Quantum LDPC codes Lecture 1

Nicolas Delfosse Microsoft

PCMI Summer School 2023

Overview

- •Classical codes
- Stabilizer codes
- Good stabilizer exist
- •Examples of quantum LDPC codes

Classical linear codes

Error correction with repetition codes

$$001 \xrightarrow{\text{errors}} 011$$

$$001 \xrightarrow{\text{encoding}} (000) (000) (111) \xrightarrow{\text{errors}} (001) (000) (001) \xrightarrow{\text{decoding}} 001$$

001
$$\xrightarrow{\text{encoding}}$$
 (00000) (00000) (1 $\xrightarrow{\text{errors}}$ (01100) (00001) (0 $\xrightarrow{\text{decoding}}$ 000 1111)

Monte-Carlo simulation of repetition codes

$$x = 0 \text{ or } 1 \xrightarrow{\text{encoding ns}} (xx \dots x)$$

d	<pre># bit-flip corrected</pre>
3	1
5	2
7	3

Monte-Carlo simulation:

- 1. Initialize N = 0.
- 2. Repeat 1,000,000 times:
- 3. Start with the encoded bit-string (00 ... 0).
- 4. Flip each bit independently with probability p.
- 5. Apply a majority vote decoder.
- 6. If the decoded bit is 1, increment N.
- 7. Return N / 1,000,000

Monte-Carlo simulation of repetition codes

Tanner graphs of repetition codes

Issue: The repetition code encodes only 1 logical bit.

Solution: Use more general graphs.

Hamming code

Solution: Using general graphs, we can simultaneously:

- encode many logical bits
- correct many bit-flips

Decoding Hamming code

Lookup table
decoder:

Checks	Correctio n
100	Flip 4
010	Flip 6
110	Flip 2
001	Flip 7
101	Flip 3
011	Flip 5
111	Flip 1

Issue: There is no known polynomial time decoding algorithm for general graphs

Solution: Use sparse graph

Low Density Parity-Check (LDPC) codes

Solution: LDPC codes = codes defined by low degree checks

With sparse graph, we get an efficient decoder.

Basic idea: if $x_1 + x_2 + x_4 = 1$ there is only 3 possible bitflips

=> local decoding.

Quantum generalization

Requirements:

- Encode many logical qubits,
- Correct many Pauli errors,
- Efficient decoder,
- Fault-tolerant: Can be implemented with very noisy quantum hardware,
- => Quantum LDPC codes

Quantum stabilizer codes

Pauli operators

Ex.

- $(-i)X \otimes I \otimes Y \otimes X$
- *ZZZ*
- $-X_1X_3X_5X_7$

Notation.

• \mathcal{P}_n : Set of all n-qubit Pauli operators.

Commutation

Prop. Two Pauli operators P, $Q \in \mathcal{P}_n$ either commute or anti-commute.

Ex.

- XIIZ and ZIIZ?
- XYZ and ZXY?
- XIXIXIXIIIIXXXXX and XIXXIIXIIIIXXIIX?
- XXXX and YYYY?

Notation.

$$[P, Q] = \begin{cases} 0 & \text{if they commute} \\ 1 & \text{if they anticommute} \end{cases}$$

Stabilizer codes

Def. A stabilizer code is defined to be a subspace Q(S) of $(\mathbb{C}^2)^{\bigotimes n}$ fixed by a set S of Pauli operators.

Prop. The set S is a commutative subgroup of P_n that does not contain -I. Conversely, we can define a stabilizer code for each commutative subgroup of P_n that does not contain -I.

Remark:

- A commutative subgroup of P_n that does not contain -I is called a stabilizer group.
- ullet The elements of S are called stabilizers.
- If $S = \langle S_1, ..., S_r \rangle$, its generators S_i are called stabilizer generators.

Exercise. Prove the proposition.

Stabilizer matrix

Ex. The five-qubit code is defined by the stabilizer matrix:

$$H = \begin{bmatrix} X & Z & Z & X & I \\ I & X & Z & Z & X \\ X & I & X & Z & Z \\ Z & X & I & X & Z \end{bmatrix}$$

Exercise. Check that the rows of this matrix generate a stabilizer group.

Number of logical qubits

Def. A set of Pauli operators $\{S_1, ..., S_r\}$ is independent if the only product of these operators that is equal to I is the trivial product.

