Quantum LDPC codes Lecture 1

Nicolas Delfosse Microsoft

PCMI Summer School 2023

Overview
-Classical codes
-Stabilizer codes

- Good stabilizer exist
-Examples of quantum LDPC codes

Classical linear codes

Error correction with repetition codes

Monte-Carlo simulation of repetition codes


```
Monte-Carlo simulation:
1. Initialize N = 0.
2.Repeat 1,000,000 times:
3. Start with the encoded bit-string (00 ... 0).
4. Flip each bit independently with probability p.
5. Apply a majority vote decoder.
6. If the decoded bit is 1, increment N.
7.Return N / 1,000,000
```


Monte-Carlo simulation of repetition codes

Tanner graphs of repetition codes

Issue: The repetition code encodes only 1 logical bit. Solution: Use more general graphs.

Hamming code

Solution: Using general graphs, we can simultaneously:

- encode many logical bits
- correct many bit-flips

Decoding Hamming code

Checks	Correctio \mathbf{n}
100	Flip 4
010	Flip 6
110	Flip 2
001	Flip 7
101	Flip 3
011	Flip 5
111	Flip 1

Issue: There is no known polynomial time decoding algorithm for general graphs Solution: Use sparse graph

Low Density Parity-Check (LDPC) codes

Solution: LDPC codes = codes defined by low degree checks

With sparse graph, we get an efficient decoder.
Basic idea: if $x_{1}+x_{2}+x_{4}=1$ there is only 3 possible bitflips
=> local decoding.

Quantum generalization

Requirements:

- Encode many logical quibits,
- Correct many Pauli errors,
- Efficient decoder,
- Fault-tolerant: Can be implemented with very noisy quantum hardware,
=> Quantum LDPC codes

Quantum stabilizer codes

Pauli operators

Ex.

- $(-i) X \otimes I \otimes Y \otimes X$
- ZZZ
- $-X_{1} X_{3} X_{5} X_{7}$

Notation.

- \mathcal{P}_{n} : Set of all n-qubit Pauli operators.

Commutation

Prop. Two Pauli operators $P, Q \in \mathcal{P}_{n}$ either commute or anti-commute.

Ex.

- XIIZ and ZIIZ?
- $X Y Z$ and $Z X Y$?
- XIXIXIXIIIIXXXXX and XIXXIIXIIIIXXIIX?
- $X X X X$ and $Y Y Y Y$?

Notation.

$$
[P, Q]=\left\{\begin{array}{lr}
0 \quad \text { if they commute } \\
1 & \text { if they anticommute }
\end{array}\right.
$$

Stabilizer codes

Def. A stabilizer code is defined to be a subspace $Q(S)$ of $\left(\mathbb{C}^{2}\right)^{\otimes n}$ fixed by a set S of Pauli operators.

Prop. The set S is a commutative subgroup of P_{n} that does not contain $-I$. Conversely, we can define a stabilizer code for each commutative subgroup of P_{n} that does not contain $-I$.

Remark:

- A commutative subgroup of P_{n} that does not contain $-I$ is called a stabilizer group.
- The elements of S are called stabilizers.
- If $S=\left\langle S_{1}, \ldots, S_{r}\right\rangle$, its generators S_{i} are called stabilizer generators.

Exercise. Prove the proposition.

Stabilizer matrix

Ex. The five-qubit code is defined by the stabilizer matrix:

$$
H=\left[\begin{array}{ccccc}
X & Z & Z & X & I \\
I & X & Z & Z & X \\
X & I & X & Z & Z \\
Z & X & I & X & Z
\end{array}\right]
$$

Exercise. Check that the rows of this matrix generate a stabilizer group.

Number of logical qubits

Def. A set of Pauli operators $\left\{S_{1}, \ldots, S_{r}\right\}$ is independent if the only product of these operators that is equal to I is the trivial product.

