Quantum LDPC codes Lecture 3

Nicolas Delfosse Microsoft

PCMI Summer School 2023 July 27th 2023

The decoding problem

MLE, MLC and MW decoders MLC = Most Likely

MLE = Most Likely
Error
MLC = Most Likely
Coset
MW = Min Weight

- Model = Perfect measurement
- Qubit noise = Probability distribution Pr(E) over $\{I, X, Y, Z\}^n$

Def. A decoder is a map $D: \{0,1\}^r \to \{I,X,Y,Z\}^n$.

- It is a MW decoder if $D(\sigma)$ is a min weight Pauli error with syndrome σ .
- It is a MLE decoder if $D(\sigma)$ is a Pauli error that maximizes $\Pr(E|\sigma)$.
- It is a MLC decoder if $D(\sigma)$ is a Pauli error that maximizes $\Pr(E.S|\sigma)$.

Comparison

- In general MLC > MLE > MW
- If low noise rate + low correlation probability then $\label{eq:mle} \text{MLE} \, \approx \, \text{MLC} \, \approx \, \text{MW}$
- A MLC decoder may achieve a higher threshold. For surface codes:
 - MLE threshold \approx 16%
 - MLC threshold ≈ 19%

Standard Pauli noise models

Perfect measurement model:

• Noise on data qubits

Phenomenological model:

- Noise on data qubits
- Noise on measurements

Circuit noise:

- Noise on data qubits
- Noise on measurements
- Noise on ancilla qubits
- Noise on gates
- Noise on waiting qubits

From perfect measurements to circuit model

The syndrome extraction circuit is noisy.

=> We need to correct circuit faults

But Circuit faults \approx Pauli errors for a larger code.

=> We focus on Pauli errors because:

Ex.

- Circuit faults in 2D surface codes
- \approx Pauli errors in 3D surface code¹.
- Circuit fault in a Clifford circuit
- \approx Pauli errors in the spacetime code².

1. Dennis, Kitaev, Landhal, Preskill - Topological quantum memory (2001)

2. Delfosse, Paetznick - Spacetime codes of Clifford circuits (2023)

Three rounds of

Lookup table decoder

Computational complexity

Computational complexity:

- MLE decoding for stabilizer codes is NP-hard1
- MLC decoding for stabilizer codes is #P-hard2

In practice:

- Use highly structure codes (Hamming, Reed Muller, BCH, Reed Solomon, Turbo, Polar, LDPC, Spatially-Coupled)
- Exploit this structure to design an efficient decoder.
- The decoder must be adapted to the resource available: memory, compute, energy, space, time, technology, cost
 - 1. Berlekamp, McEliece, Van Tilbor
 - 2. Iyer, Poulin (2015)

Implementation of a MW decoder using a lookup table

Input: Code + bound M.

Output: A MW decoder for the correction of all errors with weight $\leq M$

- 1. Initialize $D(\sigma) = 0$ for all σ .
- 2. For w = 1, 2, ..., M do:
- 3. Loop over Pauli errors \emph{E} with weight w and
- 4. Compute $\sigma(E)$
- 5. If $D(\sigma) = 0$, set $D(\sigma) = E$
- 6. Return D

Question. What is the size of D?

$$\sum_{w=1,\dots,M} \binom{n}{w} 3^w$$

Checks	Correctio
	n
100	Flip 4
010	Flip 6
110	Flip 2
001	Flip 7
101	Flip 3
011	Flip 5
111	Flip 1
111	Flip 1

LUT decoder for Hamming cod

Example

Is there a LUT decoder in my laptop?

Claim:

- The flash memory uses LDPC codes with length $n \approx 8,000$.
- The code has distance $d \approx 30$

Is that feasible?

- We need to store all corrections with weight up to M=15.
- Cost: $\geq {8,000 \choose 15} \approx 2.10^{46}$ bits =
- 20 trillions quetabits

Belief Propagation decoder for classical codes

Erasure channel

Classical peeling decoder

Def. A *dangling check* is a check connected to a single erased bit.

Peeling decoder:

- 1. While there exists a dangling check do:
- 2. Select a dangling check and use it to correct the incident bit.

Zyablov, Pinsker -

Stopping sets

Def. A *stopping set* is a set of erased bits with no dangling check.

Prop. [Zyablov, Pinsker - 1974]. The
peeling decoder fails iff the
erasure contains a stopping set.

Theorem. [Richardson, Urbanke - 2001]. For carefully designed classical LDPC codes, the probability of an erased stopping sets vanishes.

Basic idea: Design graphs with no short cycle.

References

Binary symmetric channel

Marginal bit-flip probability

Goal: Compute $P(x_i = 0 \mid y)$ and $P(x_i = 1 \mid y)$ for all i.

We can use this value to correct each bit.

How?

Marginal bit-flip probability

We want to evaluate

$$P(x_1 = 0 \mid y) = \sum_{\substack{x_1 = 0 \\ x \in C \\ x_2, x_3, \dots, x_n}} P(y \mid x) \mathbf{1}_{x \in C}$$

$$= \sum_{\substack{x_1=0\\x_2, x_3, ..., x_n}} \prod_{i=1,..n} P(y_i \mid x_i) \, \mathbf{1}_{x \in C}$$

What is $\mathbf{1}_{x \in \mathcal{C}}$ for the distance-3 repetition code?