Prop. If $S = \langle S_1, ..., S_r \rangle$ is generated by r independent generators, then Q(S) encodes $k \coloneqq n - r$ logical qubits, i.e $\dim Q(S) = 2^{n-r}$.

Proof. Problem session.

Remark.

- n is called the code length.
- The code parameters are denoted [[n, k]].

Example

Exercise. Count the number of logical qubits for the following stabilizer codes:

•
$$H = \begin{bmatrix} X & Z & Z & X & I \\ I & X & Z & Z & X \\ X & I & X & Z & Z \\ Z & X & I & X & Z \\ Z & Z & X & I & X \end{bmatrix}$$

$$\bullet \ \ H = \begin{bmatrix} X & I & X & I & X & I & X \\ I & X & X & I & I & X & X \\ I & I & I & X & X & X & X \\ Z & I & Z & I & Z & I & Z \\ I & Z & Z & I & I & Z & Z \\ I & I & I & Z & Z & Z & Z \end{bmatrix}$$

A code with only X type or Z type rows is called a CSS code.

Measurement of the syndrome of an error

Def. Given $S_1, ..., S_r$, the syndrome of a Pauli error $E \in \mathcal{P}_n$ is the vector $\sigma(E) = (\sigma_1, ..., \sigma_r) \in \{0,1\}^r$ such that $\sigma_i = [E, S_i]$.

Prop. Consider a system in the state $E|\psi\rangle$ where $|\psi\rangle\in Q(S)$ and $E\in\mathcal{P}_n$.

- The outcome of the measurement of S_i is $(-1)^{\sigma_i(E)}$ with probability 1.
- The state of the system after measurement is $E|\psi\rangle$.

Proof. Exercise.

Hint. What is the projector onto the $(-1)^a$ -eigenspace of S_i ?

Example

Exercise. Consider the stabilizer code:

$$H = \begin{bmatrix} X & I & X & I & X & I & X \\ I & X & X & I & I & X & X \\ I & I & I & X & X & X & X \\ Z & I & Z & I & Z & I & Z \\ I & Z & Z & I & I & Z & Z \\ I & I & I & Z & Z & Z & Z \end{bmatrix}$$

- What is the syndrome of $X_1X_3X_5X_7$? X_3 ? X_1X_2 ?
- $\sigma(X_1X_3X_5X_7) = (0,0,0,0,0,0)$
- $\sigma(X_3)$ = (0,0,0,1,1,0)
- $\sigma(X_1X_2)$ = (0,0,0,1,1,0)
- Can you find an errors with trivial syndrome? Is it a stabilizer?

Logical basis

Def. A logical error for a stabilizer code is a Pauli error with trivial syndrome.

It is a non-trivial logical error if it is a logical error and not a stabilizer.

Prop. For all [[n,k]] stabilizer code, there exists a set of logical error of the form

$$\overline{X_1}, \overline{Z_1}, \dots, \overline{X_k}, \overline{Z_k}$$

such that

- $\left[\overline{X}_i, \ \overline{Z}_j\right] = \delta_{i,j}$
- $[\overline{X}_i, \overline{X}_j] = [\overline{Z}_i, \overline{Z}_j] = 0$

Proof. Exercise.

Hint. Apply on Gram-Schmidt process.

Example

•
$$H = \begin{bmatrix} X & Z & Z & X & I \\ I & X & Z & Z & X \\ X & I & X & Z & Z \\ Z & X & I & X & Z \end{bmatrix}$$

Find a logical basis?

- $\overline{X_1} = XXXXX$
- $\overline{Z_1} = ZZZZZ$

Minimum distance

Def. The minimum distance of a stabilizer code, denoted d, is the minimum weight of a non-trivial logical error, i.e. $d=\min\{|E| \text{ such that } E\in\mathcal{P}_n\backslash S, \sigma(E)=0\}$

Example

Exercise. Compute the parameters of the following codes.

$$H = \begin{bmatrix} X & I & X & I & X & I & X \\ I & X & X & I & I & X & X \\ I & I & I & X & X & X & X \\ Z & I & Z & I & Z & I & Z \\ I & Z & Z & I & I & Z & Z \\ I & I & I & Z & Z & Z & Z \end{bmatrix}$$

 \Rightarrow [[7, 1, 3]]

Remark.

• When d is known, the code parameters and are denoted [[n, k, d]].

Decoder

Def. A decoder is a map $D:\{0,1\}^r \to \mathcal{P}_n$. We say that the decoder corrects a Pauli error E if the $D(\sigma(E)) = E \mod S$.

