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Overview

•Classical codes
•Stabilizer codes
•Good stabilizer exist
•Examples of quantum LDPC codes



Classical linear codes



Error correction with 
repetition codes

001 011
errors

(001)(000)(011)
errors

001 (000)(000)(111)
encoding

001
decoding

(01100)(00001)(0
1100)

errors
001 (00000)(00000)(1

1111)

encoding
000

decoding



Monte-Carlo simulation of 
repetition codes

𝑥 = 0 or 1 (𝑥𝑥 …  𝑥)
encoding

𝑑
repetitio
ns

𝑑 # bit-flip 
corrected

3 1

5 2

7 3

Monte-Carlo simulation:
1.Initialize N = 0.
2.Repeat 1,000,000 times:
3. Start with the encoded bit-string (00 … 0).
4. Flip each bit independently with probability p.
5. Apply a majority vote decoder.
6. If the decoded bit is 1, increment N.
7.Return N / 1,000,000



Monte-Carlo simulation of 
repetition codes

Code threshold = 0.5



Tanner graphs of repetition 
codes

0 0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 1 1 0 0

1 0 1 0 1 0

Bit 
nodes

Check nodes

Issue: The repetition code encodes only 1 logical bit.
Solution: Use more general graphs.



Hamming code

Fli
p

1 0 0

0 1 1 0 1 0 0

0 0 0

Solution: Using general graphs, we can 
simultaneously:
• encode many logical bits 
• correct many bit-flips 



Decoding Hamming code

Fli
p

1 0 0

Checks Correctio
n

100 Flip 4

010 Flip 6

110 Flip 2

001 Flip 7

101 Flip 3

011 Flip 5

111 Flip 1

Lookup table 
decoder:

Issue: There is no known polynomial time decoding algorithm for general graphs.
Solution: Use sparse graph



Low Density Parity-Check 
(LDPC) codes

𝑥 + 𝑥 + 𝑥 = 0

With sparse graph, we get an efficient decoder.
Basic idea: if 𝑥 + 𝑥 + 𝑥 = 1 there is only 3 possible bit-
flips 
=> local decoding.

Solution: LDPC codes = codes defined by low degree 
checks



Quantum generalization

Requirements:

• Encode many logical qubits,

• Correct many Pauli errors,

• Efficient decoder,

• Fault-tolerant: Can be implemented with very noisy quantum 
hardware,

=> Quantum LDPC codes



Quantum stabilizer 
codes



Pauli operators

Ex. 

• −𝑖 𝑋 ⊗ 𝐼 ⊗ 𝑌 ⊗ 𝑋

• 𝑍𝑍𝑍

• −𝑋 𝑋 𝑋 𝑋

Notation.

• 𝒫 : Set of all 𝑛-qubit Pauli operators.



Commutation

Prop. Two Pauli operators 𝑃, 𝑄 ∈ 𝒫 either commute or anti-commute.

Ex.

• 𝑋𝐼𝐼𝑍 and 𝑍𝐼𝐼𝑍?

• 𝑋𝑌𝑍 and 𝑍𝑋𝑌?

• 𝑋𝐼𝑋𝐼𝑋𝐼𝑋𝐼𝐼𝐼𝐼𝑋𝑋𝑋𝑋𝑋 and 𝑋𝐼𝑋𝑋𝐼𝐼𝑋𝐼𝐼𝐼𝐼𝑋𝑋𝐼𝐼𝑋?

• 𝑋𝑋𝑋𝑋 and 𝑌𝑌𝑌𝑌?

Notation.

𝑃, 𝑄 =
0          if they commute
1   if they anticommute



Stabilizer codes

Def. A stabilizer code is defined to be a subspace 𝑄 𝑆 of ℂ ⊗

fixed by a set 𝑆 of Pauli operators.

Prop. The set 𝑆 is a commutative subgroup of 𝑃 that does not 
contain −𝐼. Conversely, we can define a stabilizer code for each 
commutative subgroup of 𝑃 that does not contain −𝐼.

Remark:

• A commutative subgroup of 𝑃 that does not contain −𝐼 is called a 
stabilizer group.

• The elements of 𝑆 are called stabilizers.

• If 𝑆 = ⟨𝑆 , … , 𝑆 ⟩, its generators 𝑆 are called stabilizer generators.

Exercise. Prove the proposition.



Stabilizer matrix

Ex. The five-qubit code is defined by the stabilizer matrix:

𝐻 =

𝑋 𝑍 𝑍 𝑋 𝐼
𝐼 𝑋 𝑍 𝑍 𝑋
𝑋 𝐼 𝑋 𝑍 𝑍
𝑍 𝑋 𝐼 𝑋 𝑍

Exercise. Check that the rows of this matrix generate a stabilizer 
group.



