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Overview

*Brief overview of gquantum Tanner code

e Conclusion:
codes?

Should we abandon surface
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Quantum Tanner codes
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Some constructions of

codes

Topological codes:

e 1997: Kitaev.
¢ 2002: Freedman, Meyer, Luo

e 2009: Bravyi, Poulin, Terhal bound:
constant X n

Hypergraph-product codes and generalizations:

e 2009: Tillich, Zémor. HGP
with kxn

e 2013: Bravyi, Hastings. Homological products

* 2020: Hastings, Haah, O’Donnell: Fiber bundle codes

* 2020: Panteleev, Kalachev: Lifted products

¢ 2020: Breuckmann and Eberhardt: Balanced products

QLDPC
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Decoder for good LDPC codes

Good LDPC codes:
e 2021: Panteleev and Kalachev. Good QLDPC codes

e 2021: Dinur, Evra, Livne, Lubotzky, and Mozes. LTC codes

e 2022: Leverrier, Zémor

Linear time decoders for quantum Tanner codes:
e 2022: Gu, Pattison, Tang
e 2022: Dinur, Hsieh, Lin, VIdick

e 2022: Leverrier, Zémor
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Left-Ri1ght Cayley Complex

(azgby,0)

Input: (a1gb1' 0)
* A finite group G

e Two subsets A,B of G such that A '=A4 and B™' =B (a29,1)
(a19,1)
Output:
: lex X = (V,E,F) wh (9.0)
A =V, E, :
complex ( ) where (gbs 1)
s V=V,UV;, where V; =G X {i}
(gbZ' 1)

* E=E4UEp where E, ={(g,0),(ag,1)} and Ep = {(g,0),(gb, 1)}
* F= set of squares f(g,a,b):=1{(g,0),(ag,1),(gb,1),(agb,0)}
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Local structure

Type B edge:
‘X b

G X {0} G X {1}
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Neighborhood of a vertex

Consider v = (g,0)
* Neighboring vertices: (ag,1) with a€ A and (gbh,1) for b€EB

* Neighboring faces: {(g,0),(ag,1),(gb,1),(agh,0)} for each pair (a,b) € A X
B.

A
A
Abstract representation the faces neighborina 1 - N

Flwv)=AXB = B




7/28/2023

Intersection of two 9-———- e
nelighborhoods

Question. What is F(v¥)NF') for two vertices v =(g,0) and v]=

(g’ 1)2 °c-=-- ¢
(g9,0) (ag,1)
e If FW)NFW') #®, then v and v' must share an edge.
* Why?
A
L Y
« If they share a type A edge: v=(g,0) and v = (ag, Ip w

e Then Fw)NF(') is the set of faces:
{(gro)r (ag' 1); (gb; 1);(agb,0)} for bEB

Fw)NnF@')=B= 7

e If they share a type B edge:
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Tensor codes of two classical
codes

Def. A codeword of (;®C(C, is bitstring forming a ny Xn, matrix x
such that

* each column of x is in (i,

* each row of x is in (3,

Ex. 0 1 1 0 1

is in the product of the Hamming code and the 3-repetillon [lode

Prop. The code (; ® C, has parameters [nn,, kik,].

1N
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Definition of quantum Tanner
codes

* Select a finite group G.
e Select A, BCS G such that A '=A4 and B~!=B.
* Select two codes C, and Cg with length |A| and |B].

.

* Place a qubit on each face of the left-right
Cayley complex (V,E,F)

* For each v=(g,0), for each c€CyQ® Cz, define a X
F(v) = " B generator on F(v) acting on the support of c.

* For each v=(g,1), for each CECAL®C§', define a %
generator on F(v) acting on the support of c.

7 Prop. The generators commute because F(w)NFW') is
either empty, or a row of F(v) or a column of F(v).

The sets must satisfy the TNC condition for all a,g,b: ag # gb

11
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Example of Cayley graphs

* G =1,
+ A= (1)

19
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‘

Example of Cayley graphs|
« G =17%A={(£1,0),(0,£1)} RN

——8
« G =7%A={(£1,0),(0,£1),(+1,+1)} _T T

TrTrTr

A
« G =17gA={+3)

Why do we need A=A4"17

N

12
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Double cover of a Cayley graph

It is the graph with
« V =V,UV, with Vy=Gx{0} and V, =G x {1}
* Two types of edges: {(g,0),(ag,1)} and {(g,1),(ag,0)}

Ex. G=17,A= {12}

G x{1} =

11
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Example

{£1}, B = {2}

Z6’A=

G =

NN
NN

A square

G x {1}

G x {0}

1c
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Example - G = Zqg

Type A edge:

Type B edge:

(+2,flip) (-2, flip)

What is this

G =179 A ={£1},B = {£2}

1G
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= 43 3 A=UxLV)s b = , 1
Example - G = ZB XZB G =17 X Ty, A = {(+1,0)}, B = {0, £1)}

Type A edge:

(+1,0, flip)
—————— -
(—1,0,flip)
A= = = ——— - (0,2,1)
(2,0 (0,0 (1,0,1)
1) 70) - -9
Type B edge: (0,141)

(+1,0,flip) (—1,0, flip)

17
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Example - G =73 X Zs5.