Def. A minimum weight (MW) decoder is a map $D:\{0,1\}^r \to \mathcal{P}_n$ such that for all $\sigma \in \{0,1\}^r$, $D(\sigma)$ is a minimum weight error with syndrome σ .

Prop. A MW decoder corrects all Pauli errors E with weight $|E| \leq \frac{d-1}{2}$.

Proof.

Assume that an error E occurs with $|E| \leq \frac{d-1}{2}$.

The decoder returns a correction E' with syndrome $\sigma(E') = \sigma(E)$.

$$\sigma(EE') = \sigma(E) + \sigma(E') = 0$$
 and $|EE'| \le |E| + |E'| \le d - 1$.

Therefore, $EE' \in S$ and the decoder correct E.

Example

How many errors can we correct with the following code?

$$H = \begin{bmatrix} X & I & X & I & X & I & X \\ I & X & X & I & I & X & X \\ I & I & I & X & X & X & X \\ Z & I & Z & I & Z & I & Z \\ I & Z & Z & I & I & Z & Z \\ I & I & I & Z & Z & Z & Z \end{bmatrix}$$

Good stabilizer codes

Theorem. There exists a sequence of [[n,k,d]] stabilizer codes with $n\to +\infty$ and k,d linear in n. More precisely, for all $\delta\in [0,1]$ and for all $\varepsilon>0$, we can achieve

- $\frac{k}{n} = 1 h(\delta) \delta \log_2 3 \varepsilon$
- $\frac{d}{n} \ge \delta$

Proof idea. Consider the random variable

 $Y_{\delta n}(\mathcal{C})\coloneqq$ # of Pauli errors $E\in\mathcal{P}_n\backslash S$ with $\sigma(E)=0$ with weight $|E|\leq\delta n$

- 1. Show that if $\frac{k}{n}$ is small enough then $\mathbb{E}(Y_{\delta n}) \to 0$ when $n \to +\infty$.
- 2. This proves the existence of a family of codes with $Y_{\delta n}(\mathcal{C})=0$.
- 3. By definition $Y_{\delta n}$, this shows that $d>\delta n$.

Lemmas - Counting stabilizer codes

A stabilizer group for a [[n,k]] stabilizer code is of the form $S=\langle S_1,\ldots,S_{n-k}\rangle$.

Lemma. The number of [[n,k]] stabilizer code is

$$2^{n-k} \prod_{i=0,\dots,n-k-1} \frac{\left(2^{2n-i}-2^i\right)}{\left(2^{n-k}-2^i\right)}$$

Proof. # stabilizer codes = # choices for n-k independent stabilizer generators

generating sets of a fixed stabilizer group

- 2^{n-k} = # choices for the phase ± 1 of each S_i
- # choices for the 1^{st} generator = $2^{2n} 1$.
- # choices for the 2^{nd} generator = $2^{2n-1}-2$.
- # choices for the 2^{nd} generator = $2^{2n-2}-4$.
- ...
- => # choices for n-k independent stabilizer generators = $2^{n-k}\prod_{i=0,\dots,n-k-1}(2^{2n-i}-2^i)$
- # generating sets of $\langle S_1, \dots, S_{n-k} \rangle = \prod_{i=0,\dots,n-k-1} \left(2^{n-k} 2^i \right)$

Lemmas - Counting stabilizer codes

Lemma. The number of [[n,k]] stabilizer code is

$$2^{n-k} \prod_{i=0,\dots,n-k-1} \frac{\left(2^{2n-i}-2^i\right)}{\left(2^{n-k}-2^i\right)}$$

Lemma. Let $E \neq I$. The number of [[n,k]] stabilizer group such that $\sigma(E) = 0$ is

$$2^{n-k} \prod_{i=0,\dots,n-k-1} \frac{\left(2^{2n-i-1}-2^i\right)}{\left(2^{n-k}-2^i\right)}$$

Proof. Similar.

Good stabilizer codes - Proof

Proof. We can write $Y_{\delta n}(Q)$ as

$$Y_{\delta n}(Q) = \sum_{\substack{E \in \mathcal{P}_n \setminus S \\ |E| \le \delta n}} X_E(Q)$$

where

$$X_E(Q) = \begin{cases} 0 \text{ if } \sigma(E) \neq 0 \\ 1 \text{ if } \sigma(E) = 0 \end{cases}$$

By linearity of the expectation, we have

$$\mathbb{E}(Y_{\delta n}) = \sum_{\substack{E \in \mathcal{P}_n \backslash S \\ |E| \le \delta n}} \mathbb{E}(X_E(Q))$$

Moreover, $\mathbb{E}(X_E(Q)) = \mathbb{P}(\sigma(E) = 0)$.

