Quantum LDPC codes Lecture 2

Nicolas Delfosse Microsoft

PCMI Summer School 2023

Overview of lecture 2

- Examples of quantum LDPC codes
- Syndrome extraction circuits for surface codes
- Syndrome extraction circuits for LDPC codes
- Performance of QLDPC codes

Classical and quantum Hamming codes

```
Quantum codes detect \(X\) errors and \(Z\) errors:
```


Design flow

The rotated surface code

Planar cellulation

Instead of a torus, we consider a planar region:

- No identification of the opposite side.
- Rotate the square grid.
- Cute the corners faces and vertices.

Definition of the rotated surface code

```
We use Kitaev's construction for our rotated
planar cellulation:
```


- Place a qubit on each edge.
- Define a X stabilizer generator for each vertex.
- Define a Z stabilize generator for each face.

Remark.

- The boundary vertices and faces define weight-2 generators.

Tanner graphs of the rotated surface code

3 x 3 surface code
Corrects 1 error

5 x 5 surface code
Corrects 2 errors

The problem with surface codes: The encode only 1 logical qubit.

Hypergraph Product (HGP) Codes

Example - Hypergraph product code

Consider two bipartite graph

- Place a qubit on each circle-circle.
- Place a qubit on each square-square.

■ 0 ■ \square

- Define a X generator for each squarecircle.
- Define a Z generator for each circlesquare.

What is n?

- $\mathrm{n}=11$

What is the first stabilizer generator?

- III XII XII XI

Number of logical qubits of HGP codes

Theorem. For $\operatorname{HGP}\left(C_{1}, C_{2}\right)$ codes, we have

- $n=n_{1} n_{2}+r_{1} r_{2}$
- $k=k_{1} k_{2}+k_{1}^{T} k_{2}^{T}$
- $d \geq \min \left(d_{1}, d_{2}, d_{1}^{T} d_{2}^{T}\right)$
- If $k_{1}>0$, then $d \leq d_{2}$
- If $k_{1}^{T}>0$, then $d \leq d_{2}^{T}$

By selected random sparse graph we can achieve $k \propto n$ and $d \propto \sqrt{n}$.

A family of LDPC codes with constant rate

Select two random Tanner graphs with

○○○○○ O
00000000 (1) 0
00000000 (1)
$000000000 \mathbb{O}$
00000000 (1)
00000000000

- $4 s$ bits with degree 3 .
- $3 s$ checks with degree 4.

We get HGP codes with

- $n=25 s^{2}$
- $k=s^{2}$
- Generator degree $=7$
- Qubit degree $=6$ or 8

Surface codes vs LDPC codes

Code	Surface codes	LDPC codes
\# logical qubits k	1	$\frac{n}{25}$
Measurement weight	4	7
\# ancilla qubits	n	?

Syndrome extraction circuits

Classical vs Quantum error correction

Classical vs Quantum error correction

$|\psi\rangle \in$ stabilizer code

What is the issue?

Reliable quantum machines do not exist.

Instead, we use additional noisy qubits.

Measurement of a X check

Standard Pauli noise models

Perfect measurement model:

- Noise on data qubits

Phenomenological model:

- Noise on data qubits
- Noise on measurements

Circuit noise:

- Noise on data qubits
- Noise on measurements
- Noise on ancilla qubits
- Noise on gates
- Noise on waiting qubits

The problem with high random stabilizer codes

Question.

Can we use this noisy circuit with random stabilizer codes?

Strategy:

- Suppose that we have 1000 qubits.
- Pick a random [[1000, 500] stabilizer code.
- Measure the 500 stabilizers generators.

Syndrome extraction circuits for surface codes

Syndrome extraction
circuit

X plaquette circuit

Surface codes

Why surface codes?

- High noise threshold (about 1\%).
- Implemented with 2D local gates

Main issue:

- Thousands of physical qubits per logical qubit.

Here: 1250 physical qubits
25×25 surface code:
Physical error rate: $10^{-3} \Rightarrow$ Logical error rate: 10^{-12}

Syndrome extraction circuits for LDPC codes

Can we implement quantum LDPC codes?

Typical LDPC code
Typical quantum computer

Main results

With 2D local gates:

- Need large depth circuits or many ancilla quibits.
- Numerically: poor performance.

With long-range connections:

- Layout based on only a few planar layers.
- Numerically outperform surface codes.

Bounds on syndrome extraction circuits

For surface codes: depth $=6$.

Theorem. (informal) For quantum LDPC codes implemented with 2D local gates:

$$
\text { depth } \geq \text { constant } \times \frac{n}{\sqrt{q}}
$$

where $q=$ total number of qubit used.

	Constant depth	Constant qubit overhead
Bound	$\#$ ancilla \geq constant $\times n^{2}$	Depth \geq constant $\times \sqrt{n}$
Saturating circuit	Switch-based circuit (next slide)	HGP code circuit

2D local circuits

Simultaneous measurement of all the X checks

1. Construct an edge coloration
2.Prepare a readout qubits in $|+\rangle$ for each check.
3.For each color c do:
2. Apply a CNOT on each edge with color c
3. Measure readout qubits in the X basis.

Switch-based circuit

Bell

Bell

2D local vs fully connected implementation

- With fully connected qubits:
- \# ancillas:O(n)
- depth: $O(1)$
- With 2D local gates:
- \# ancilla qubits: $O(n)$
- Depth $O(\sqrt{n})$

With long-range gates

Naïve layout with long-range connectivity

```
Issue:
```

- Crossing gates may induce correlated errors.

Goal:

- A small number of crossing gates.
- Short depth.

Planar decomposition of the Tanner graph

Degree $=4$

\# planar layers = 2

ℓ-planar layout

Assumptions:

- CSS code.
- Degree(Tanner graph) $=\delta$.

We constructed a syndrome extraction circuit with:

- $\left\lceil\frac{\delta}{2}\right\rceil$ planar layers of gates.
- Depth $=2 \delta+2$.

Improved depth for HGP codes.

Numerical

results


```
Noise threshold:
\(0.28 \%\) (instead of \(0.7 \%\) for surface codes)
\# physical quibits per logical quibit:
49 (instead of thousands for surface codes)
```

Logical failure rate	10^{-9}	10^{-12}	10^{-15}
Logical qubits	1600	6400	18496
Surface code physical qubits	387200	2880000	13354112
HGP code physical qubits	78400	313600	906304
Improvement using HGP codes	$4.94 \times$	$9.18 \times$	$14.73 \times$

