$
$--\overline{(-1, \text { flip })}$

- - - - - -

Type B edge:

$(+2$, flip $) \quad(-2$, flip $)$
What is this shape?

$$
\text { Example }-G=\mathbb{Z}_{3} \times \mathbb{Z}_{3}{ }^{G=\mathbb{Z}_{3} \times \mathbb{Z}_{3}, A=\{(\pm 1,0)\}, B=\{(0, \pm 1)\}}
$$

Type A edge:
($+1,0$, flip)
$-\mathbf{-}_{(-1,0, \text { flip })}$
4ー - - - - - -

Type B edge:

Construction:

Example - $G=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$. : . .ubits are on faces
For $v=(g, 0), c \in C_{A} \otimes C_{B}$, define a X generator on $F(v)$ acting on the support of c.

- For $v=(g, 1), c \in C_{A}^{\perp} \otimes C_{B}^{\perp}$, define a Z generator on $F(v)$ acting on the
- $=(a, 0)^{\text {support of } c \text {. }}$
- $=(g, 0)=\mathrm{X}$ stabilizer generators

$F(v)=A \times B=$| \square |
| :---: |

We need to a tensor code $C_{A} \otimes C_{B}$ on $A \times B$:

$$
\Rightarrow C_{A}=C_{B}=\{00,11\}
$$

$$
C_{A} \otimes C_{B}=\begin{array}{|l|l|}
\hline 0 & 0 \\
\hline 0 & 0 \\
\hline
\end{array} \begin{array}{|l|l|}
\hline 1 & 1 \\
\hline 1 & 1 \\
\hline
\end{array}
$$

We recover the toric code.

$$
\Rightarrow \text { X stabilizer gen } \begin{array}{|c|c|}
\hline X & X \\
\hline x & X \\
\hline & X \\
\hline
\end{array}
$$

How to get good LDPC codes

Take:

- $G=\operatorname{PSL}_{2}\left(q^{i}\right)$
- $C_{A}=$ random code
- $C_{B}=$ random code

This leads to a family of good quantum LDPC codes.

Question:
Should we all replace our codes by good quantum LDPC codes?

Conclusion

OVEIVLeW OI the whole
 layout

Select two random
Tanner graphs with

- 4s bits with degree 3.
- 3s checks with degree 4 .
- girth ≥ 8

Construct their HGP.

- Estimate the performance of the HGP code using the SSF decoder.
- Select the best HGP
- Compute the Tanner graph T of the code.
- Compute an edge coloration of T
- Construct the color-based syndrome extraction circuit.
- Compute a
layered
decomposition of the Tanner graph.
- Compute an edge coloration of T
- Construct the color-based syndrome extraction circuit.
- We use BP for decoding in a single shot manner.
- We estimate the logical error rate over 10 rounds of syndrome extraction.
- To check if a logical error occurs, we use SSF decoder to correct the residual

Numerical

results


```
Noise threshold:
\(0.28 \%\) (instead of \(0.7 \%\) for surface codes)
\# physical qubits per logical qubit:
49 (instead of thousands for surface codes)
```

Logical failure rate	10^{-9}	10^{-12}	10^{-15}
Logical qubits	1600	6400	18496
Surface code physical qubits	387200	2880000	13354112
HGP code physical qubits	78400	313600	906304
Improvement using HGP codes	$4.94 \times$	$9.18 \times$	$14.73 \times$

- What is the effect of a X fault on the ancilla qubit?
- Can we avoid that?
- Should we avoid that?

Decoder:

- BP corrects each qubits independently based on marginal probability. Is it a problem?
- The decoder uses noisy syndrome data. Is it a problem?

Conclusion:

- Practical FT \neq Theoretical FT

What could be improveco

1. Improve the code:

- linear distance,
- reduced code length,
code

circuit

2. Improve the circuit:

- the circuit is not FT (reduced distance).

3. Improve the decoder:

- better logical error rate,
- linear complexity,
- hardware optimization.
layout

4. Improve the simulation:

- Refine the numerical estimate of the logical error rate.
- Simulate longer lifetime.

Simulate longer lifetime.

layout

What about computation?