Prop. If $S=\left\langle S_{1}, \ldots, S_{r}\right\rangle$ is generated by r independent generators, then $Q(S)$ encodes $k:=n-r$ logical qubits, i.e $\operatorname{dim} Q(S)=2^{n-r}$.

Proof. Problem session.

Remark.

- n is called the code length.
- The code parameters are denoted $[[n, k]]$.

Example

Exercise. Count the number of logical qubits for the following stabilizer codes:

- $H=\left[\begin{array}{ccccc}X & Z & Z & X & I \\ I & X & Z & Z & X \\ X & I & X & Z & Z \\ Z & X & I & X & Z \\ Z & Z & X & I & X\end{array}\right]$

$$
=>[[5,1]]
$$

- $H=\left[\begin{array}{ccccccc}X & I & X & I & X & I & X \\ I & X & X & I & I & X & X \\ I & I & I & X & X & X & X \\ Z & I & Z & I & Z & I & Z \\ I & Z & Z & I & I & Z & Z \\ I & I & I & Z & Z & Z & Z\end{array}\right]$

$$
\Rightarrow[[7,1]]
$$

A code with only X type or Z type rows is called a CSS code.

Measurement of the syndrome of an error

Def. Given S_{1}, \ldots, S_{r}, the syndrome of a Pauli error $E \in \mathcal{P}_{n}$ is the vector $\sigma(E)=\left(\sigma_{1}, . ., \sigma_{r}\right) \in\{0,1\}^{r}$ such that $\sigma_{i}=\left[E, S_{i}\right]$.

Prop. Consider a system in the state $E|\psi\rangle$ where $|\psi\rangle \in Q(S)$ and $E \in \mathcal{P}_{n}$.

- The outcome of the measurement of S_{i} is $(-1)^{\sigma_{i}(E)}$ with probability 1.
- The state of the system after measurement is $E|\psi\rangle$.

Proof. Exercise.
Hint. What is the projector onto the $(-1)^{a}$-eigenspace of S_{i} ?

Example

Exercise. Consider the stabilizer code:

$$
H=\left[\begin{array}{ccccccc}
X & I & X & I & X & I & X \\
I & X & X & I & I & X & X \\
I & I & I & X & X & X & X \\
Z & I & Z & I & Z & I & Z \\
I & Z & Z & I & I & Z & Z \\
I & I & I & Z & Z & Z & Z
\end{array}\right]
$$

- What is the syndrome of $X_{1} X_{3} X_{5} X_{7}$? $\quad X_{3}$? $\quad X_{1} X_{2}$?
- $\sigma\left(X_{1} X_{3} X_{5} X_{7}\right)=(0,0,0,0,0,0)$
- $\sigma\left(X_{3}\right)=(0,0,0,1,1,0)$
- $\sigma\left(X_{1} X_{2}\right)=(0,0,0,1,1,0)$
- Can you find an errors with trivial syndrome? Is it a stabilizer?

Logical basis

Def. A logical error for a stabilizer code is a Pauli error with trivial syndrome.

It is a non-trivial logical error if it is a logical error and not a stabilizer.

Prop. For all [[$n, k]$] stabilizer code, there exists a set of logical error of the form

$$
\overline{X_{1}}, \overline{Z_{1}}, \ldots, \overline{X_{k}}, \overline{Z_{k}}
$$

such that

- $\left[\bar{X}_{i}, \bar{Z}_{j}\right]=\delta_{i, j}$
- $\left[\begin{array}{ll}\bar{X}_{i}, & \bar{X}_{j}\end{array}\right]=\left[\begin{array}{ll}\bar{Z}_{i}, & \bar{Z}_{j}\end{array}\right]=0$

Proof. Exercise.
Hint. Applv on Gram-Schmidt process.

Example

- $H=\left[\begin{array}{ccccc}X & Z & Z & X & I \\ I & X & Z & Z & X \\ X & I & X & Z & Z \\ Z & X & I & X & Z\end{array}\right]$

Find a logical basis?

