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The decoding problem
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MLE, MLC and MW decoders

• Model = Perfect measurement

• Qubit noise = Probability distribution Pr 𝐸 over 𝐼, 𝑋, 𝑌, 𝑍 ௡

Def. A decoder is a map 𝐷: 0,1 ௥  → 𝐼, 𝑋, 𝑌, 𝑍 ௡.

• It is a MW decoder if 𝐷(𝜎) is a min weight Pauli error with 
syndrome 𝜎.

• It is a MLE decoder if 𝐷(𝜎) is a Pauli error that maximizes Pr 𝐸|𝜎 .

• It is a MLC decoder if 𝐷(𝜎) is a Pauli error that maximizes 
Pr 𝐸. 𝑆|𝜎 .

MLE = Most Likely 
Error
MLC = Most Likely 
Coset
MW = Min Weight
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Comparison

• In general MLC > MLE > MW

• If low noise rate + low correlation probability then 

MLE ≈ MLC ≈ MW

• A MLC decoder may achieve a higher threshold. For surface codes:
• MLE threshold ≈ 16%
• MLC threshold ≈ 19%
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Standard Pauli noise models

Perfect measurement model:
• Noise on data qubits

Phenomenological model:
• Noise on data qubits
• Noise on measurements

Circuit noise:
• Noise on data qubits
• Noise on measurements
• Noise on ancilla qubits
• Noise on gates
• Noise on waiting qubits

| +>
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From perfect measurements to 
circuit model
The syndrome extraction circuit is 
noisy.
=> We need to correct circuit faults

But Circuit faults ≈ Pauli errors for 
a larger code.
=> We focus on Pauli errors because:

Ex.
• Circuit faults in 2D surface codes 
≈ Pauli errors in 3D surface code1.
• Circuit fault in a Clifford circuit 
≈ Pauli errors in the spacetime 
code2.

Three rounds of 
measurements

time

Measuremen
t error

Qubit 
errors

1. Dennis, Kitaev, Landhal, Preskill – Topological quantum memory (2001)
2. Delfosse, Paetznick – Spacetime codes of Clifford circuits (2023)
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Lookup table decoder
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Computational complexity

Computational complexity:

• MLE decoding for stabilizer codes is NP-hard1

• MLC decoding for stabilizer codes is #P-hard2

In practice: 

• Use highly structure codes (Hamming, Reed Muller, BCH, Reed 
Solomon, Turbo, Polar, LDPC, Spatially-Coupled)

• Exploit this structure to design an efficient decoder.

• The decoder must be adapted to the resource available: memory, 
compute, energy, space, time, technology, cost

1. Berlekamp, McEliece, Van Tilborg
2. Iyer, Poulin (2015)
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Implementation of a MW decoder 
using a lookup table
Input: Code + bound 𝑀.

Output: A MW decoder for the correction of all errors with weight ≤
𝑀

1. Initialize 𝐷 𝜎 = 0 for all 𝜎.

2. For 𝑤 = 1,2, … , 𝑀 do:

3. Loop over Pauli errors 𝐸 with weight w and do:

4. Compute 𝜎(𝐸)

5. If 𝐷 𝜎 = 0, set D 𝜎 = 𝐸

6. Return 𝐷

Question. What is the size of 𝐷?

෍
𝑛
𝑤

3௪ 

 

௪ୀ`ଵ,…,ெ

Checks Correctio
n

100 Flip 4

010 Flip 6

110 Flip 2

001 Flip 7

101 Flip 3

011 Flip 5

111 Flip 1
LUT decoder for Hamming code



7/27/2023

11

Example

Is there a LUT decoder in my laptop?

Claim:

• The flash memory uses LDPC codes with length 𝑛 ≈ 8,000.

• The code has distance 𝑑 ≈ 30

Is that feasible?

• We need to store all corrections with weight up to 𝑀 = 15.

• Cost: ≥
8,000

15
≈ 2.10ସ଺ bits = 

• 20 trillions quetabits



7/27/2023

12

Belief Propagation 
decoder for classical 
codes
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Erasure channel

0

1

0
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1-p
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Correction of an erased bit 
with a (2,3)-code

?

? ? ?

? ?

Question: Does it work in 
practice?

Select graph with large 
girth (no short cycle).
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Classical peeling decoder

1 ? ? 0 1 0 1𝑥 =

𝑥ଵ + 𝑥ଶ + 𝑥ହ + 𝑥଺ = 0
⇒ 1 + 𝑥ଶ + 1 + 0 = 0
⇒ 𝑥ଶ = 0

0 1 Def. A dangling check is a check 
connected to a single erased bit.