Number of logical qubits

Def. A set of Pauli operators {𝑆 , … , 𝑆 } is independent if the only 
product of these operators that is equal to 𝐼 is the trivial 
product.

Prop. If 𝑆 = ⟨𝑆 , … , 𝑆 ⟩ is generated by 𝑟 independent generators, then 
𝑄 𝑆 encodes 𝑘 ≔ 𝑛 − 𝑟 logical qubits, i.e dim 𝑄 𝑆 = 2 .

Proof. Problem session.

Remark.

• 𝑛 is called the code length.

• The code parameters are denoted [[𝑛, 𝑘]].



Example

Exercise. Count the number of logical qubits for the following stabilizer 
codes:

• 𝐻 =

𝑋 𝑍 𝑍 𝑋 𝐼
𝐼 𝑋 𝑍 𝑍 𝑋
𝑋 𝐼 𝑋 𝑍 𝑍
𝑍 𝑋 𝐼 𝑋 𝑍
𝑍 𝑍 𝑋 𝐼 𝑋

=> [[5, 1]]

• 𝐻 =  

𝑋 𝐼 𝑋 𝐼 𝑋 𝐼 𝑋
𝐼 𝑋 𝑋 𝐼 𝐼 𝑋 𝑋
𝐼 𝐼 𝐼 𝑋 𝑋 𝑋 𝑋
𝑍 𝐼 𝑍 𝐼 𝑍 𝐼 𝑍
𝐼 𝑍 𝑍 𝐼 𝐼 𝑍 𝑍
𝐼 𝐼 𝐼 𝑍 𝑍 𝑍 𝑍

=> [[7, 1]]

A code with only X type or Z type rows is called a CSS code.



Measurement of the syndrome of 
an error
Def. Given 𝑆 , … , 𝑆 , the syndrome of a Pauli error 𝐸 ∈ 𝒫 is the vector 
𝜎 𝐸 = (𝜎 , . . , 𝜎 ) ∈ 0,1 such that 𝜎 = [𝐸, 𝑆 ].

Prop. Consider a system in the state 𝐸 𝜓 where 𝜓 ∈ 𝑄 𝑆 and 𝐸 ∈ 𝒫 . 

• The outcome of the measurement of 𝑆 is −1 ( ) with probability 1. 

• The state of the system after measurement is 𝐸 𝜓 .

Proof. Exercise.

Hint. What is the projector onto the −1 -eigenspace of 𝑆 ?



Example

Exercise. Consider the stabilizer code:

𝐻 =

𝑋 𝐼 𝑋 𝐼 𝑋 𝐼 𝑋
𝐼 𝑋 𝑋 𝐼 𝐼 𝑋 𝑋
𝐼 𝐼 𝐼 𝑋 𝑋 𝑋 𝑋
𝑍 𝐼 𝑍 𝐼 𝑍 𝐼 𝑍
𝐼 𝑍 𝑍 𝐼 𝐼 𝑍 𝑍
𝐼 𝐼 𝐼 𝑍 𝑍 𝑍 𝑍

• What is the syndrome of 𝑋 𝑋 𝑋 𝑋 ?    𝑋 ?    𝑋 𝑋 ?

• 𝜎(𝑋 𝑋 𝑋 𝑋 ) = 0,0,0,0,0,0

• 𝜎 𝑋                =  0,0,0,1,1,0

• 𝜎 𝑋 𝑋            = 0,0,0,1,1,0

• Can you find an errors with trivial syndrome? Is it a stabilizer?



Logical basis

Def. A logical error for a stabilizer code is a Pauli error with 
trivial syndrome.

It is a non-trivial logical error if it is a logical error and not 
a stabilizer. 

Prop. For all [[𝑛, 𝑘]] stabilizer code, there exists a set of logical 
error of the form

𝑋 , 𝑍 , … , 𝑋 , 𝑍

such that

• 𝑋 , 𝑍 = 𝛿 ,

• 𝑋 , 𝑋 = 𝑍 , 𝑍 = 0

Proof. Exercise. 

Hint. Apply on Gram-Schmidt process.



Example

• 𝐻 =

𝑋 𝑍 𝑍 𝑋 𝐼
𝐼 𝑋 𝑍 𝑍 𝑋
𝑋 𝐼 𝑋 𝑍 𝑍
𝑍 𝑋 𝐼 𝑋 𝑍

Find a logical basis?

• 𝑋 = 𝑋𝑋𝑋𝑋𝑋

• 𝑍 = 𝑍𝑍𝑍𝑍𝑍



Minimum distance

Def. The minimum distance of a stabilizer code, denoted 𝑑, is the 
minimum weight of a non-trivial logical error, i.e.

𝑑 = min 𝐸  such that 𝐸 ∈ 𝒫 \𝑆, 𝜎 𝐸 = 0



Example

Exercise. Compute the parameters of the following codes.