(1,141)

We recover

Construction:

* Qubits are on faces

For v=1(g,0), ceEC4QCy, define a X
generator on F(v) acting on the
support of c.

(0,0.1) « For v=(9,1), c€C{ ®Cy, define a Z
generator on F(v) acting on the
(2,1,1) (0,120) (1,1,1) support of c.
O= = - —('r ® =(g9,0) = X stabilizer generators

F(v)=AXB =

We need to a tensor code €4, @ Cgz on A X B:
= C4 = Cg = {00,11}
010 111
CA ® CB =
010 111

L X | X
= X stabilizer gene;l@af:
X | X

the toric code.

1Q
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How to get good LDPC codes

Take:
* G = PSL,(q")
* (4 = random code

* (g = random code

This leads to a family of good quantum LDPC codes.

Question:

Should we all replace our codes by good quantum LDPC codes?

10
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Conclusion

70
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T
. N
Overview of the whole scheme 7N\
VAN
code Syndromg T
;’%;%*; S X syndrome of E

/4 /4 . q

lo o lo clrcult
error .
|y) € stabilizer code - Correcti Decode
on of E r

7

Syndrome Z syndrome of E
extraction
circuit

circuit layout

71
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Overview of the

o o o

’ /

lo o lo

“'n/_p\
.|

T - T - T |

code

Select two random

Tanner graphs with

* 4s bits with degree
3. *

* 3s checks with
degree 4.

* girth =8

Construct their HGP.

* Estimate the
performance of the
HGP code using the
SSF decoder.

* Select the best HGP

Compute the

Tanner graph T of

the code.

Compute an edge
coloration of T
Construct the

color-based
syndrome
extraction
circuit.

whole scheme s

layout

¢ Compute a
layered
decomposition of
the Tanner
graph.

* Compute an edge
coloration of T

* Construct the
color-based
syndrome
extraction
circuit.

We use BP for
decoding in a
single shot
manner.

We estimate the
logical error rate
over 10 rounds of
syndrome
extraction.

To check if a
logical error
occurs, we use SSF
decoder to correct
the residual

79
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Noise threshold:

0.28% (instead of 0.7% for surface codes)

# physical qubits per logical qubit:

49 (instead of thousands for surface codes)

Logical failure rate 107° 10~ 107*°

Logical qubits 1600 6400 18 496
Surface code physical qubits 387200 2880000 13354112
HGP code physical qubits 78400 313600 906304
Improvement using HGP codes 4.94x  9.18x 14.73 %

Numerical

results
100 3 l!ﬁ
1071 , e g*
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Is our scheme fault-tolern

Syndrome extraction:

What i1s this circuit?

Are there ‘bad’ faults for this
circuit?

What i1s the effect of a X fault on the
ancilla qubit?

Can we avoid that?
Should we avoid that?

Decoder:

BP corrects each qubits independently
based on marginal probability. Is it a
problem?

The decoder uses noisy syndrome data.
Is it a problem?

Conclusion:

Practical FT # Theoretical FT

)
g\l
H <
—7

Shi

v

E[Y)< 7

N

X X

N~

| +> -0—0 %084 A

X

Efp) < Z

10000) + [1111) < d i

MIN
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}%%§
ad*\
o o
o oo n
1. Improve the code: code
* linear distance,

* reduced code length,
* denser family.

What could be i1mprov

2. Improve the circuit:
* the circuit is not FT (reduced distance). ’\

3. Improve the decoder: A
* better logical error rate, \)}}igggf

. . -

* linear complexity, \\\\\/////

* hardware optimization. layout

4. Improve the simulation:
* Refine the numerical estimate of the logical error rate.
* Simulate longer lifetime.

circuit

decoder

o 1~
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What about computation?

* 2013: Gottesman - Fault-Tolerant Quantum Computation with constant
overhead.

* Other proposals for fault-tolerant logical gates in QLDPC codes!:?:
3, 4

(c)

1. Jochym-0’'Connor, arxiv:1807.09783
2. Krishna, Poulin, arxiv:1909.07424
3. Cohen, Kim, Bartlett, Brown,
arxiv: 2110.10794

Figure from ref 3. 4. Breuckmann, Burton,

200D IAWAN AW, i

TG
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What could go wrong

approach?