Good stabilizer codes - Proof

Lemma. For all $E \neq I$, we have $\mathbb{P}(\sigma(E) = 0) \leq 2^{-(n-k)}$.

Proof.

$$\mathbb{P}(\sigma(E) = 0) = \frac{\text{number of } [[n, k]] \text{ codes with } \sigma(E) = 0}{\text{number of } [[n, k]] \text{ codes}} = \prod_{i=0, \dots, n-k-1} \frac{\left(2^{2n-i} - 2^i\right)}{\left(2^{2n-i} - 2^i\right)} \le 2^{-(n-k)}$$

Application.

$$\mathbb{E}(Y_{\delta n}) = \sum_{E \in \mathcal{P}_n \setminus S} \mathbb{P}(\sigma(E) = 0) \le 2^{-(n-k)} \sum_{i \le \delta n} 3^i \binom{n}{i} \le \operatorname{poly}(n) \cdot 2^{-(n-k)+n} (\delta) + n\delta \log_2 3$$

$$= \operatorname{poly}(n) \cdot 2^{-n} \binom{(1-h(\delta)-\delta \log_2 3) - \frac{k}{n}}{2^{-n}}$$

which goes to 0 if $\frac{k}{n}=1-h(\delta)-\delta\log_23-\varepsilon$ with $\varepsilon>0$. This concludes the proof.

Example of LDPC codes

Example - Kitaev's toric code

Consider a cellulation of the torus.

- Place a qubit on each edge.
- Define a X generator for each vertex.
- Define a Z generator for each face.

Example - 3D toric code

Consider a cellulation of a 3-dim manifold.

- Place a qubit on each face.
- Define a X generator for each edge.
- Define a Z generator for each 3-cell.

Or

- Place a qubit on each edge.
- Define a X generator for each vertex.
- Define a Z generator for each

Example - Hypergraph product code

Consider two bipartite graph

- Place a qubit on each circlecircle.
- Place a qubit on each squaresquare.
- Define a X generator for each square-circle.
- Define a Z generator for each circle-square.

Comparison of the parameters

Code	k	d
2D toric codes	constant	$\propto \sqrt{n}$
3D toric codes	constant	$\propto n^{1/3}$
HGP codes	$\propto n$	$\propto \sqrt{n}$

Hypergraph Product (HGP) Codes

Linear code and transposed code

Linear code parameters [n, k, d]

- n = # bits,
- r = # checks
- $k = \dim C$
- $d = \min\{|x|, x \in C, x \neq 0\}$

is the minimum distance.

Transposed code with parameters $[n^T, k^T, d^T]$

- $n^T = r$
- $r^T = n$
- $k^T = k + n r$

Product of two linear codes $\mathcal{C}_1 \otimes \mathcal{C}_2$

Def. A codeword of $C_1 \otimes C_2$ is bitstring forming a $n_1 \times n_2$ matrix x such that

- each row of x is in C_1 ,
- each column of x is in C_2 ,

is in the product of the Hamming code and the 3-repetition code.

Prop. The dimension of $\mathcal{C}_1 \otimes \mathcal{C}_2$ is $k_1 k_2$.

Number of independent generators

Lemma. The number of independent X generators is

$$n_1 r_2 - k_1 k_2^T$$

where k_2^T the dimension of the code obtained by swapping bits and checks.

Proof. The term n_1r_2 is the total number of X checks.

If a product of X generators (blue) is equal to I, then:

- each circle-circle qubit is a vertical check for this product
- each square-square qubit is a horizontal check for this product.

Therefore, trivial products of X generators correspond to codewords of the classical product code $\mathcal{C}_1 \otimes \mathcal{C}_2^T$.

This proves that there are $k_1k_2^T$ independent relations between the X

Number of logical qubits of HGP codes

Lemma. The number of independent X generators is $n_1 r_2 - k_1 k_2^T$

Lemma. The number of independent Z generators is $r_1 n_2 - k_1^T k_2$

Theorem. For HGP codes, we have

- $n = n_1 n_2 + r_1 r_2$
- $k = k_1 k_2 + k_1^T k_2^T$
- $d \ge \min(d_1, d_2, d_1^T d_2^T)$