- 2013: Gottesman - Fault-Tolerant Quantum Computation with constant overhead.
- Other proposals for fault-tolerant logical gates in QLDPC codes², 3, 4 .
(c)

1. Jochym-O'Connor, arxiv:1807.09783
2. Krishna, Poulin, arxiv:1909.07424
3. Cohen, Kim, Bartlett, Brown, arxiv: 2110.10794
4. Breuckmann, Burton,

What could go wrong with this approach?

- Noise could be correlated.
- Noise could be non-Pauli.
- We may be unable to build sufficiently reliable hardware (need $p=10^{4}$).
- The blocks could be too big (we need $n=900,000$).
- The decoder could be too slow.
- Fault-tolerant operations may be expensive.
- We may be unable to build the required long-range connections.
- We may need too many long-range connections.
- Building insulated layers of long-range connections may be hard.

Physical error rate

Logical failure rate	10^{-9}	10^{-12}	10^{-15}
Logical qubits	1600	6400	18496
Surface code physical qubits	387200	2880000	13354112
HGP code physical qubbits	78400	313600	906304
Improvement using HGP codes	$4.94 \times$	$9.18 \times$	$14.73 \times$

Other encoding strategies

Now what?

Should we abandon surface codes?

Hyperbolic codes:

- Higgott, Breuckmann (2020)
- Breuckmann, Vuillot, Campbell, Krishna, Terhal (2017)

Floquet codes:

- Haah, Hastings (2021)

Spacetime code:

- Delfosse, Paetznick (2023)

Appendix - History of classical LDPC codes

Brief (and biased) history

- Asymptotic results: Shannon (1940's)
- Channel capacity: If we use a channel an infinite number of times, what is the maximum number of bits of information that we can send per use of the channel?
- Basic idea: Random codes are optimal.
- Problem: How to encode? How to decode?
- Birth of modern coding: Elias and Gallager (1960's)
- Linear codes perform as well as random codes but encoding is easy.
- Convolutional codes too.
- Erasure channel as a toy model.
- LDPC codes.

Brief (and biased) history

- The comeback of modern coding: Berrou, Mackay, Neal, Richardson, Urbanke, Shorkollahi, ... (1990's):
- Turbo codes
- LDPC codes
- Decoding is easy! But is it optimal?
- Capacity achieving codes.
- Proofs for the erasure channel first.
- Irregular LDPC codes.
- Spatially-coupled codes achieve capacity (Kudekar, Richardson, Urbanke 2013).
- Today LDPC codes are in your cell phone, your laptop, your WiFi...

How far are we from the classical story?

Classical goal:

- Achieve capacity with a linear time decoder.

Def. The capacity of a channel N is the maximum rate $\frac{k}{n}$ of a family of codes with vanishing logical error rate.

Quantum goal:

- Achieve capacity?
- Build a fault-tolerant quantum computer?

We can still learn form the classical case: For instance, starting with the erasure channel.

Appendix - Small Set Flip (SSF) decoder

Small Set Flip decoder - Basic idea

1. Select a Z check
2. Select an error E_{X} inside the Z check that reduces the syndrome weight.
3. Update the syndrome

Small Set Flip decoder - Basic idea

Leverrier, Tillich, Zémor -

Small set flip decoder

Def: A critical generator g is a Z stabilizer generator that contains a X error that reduces the weight of the syndrome.

Input: A syndrome value $s_{c}=0$ or 1 for each Z check node.
Output: A correction for X errors.

1. While there exists a critical generator g :
2.

weight reduction $\left|E_{X}(g)\right|$ is maximum.
3. Update the syndrome: Add $s\left(E_{X}(g)\right)$ to the syndrome.
4. Return the product of all the $E_{X}(g)$.

Theorem. [Leverrier, Tillich, Zémor, 2015]. Under some conditions about the expansion of the two input graphs, the small set flip decoder for $H G P$ codes corrects any set of

Small set flip decoder Complexity

Complexity: $O\left(2^{w} n\right)$

Notation:

- $\mathrm{n}=$ code length.
- $w=$ max. degree of a check (max. weight of a stabilizer generator).

Remark:

- Linear-time complexity for bounded degree Tanner graphs.
- May be slow in practice for large w.