Peeling decoder:
1. While there exists a dangling 

check do:
2. Select a dangling check 

and use it to correct the 
incident bit.

Zyablov, Pinsker –
1974
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Stopping sets

1 ? ? 0 ? 0 1𝑥 =

Def. A stopping set is a set of 
erased bits with no dangling check.

Prop. [Zyablov, Pinsker - 1974]. The 
peeling decoder fails iff the 
erasure contains a stopping set.

Theorem. [Richardson, Urbanke -
2001]. For carefully designed 
classical LDPC codes, the 
probability of an erased stopping 
sets vanishes.

Basic idea: Design graphs with no 
short cycle.
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Binary symmetric channel

0

1

0

1
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p

1-p
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Marginal bit-flip probability

𝑥ଵ𝑥ଶ … 𝑥௡ 𝑦ଵ𝑦ଶ … 𝑦௡

channel

Goal: Compute 𝑃 𝑥௜ = 0  𝑦) and 𝑃 𝑥௜ = 1  𝑦) for all 𝑖.

We can use this value to correct each bit. 

How?
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Marginal bit-flip probability

We want to evaluate

𝑃 𝑥ଵ = 0  𝑦) = ෍ 𝑃 𝑦  𝑥)𝟏௫∈஼

 

௫భୀ଴
௫∈஼

௫మ, ௫య,…, ௫೙

= ෍ ෑ 𝑃 𝑦௜  𝑥௜)

 

௜ୀଵ,..௡

𝟏௫∈஼

 

௫భୀ଴
௫మ, ௫య,…, ௫೙

What is 𝟏௫∈஼ for the distance-3 repetition code?

• 𝑥 ∈ 𝐶  iff 𝑥ଵ + 𝑥ଶ = 0 and 𝑥ଶ + 𝑥ଷ = 0

• Therefore 𝟏௫∈஼ = (1 + 𝑥ଵ + 𝑥ଶ)(1 + 𝑥ଶ + 𝑥ଷ)
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Marginal bit-flip probability

We want to evaluate

𝑃 𝑥ଵ = 0  𝑦) = ෍ ෑ 𝑃 𝑦௜  𝑥௜)

 

௜ୀଵ,..௡

𝟏௫∈஼

 

௫భୀ଴
௫మ, ௫య,…, ௫೙

It a function of the form

෍ 𝑓ଵ 𝑥 … 𝑓௠(𝑥)

 

௫మ, ௫య,…, ௫೙

For LDPC codes each 𝑓௜ depends only on a small number of variables 𝑥௜.

How many multiplications are needed?

• 𝑂(2௞𝑛) multiplications.
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Example

Compute the sum

෍ 𝑓 𝑥ଵ, 𝑥ଶ, 𝑥ଷ 𝑔 𝑥ସ

 

௫భ,௫మ, ௫య,௫ర 

෍ 𝑓 𝑥ଵ, 𝑥ଶ, 𝑥ଷ

 

௫భ, ௫మ, ௫య 

෍ 𝑔 𝑥ସ

 

௫ర
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Marginal computation by Belief 
Propagation

Example: Compute the sum

෍ 𝑓ଵ 𝑥ଵ, 𝑥ଶ, 𝑥ଷ 𝑓ଶ 𝑥ଵ, 𝑥ସ, 𝑥଺ 𝑓ଷ 𝑥ସ 𝑓ସ(𝑥ସ, 𝑥ହ)

 

௫మ, ௫య,௫ర, ௫ఱ, ௫ల

Strategy:
• Represent the 𝑓௜ and their variables as a graph (called 

factor graph).
• Use the graph topology to optimize the computation of 

partial sums.
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𝑥ଵ

𝑥ଶ 𝑥ଷ 𝑥ସ 𝑥଺

𝑥ହ

𝑓ଵ 𝑓ଶ

𝑓ଷ 𝑓ସ

෍ 𝑓ଵ 𝑥ଵ, 𝑥ଶ, 𝑥ଷ 𝑓ଶ 𝑥ଵ, 𝑥ସ, 𝑥଺ 𝑓ଷ 𝑥ସ 𝑓ସ(𝑥ସ, 𝑥ହ)

 

௫మ, ௫య,௫ర, ௫ఱ, ௫ల
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Belief Propagation messages