- $x \in C$ iff $x_1 + x_2 = 0$ and $x_2 + x_3 = 0$
- Therefore $\mathbf{1}_{x \in \mathcal{C}} = (1 + x_1 + x_2)(1 + x_2 + x_3)$

Marginal bit-flip probability

We want to evaluate

$$P(x_1 = 0 \mid y) = \sum_{\substack{x_1 = 0 \\ x_2, x_3, \dots, x_n}} \prod_{i=1, \dots} P(y_i \mid x_i) \, \mathbf{1}_{x \in C}$$

It a function of the form

$$\sum_{x_2, x_3, ..., x_n} f_1(x) ... f_m(x)$$

For LDPC codes each f_i depends only on a small number of variables x_i .

How many multiplications are needed?

• $O(2^k n)$ multiplications.

Example

Compute the sum

$$\sum_{x_1,x_2,x_3,x_4} f(x_1,x_2,x_3)g(x_4)$$

$$\sum_{x_1, x_2, x_3, x_4} f(x_1, x_2, x_3) g(x_4)$$

$$\left(\sum_{x_1, x_2, x_3} f(x_1, x_2, x_3)\right) \left(\sum_{x_4} g(x_4)\right)$$

Marginal computation by Belief Propagation

Example: Compute the sum

$$\sum_{x_2, x_3, x_4, x_5, x_6} f_1(x_1, x_2, x_3) f_2(x_1, x_4, x_6) f_3(x_4) f_4(x_4, x_5)$$

Strategy:

- Represent the f_i and their variables as a graph (called factor graph).
- Use the graph topology to optimize the computation of partial sums.

Belief Propagation messages

Belief Propagation messages

From checks to variable

Belief Propagation - Final comments

Applications:

- In a tree: BP compute exactly the bit-flip probabilities.
- In a graph: BP compute an approximation of the bit-flip probabilities.
- For LDPC codes: For LDPC code with large girth (no short cycle), BP compute a *good approximation* of the bit-flip probabilities.
- Progressive edge growth: Algorithm producing LDPC codes with large girth.

The quantum decoding problem

Depolarizing channel

Classical binary symmetric

First decoding attempt: BP

Classical case:

- Use BP to compute $P(x_i = 0 \mid y)$ and $P(x_i = 1 \mid y)$.
- ullet Correct by selecting the most likely value $x_i\,=\,0$ or 1.

Quantum case:

- Use BP to compute $P(E_i = I \mid s), P(E_i = X \mid s), P(E_i = Y \mid s)$ and $P(E_i = Z \mid s)$.
- BP does not perform well for two reasons:
 - The quantum Tanner graph contains many 4-cycles because of the commutation relations.
 - The event $E_i = I$ is not well defined up to a stabilizer.

UF decoder for LDPC codes

Separation of X and Z errors

In what follows we focus on Z errors.

Error detection

- ____ = Z error
 - = check with value 0
 - = check with value 1

A chain of errors is detected at its endpoints

Trivial errors and logical errors

Loops are trivial erræshs connecting the same side are trivial errors.

No effect

Paths connecting the two opposite sides are logical errors.

Union-Find decoder

Delfosse, Nickerson (2017) arxiv1709.06218

Union-Find decoder:

- 1. Grow clusters around check with value 1.
- 2. Stop growing a cluster when it becomes correctable.
- 3. Correct each cluster independently.

Remark:

We track the growing cluster using a Union-Find data structure which leads to an almost-linear

romolevitu

The problem with LDPC codes

Clusters grow too fast!

Union-Find decoder for QLDPC codes

Input: A syndrome value $s_c=0$ or 1 for each Z check.

Output: A correction for X errors.

- 1. Initialize \mathcal{E} = set of Z checks with syndrome 1. (\mathcal{E} = growing clusters)
- 2. While there exist an uncorrectable cluster in \mathcal{E} :
- 3. Grow all the clusters in \mathcal{E} .
- 4. Check if the clusters are correctable.
- 5. Find a correction inside each cluster of \mathcal{E} .
- 6. Return the product of the corrections of the clusters.

Delfosse, Londe, Beverland (2021)

The covering radius

Delfosse, Londe, Beverland (2021)

Def. The covering radius of a syndrome s is the min radius such that the red balls cover an error with syndrome s.

Theorem (informal). If the covering radius of the syndrome is small, then the Union-Find decoder succeeds.

Applications: The UF decoders corrects n^a errors for:

- Quantum expander codes
- Hyperbolic codes¹ in dimension $D \ge 3$ [Guth, Lubotzky, (2013)]

Union-Find decoder - Complexity

Complexity:

- For surface codes and color codes: $O(n\alpha(n))$. $\alpha(n)$ is the inverse of Ackermann's function.
- For LDPC codes: $O(n^4)$.

Research question: Improve the complexity of the UF decoder for LDPC codes.

Research question: Design a UF decoder that corrects (d-1)/2 errors for toric codes in all dim $D \ge 3$. See section 7 of arxiv:2103.08049.

BP-OSD

BP+OSD₀ decoder

BP+OSD₀ decoder - Complexity

Complexity:

- with OSD_0 : $O(n^3)$.
- with OSD_w: $O(2^w n^3)$.

GHP vs HP (BP and BP-OSD-10)

Panteleev, Kalachev -

Conclusion: Which decoder should we use?

- PB: Does not work well with quantum LDPC because of short cycles
- UF for QLDPC: corrects a poly number of errors but may reduce the distance
- BP-OSD: Heuristic but seems to behave well in simulation.