𝐻 =

𝑋 𝐼 𝑋 𝐼 𝑋 𝐼 𝑋
𝐼 𝑋 𝑋 𝐼 𝐼 𝑋 𝑋
𝐼 𝐼 𝐼 𝑋 𝑋 𝑋 𝑋
𝑍 𝐼 𝑍 𝐼 𝑍 𝐼 𝑍
𝐼 𝑍 𝑍 𝐼 𝐼 𝑍 𝑍
𝐼 𝐼 𝐼 𝑍 𝑍 𝑍 𝑍

 [[7, 1, 3]]

Remark. 

• When d is known, the code parameters and are denoted [[n, k, d]]. 



Decoder

Def. A decoder is a map 𝐷: 0,1 → 𝒫 . We say that the decoder corrects a 
Pauli error 𝐸 if the 𝐷 𝜎(𝐸) = 𝐸 mod 𝑆.

Def. A minimum weight (MW) decoder is a map 𝐷: 0,1 → 𝒫 such that for 
all 𝜎 ∈ 0,1 , 𝐷(𝜎) is a minimum weight error with syndrome 𝜎.

Prop. A MW decoder corrects all Pauli errors 𝐸 with weight 𝐸 ≤ .

Proof. 

Assume that an error E occurs with 𝐸 ≤ .

The decoder returns a correction 𝐸′ with syndrome 𝜎 𝐸 = 𝜎 𝐸 .

𝜎 𝐸𝐸 = 𝜎 𝐸 + 𝜎 𝐸 = 0 and 𝐸𝐸 ≤ 𝐸 + 𝐸 ≤ 𝑑 − 1.
Therefore, 𝐸𝐸 ∈ 𝑆 and the decoder correct 𝐸.



Example

How many errors can we correct with the following code?

𝐻 =

𝑋 𝐼 𝑋 𝐼 𝑋 𝐼 𝑋
𝐼 𝑋 𝑋 𝐼 𝐼 𝑋 𝑋
𝐼 𝐼 𝐼 𝑋 𝑋 𝑋 𝑋
𝑍 𝐼 𝑍 𝐼 𝑍 𝐼 𝑍
𝐼 𝑍 𝑍 𝐼 𝐼 𝑍 𝑍
𝐼 𝐼 𝐼 𝑍 𝑍 𝑍 𝑍



Good stabilizer codes

Theorem. There exists a sequence of [[𝑛, 𝑘, 𝑑]] stabilizer codes with 
𝑛 → +∞ and 𝑘, 𝑑 linear in 𝑛. More precisely, for all 𝛿 ∈ [0,1] and for 
all 𝜀 > 0, we can achieve

• = 1 − ℎ 𝛿 − 𝛿 log 3 − 𝜀

• ≥ 𝛿

Proof idea. Consider the random variable 

𝑌 𝐶 ≔ # of Pauli errors 𝐸 ∈ 𝒫 \𝑆 with 𝜎 𝐸 = 0 with weight 𝐸 ≤ 𝛿𝑛

1. Show that if is small enough then 𝔼 𝑌 → 0 when 𝑛 → +∞.

2. This proves the existence of a family of codes with 𝑌 𝐶 = 0.

3. By definition 𝑌 , this shows that 𝑑 > 𝛿𝑛.



Lemmas – Counting stabilizer 
codes
A stabilizer group for a [[𝑛, 𝑘]] stabilizer code is of the form 𝑆 = ⟨𝑆 , … , 𝑆 ⟩.

Lemma. The number of [[𝑛, 𝑘]] stabilizer code is

2
2 − 2

2 − 2

 

,…,

Proof.  # stabilizer codes = # choices for n−k independent stabilizer generators
# generating sets of a fixed stabilizer group

• 2 = # choices for the phase ±1 of each 𝑆

• # choices for the 1st generator = 2 − 1.

• # choices for the 2nd generator = 2 − 2.

• # choices for the 2nd generator = 2 − 4.
• …

• => # choices for n−k independent stabilizer generators = 2 ∏ 2 − 
,…,

2

• # generating sets of ⟨𝑆 , … , 𝑆 ⟩ = ∏ 2 − 2 
,…,



Lemmas – Counting stabilizer 
codes
Lemma. The number of [[𝑛, 𝑘]] stabilizer code is

2
2 − 2

2 − 2

 

,…,

Lemma. Let 𝐸 ≠ 𝐼. The number of [ 𝑛, 𝑘 ] stabilizer group such that 
𝜎 𝐸 = 0 is

2
2 − 2

2 − 2

 

,…,

Proof. Similar.