𝑓ଵ

𝑓ଶ 𝑓ଷ 𝑓௠

𝑥ଵ

∏ 𝜇௙೔→௫భ
(𝟎)௠

௜ୀଶ

∏ 𝜇௙೔→௫భ
(𝟏)௠

௜ୀଶ

…

From variables to checks

= product of incoming messages
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Belief Propagation messages

𝑥ଵ

𝑥ଶ 𝑥ଷ 𝑥௠

𝑓ଵ

∑ 𝑓ଵ(0, 𝒙𝟐, … , 𝒙𝒎) ∏ 𝜇௫೔→௙భ
(𝒙𝒊)

௠
௜ୀଶ

 
𝒙𝟐,…,𝒙𝒔

∑ 𝑓ଵ(1, 𝒙𝟐, … , 𝒙𝒎) ∏ 𝜇௫೔→௙భ
(𝒙𝒊)

௠
௜ୀଶ

 
𝒙𝟐,…,𝒙𝒔

From checks to variable

…

= sum over all values of incoming variables
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𝑥ଵ

𝑥ଶ 𝑥ଷ 𝑥ସ 𝑥଺

𝑥ହ

𝑓ଵ 𝑓ଶ

𝑓ଷ 𝑓ସ

෍ 𝑓ଵ 𝑥ଵ, 𝑥ଶ, 𝑥ଷ 𝑓ଶ 𝑥ଵ, 𝑥ସ, 𝑥଺ 𝑓ଷ 𝑥ସ 𝑓ସ(𝑥ସ, 𝑥ହ)

 

௫మ, ௫య,௫ర, ௫ఱ, ௫ల

1

1

1

1

1

1

1

1
𝑓ଷ(0)

𝑓ଷ(1)
∑ 𝑓ସ(0, 𝒙𝟓) × 1 

𝒙𝟓

∑ 𝑓ସ(1, 𝒙𝟓) 
𝒙𝟓

× 1

∑ 𝑓ଵ(0, 𝒙𝟐, 𝒙𝟑) × 1 × 1 
𝒙𝟐𝒙𝟑

∑ 𝑓ଵ(1, 𝒙𝟐, 𝒙𝟑) × 1 × 1 
𝒙𝟐𝒙𝟑

𝑓ଷ(0) × ∑ 𝑓ସ(0, 𝑥ହ) 
௫ఱ

𝑓ଷ(1) × ∑ 𝑓ସ(1, 𝑥ହ) 
௫ఱ

∑ 𝑓ଶ 0, 𝒙𝟒, 𝒙𝟔
 
𝒙𝟒𝒙𝟔

× 𝑓ଷ 𝒙𝟒 ∑ 𝑓ସ 𝒙𝟒, 𝑥ହ × 1 
௫ఱ

∑ 𝑓ଶ 1, 𝒙𝟒, 𝒙𝟔
 
𝒙𝟒𝒙𝟔

× 𝑓ଷ 𝒙𝟒 ∑ 𝑓ସ 𝒙𝟒, 𝑥ହ × 1 
௫ఱ

∑ 𝑓ଵ(0, 𝑥ଶ, 𝑥ଷ) × 
௫మ௫య

∑ 𝑓ଶ 0, 𝑥ସ, 𝑥଺
 
௫ర௫ల

𝑓ଷ 𝑥ସ ∑ 𝑓ସ 𝑥ସ, 𝑥ହ
 
௫ఱ

∑ 𝑓ଵ(1, 𝑥ଶ, 𝑥ଷ) × 
௫మ௫య

∑ 𝑓ଶ 1, 𝑥ସ, 𝑥଺
 
௫ర௫ల

𝑓ଷ 𝑥ସ ∑ 𝑓ସ 𝑥ସ, 𝑥ହ
 
௫ఱ
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Belief Propagation – Final 
comments
Applications:

• In a tree: BP compute exactly the bit-flip probabilities.

• In a graph: BP compute an approximation of the bit-flip 
probabilities.

• For LDPC codes: For LDPC code with large girth (no short cycle), 
BP compute a good approximation of the bit-flip probabilities.

• Progressive edge growth: Algorithm producing LDPC codes with large 
girth.
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The quantum decoding 
problem
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Depolarizing channel
0

1

0

1

1-p

p

1-p

p

1-p

p/3
𝜌 𝜌

𝑋𝜌𝑋

𝑌𝜌𝑌

𝑍𝜌𝑍

p/3

p/3

Classical binary symmetric channel
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First decoding attempt: BP

Classical case:

• Use BP to compute 𝑃 𝑥௜ = 0  𝑦) and 𝑃 𝑥௜ = 1  𝑦).