Noise could be correlated.
Noise could be non-Pauli.

We may be unable to build suff1c1ently
reliable hardware (need p—-10)

The blocks could be too big
n = 900,000) .

The decoder could be too slow.

(we need

Fault-tolerant operations may be
expensive.

We may be unable to build the required
long-range connections.

We may need too many long-range
connections.

Building insulated layers of long-range
connections may be hard.

with this

100 E
: .
¥
101 L oK !
o X
: R

9 10-2 3 i /i/ vrx

2 g el

o 1073 E e

= E-- A el ’

& 107 3 '*

[T 1625, 25]

3 = A /T/ +  [2500, 100]
Iy [5625, 225]
07 1 ¥ [10000, 400]

2 X [22500 900]
10~4 103

Physical error rate

Logical failure rate 107° 10712 10715

1600 6400 18 496
387200 2880000 13354112
78400 313600 906 304
9.18% 14.73x

Logical qubits

Surface code physical qubits
HGP code physical qubits
Improvement using HGP codes 4.94x

77
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Other encoding strategies

Now what?

Should we abandon surface codes?

Hyperbolic codes:
* Higgott, Breuckmann (2020)
* Breuckmann, Vuillot, Campbell, Krishna, Terhal (2017)

Floquet codes:
* Haah, Hastings (2021)

Spacetime code:
* Delfosse, Paetznick (2023)

71Q
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Appendix - History of
classical LDPC codes
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Brief (and blased) history

Asymptotic results: Shannon (1940's)

* Channel capacity: If we use a channel an infinite number
of times, what i1s the maximum number of bits of
information that we can send per use of the channel?

* Basic idea: Random codes are optimal.

* Problem: How to encode? How to decode?

Birth of modern coding: Elias and Gallager (1960’s)

* Linear codes perform as well as random codes but encoding
is easy.

* Convolutional codes too.

* Erasure channel as a toy model.

* LDPC codes.

2N
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Brief (and blased) history

* The comeback of modern coding: Berrou, Mackay, Neal,
Urbanke, Shorkollahi, .. (1990"s) :
* Turbo codes
* LDPC codes
* Decoding is easy! But is it optimal?

* Capacity achieving codes.
* Proofs for the erasure channel first.
* Irregular LDPC codes.
* Spatially-coupled codes achieve capacity (Kudekar,
Urbanke 2013).

* Today LDPC codes are in your cell phone, your laptop,

Richardson,

Richardson,

your WiFi..

21
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How far are we from the
classical story?

Classical goal:
* Achieve capacity with a linear time decoder.

. . . k .
Def. The capacity of a channel N is the maximum rate - of a family
of codes with vanishing logical error rate.

Quantum goal:
* Achieve capacity?

* Build a fault-tolerant guantum computer?

We can still learn form the classical case: For instance, starting
with the erasure channel.

229
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Leverrier,
v

Appendlx - Small Set
Flip (SSF) decoder

Tillich, Zémor -
ENA NANQDD e Wa N Bl mil

A2
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Small Set Flip decoder - Basic
1dea

0 0 0 1 0 0 1
. . " . " 1 1. Select a Z check
- ) - - - - i} 2.Select an error Ey inside
%z checks O o the Z check that reduces
the syndrome weight.
3. Update the syndrome
O O O O O o O O O O

21
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Small Set Flip decoder - Basic
1dea

| | | | * | | | | | | | » Decoder iterations

Leverrier, Tillich, Zémor -
PEYAVATVIL N ~NaV.laYaleXols) e Wa N Bl mil

2
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Small set flip decoder

Def: A critical generator g is a Z stabilizer generator that
contains a X error that reduces the weight of the syndrome.

Input: A syndrome value s, =0 or 1 for each Z check node.
Output: A correction for X errors.
1. While there exists a critical generator g:

2. Select an error Ex(g) included in g such that

weight reduction
|Ex(9)I

is maximum.

3. Update the syndrome: Add s (Ex(g)) to the syndrome.

4. Return the product of all the Ex(g).

Theorem. [Leverrier, Tillich, Zémor, 2015]. Under some
conditions about the expansion of the two input graphs, the
small set flip decoder for HGP codes corrects any set of

—

24
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Small set flip decoder -
Complexity

Complexity: 0(2%n)

Notation:
* n = code length.

* w = max. degree of a check (max. weight of a stabilizer
generator) .

Remark:

* Linear-time complexity for bounded degree Tanner graphs.

* May be slow in practice for large w.

A7