Good stabilizer codes - Proof

Proof. We can write 𝑌 𝑄 as

𝑌 𝑄 = 𝑋 𝑄

 

∈𝒫 \

where

𝑋 𝑄 =
0 if 𝜎 𝐸 ≠ 0
1 if 𝜎 𝐸 = 0

By linearity of the expectation, we have

𝔼(𝑌 ) = 𝔼 𝑋 𝑄

 

∈𝒫 \

Moreover, 𝔼 𝑋 𝑄 = ℙ(𝜎 𝐸 = 0).



Good stabilizer codes - Proof

Lemma. For all 𝐸 ≠ 𝐼, we haveℙ(𝜎 𝐸 = 0) ≤ 2 ( ).

Proof. 

ℙ 𝜎 𝐸 = 0 =
number of 𝑛, 𝑘  codes with 𝜎 𝐸 = 0

number of 𝑛, 𝑘  codes
=

2 − 2

2 − 2

 

,…,

≤ 2 ( )

Application.

𝔼(𝑌 ) = ℙ 𝜎 𝐸 = 0

 

∈𝒫 \

≤ 2 3
𝑛
𝑖

 

≤ poly 𝑛 ⋅ 2

= poly 𝑛 ⋅ 2
 

which goes to 0 if = 1 − ℎ 𝛿 − 𝛿 log 3 − 𝜀 with 𝜀 > 0. This concludes the 
proof.



Example of LDPC codes



Example – Kitaev’s toric code

Consider a cellulation of the torus.

• Place a qubit on each edge.

• Define a X generator for each vertex.

• Define a Z generator for each face.

X

X

X

X

Z

Z

Z

Z



Example - 3D toric code

Consider a cellulation of a 3-dim 
manifold.

• Place a qubit on each face.

• Define a X generator for each 
edge.

• Define a Z generator for each 3-
cell.

Or 

• Place a qubit on each edge.

• Define a X generator for each 
vertex.

• Define a Z generator for each 
face.



Example – Hypergraph product 
code

Consider two bipartite graph

• Place a qubit on each circle-
circle.

• Place a qubit on each square-
square.

• Define a X generator for each 
square-circle.

• Define a Z generator for each 
circle-square.X

X

X

Z

Z

Z Z



Comparison of the parameters

Code 𝑘 𝑑

2D toric codes constant ∝ 𝑛 

3D toric codes constant ∝ 𝑛 /

HGP codes ∝ 𝑛 ∝ 𝑛 



Hypergraph Product 
(HGP) Codes



Linear code and transposed 
code

Linear code parameters 
[𝑛, 𝑘, 𝑑]

• 𝑛 = # bits,
• 𝑟 = # checks
• 𝑘 = dim 𝐶
• 𝑑 = min 𝑥 , 𝑥 ∈ 𝐶, 𝑥 ≠ 0
is the minimum distance.

Transposed code with parameters 
[𝑛 , 𝑘 , 𝑑 ]

• 𝑛 = 𝑟
• 𝑟 = 𝑛
• 𝑘 = 𝑘 + 𝑛 − 𝑟



Product of two linear codes 

Def. A codeword of 𝐶 ⊗ 𝐶 is bitstring forming a 𝑛 × 𝑛 matrix 𝑥
such that 

• each row of 𝑥 is in 𝐶 ,

• each column of 𝑥 is in 𝐶 ,

Ex. 

is in the product of the Hamming code and the 3-repetition code.

Prop. The dimension of 𝐶 ⊗ 𝐶 is 𝑘 𝑘 .

0 1 1 0 1 0 0

0 1 1 0 1 0 0

0 1 1 0 1 0 0

0 1 1 0 1 0 0



Number of independent 
generators

Lemma. The number of independent X 
generators is

𝑛 𝑟 − 𝑘 𝑘

where 𝑘 the dimension of the code 
obtained by swapping bits and checks.

Proof. The term 𝑛 𝑟 is the total number 
of X checks.
If a product of X generators (blue) is 
equal to I, then: 
• each circle-circle qubit is a vertical 
check for this product 

• each square-square qubit is a horizontal 
check for this product.

Therefore, trivial products of X 
generators correspond to codewords of the 
classical product code 𝐶 ⊗ 𝐶 . 
This proves that there are 𝑘 𝑘
independent relations between the X 

X

X

X

# bits=𝑛
# checks=𝑟

# bits=𝑛
# checks=𝑟



Number of logical qubits of 
HGP codes
Lemma. The number of independent X generators is

𝑛 𝑟 − 𝑘 𝑘

Lemma. The number of independent Z generators is
𝑟 𝑛 − 𝑘 𝑘

Theorem. For HGP codes, we have

• 𝑛 = 𝑛 𝑛 + 𝑟 𝑟

• 𝑘 = 𝑘 𝑘 + 𝑘 𝑘

• 𝑑 ≥ min 𝑑 , 𝑑 , 𝑑 𝑑  