• Correct by selecting the most likely value 𝑥௜ = 0 or 1.

Quantum case:

• Use BP to compute 𝑃 𝐸௜ = 𝐼  𝑠), 𝑃 𝐸௜ = 𝑋  𝑠), 𝑃 𝐸௜ = 𝑌  𝑠) and 𝑃 𝐸௜ = 𝑍  𝑠).

• BP does not perform well for two reasons:
• The quantum Tanner graph contains many 4-cycles because of the 
commutation relations.

• The event 𝐸௜ = 𝐼 is not well defined up to a stabilizer.
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UF decoder for LDPC 
codes
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Separation of X and Z errors

In what follows we focus on Z errors.
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Error detection

Z Z

Z

Z

A chain of errors is detected 
at its endpoints

= Z error

= check with 
value 0
= check with 
value 1
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Trivial errors and logical 
errors

Loops are trivial errors. Paths connecting the 
two opposite sides are 
logical errors.

Paths connecting the 
same side are 
trivial errors.

No effect
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Union-Find decoder

Delfosse, Nickerson (2017)  arxiv1709.06218

Union-Find decoder:
1.Grow clusters around 

check with value 1. 
2.Stop growing a cluster 

when it becomes 
correctable.

3.Correct each cluster 
independently.

Remark:
We track the growing 
cluster using a Union-Find 
data structure which leads 
to an almost-linear 
complexity.
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The problem with LDPC codes

Clusters grow 
too fast!
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Union-Find decoder for QLDPC 
codes
Input: A syndrome value 𝑠௖ = 0 or 1 for each Z check.

Output: A correction for X errors.

1. Initialize ℇ = set of Z checks with syndrome 1. (ℇ = growing 
clusters)

2. While there exist an uncorrectable cluster in ℇ:

3. Grow all the clusters in ℇ.

4. Check if the clusters are correctable.

5. Find a correction inside each cluster of ℇ.

6. Return the product of the corrections of the clusters.

Delfosse, Londe, Beverland (2021) 
arxiv:2103.08049



7/27/2023

39

The covering radius

error
detection

Def. The covering radius of a 
syndrome s is the min radius such 
that the red balls cover an error 
with syndrome s.

Theorem (informal). If the 
covering radius of the syndrome is 
small, then the Union-Find decoder 
succeeds.

Applications: The UF decoders 
corrects 𝑛௔ errors for:

• Quantum expander codes
• Hyperbolic codes1 in 
dimension 𝐷 ≥ 3 [Guth, 
Lubotzky, (2013)]

• Toric codes in dimension 𝐷 ≥ 3
Delfosse, Londe, Beverland (2021) 
arxiv:2103.08049
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Union-Find decoder -
Complexity
Complexity:

• For surface codes and color codes: 𝑂(𝑛𝛼(𝑛)).

𝛼(𝑛) is the inverse of Ackermann’s function.

• For LDPC codes: 𝑂(𝑛ସ).

Research question: Design a UF decoder that corrects (d-1)/2 errors for 
toric codes in all dim 𝐷 ≥ 3. 
See section 7 of arxiv:2103.08049.

Research question: Improve the complexity of the UF decoder for LDPC 
codes.
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BP-OSD
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BP+OSD0 decoder

H  = 
1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

error = ( 0   0    0    1    0    0    0 )

=>   Syndrome s = 
0
0
1

Goal: Find a likely error x with 
H x = s

1. Estimate all bit flip 
probabilities using BP.

2. Select a basis H’ of columns 
made with highest probability 
columns.

3. Solve H’ x’ = s.
4. Construct x from x’.

(.12    .17    .05   .31   .32   .06   
.01 )

H’ = 
1 0 0
0 0 1
1 1 0

=>  x’ =    ( 0   1   0 )

=>  x  =    ( 0   0   0   1   0   0   0 )

Panteleev, Kalachev - arXiv:1904.02703.
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BP+OSD0 decoder - Complexity

Complexity: 

• with OSD0:  𝑂(𝑛ଷ).

• with OSDw:  𝑂(2௪𝑛ଷ).

Panteleev, Kalachev -
arXiv:1904.02703.
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Conclusion: Which decoder 
should we use?

• PB: Does not work well with 
quantum LDPC because of 
short cycles

• UF for QLDPC: corrects a 
poly number of errors but 
may reduce the distance

• BP-OSD: Heuristic but seems 
to behave well in 
simulation.