- $\overline{X_{1}}=X X X X X$
- $\overline{Z_{1}}=Z Z Z Z Z$

Minimum distance

Def. The minimum distance of a stabilizer code, denoted d, is the minimum weight of a non-trivial logical error, i.e. $d=\min \left\{|E|\right.$ such that $\left.E \in \mathcal{P}_{n} \backslash S, \sigma(E)=0\right\}$

Example

Exercise. Compute the parameters of the following codes.

$$
H=\left[\begin{array}{ccccccc}
X & I & X & I & X & I & X \\
I & X & X & I & I & X & X \\
I & I & I & X & X & X & X \\
Z & I & Z & I & Z & I & Z \\
I & Z & Z & I & I & Z & Z \\
I & I & I & Z & Z & Z & Z
\end{array}\right]
$$

$\Rightarrow[[7,1,3]]$

Remark.

- When d is known, the code parameters and are denoted [[n, k, d]].

Decoder

Def. A decoder is a map $D:\{0,1\}^{r} \rightarrow \mathcal{P}_{\eta}$. We say that the decoder corrects a Pauli error E if the $D(\sigma(E))=E \bmod \dot{S}$.

Def. A minimum weight (MW) decoder is a map $D:\{0,1\}^{r} \rightarrow \mathcal{P}_{n}$ such that for all $\sigma \in\{0,1\}^{r}, D(\sigma)$ is a minimum weight error with syndrome σ.

Prop. A MW decoder corrects all Pauli errors E with weight $|E| \leq \frac{d-1}{2}$.

Proof.

Assume that an error E occurs with $|E| \leq \frac{d-1}{2}$.
The decoder returns a correction E^{\prime} with syndrome $\sigma\left(E^{\prime}\right)=\sigma(E)$.
$\sigma\left(E E^{\prime}\right)=\sigma(E)+\sigma\left(E^{\prime}\right)=0$ and $\left|E E^{\prime}\right| \leq|E|+\left|E^{\prime}\right| \leq d-1$.
Therefore, $E E^{\prime} \in S$ and the decoder correct E.

Example

How many errors can we correct with the following code?

$$
H=\left[\begin{array}{ccccccc}
X & I & X & I & X & I & X \\
I & X & X & I & I & X & X \\
I & I & I & X & X & X & X \\
Z & I & Z & I & Z & I & Z \\
I & Z & Z & I & I & Z & Z \\
I & I & I & Z & Z & Z & Z
\end{array}\right]
$$

Good stabilizer codes

Theorem. There exists a sequence of $[[n, k, d]]$ stabilizer codes with $n \rightarrow+\infty$ and k, d linear in n. More precisely, for all $\delta \in[0,1]$ and for all $\varepsilon>0$, we can achieve

- $\frac{k}{n}=1-h(\delta)-\delta \log _{2} 3-\varepsilon$
- $\frac{d}{n} \geq \delta$

Proof idea. Consider the random variable
$Y_{\delta n}(C):=\#$ of Pauli errors $E \in \mathcal{P}_{n} \backslash S$ with $\sigma(E)=0$ with weight $|E| \leq \delta n$

1. Show that if $\frac{k}{n}$ is small enough then $\mathbb{E}\left(Y_{\delta n}\right) \rightarrow 0$ when $n \rightarrow+\infty$.
2. This proves the existence of a family of codes with $Y_{\delta n}(C)=0$.
3. By definition $Y_{\delta n}$, this shows that $d>\delta n$.

Lemmas - Counting stabilizer codes

A stabilizer group for a $[[n, k]]$ stabilizer code is of the form $S=\left\langle S_{1}, \ldots, S_{n-k}\right\rangle$. Lemma. The number of $[[n, k]]$ stabilizer code is

$$
2^{n-k} \prod_{i=0, \ldots, n-k-1} \frac{\left(2^{2 n-i}-2^{i}\right)}{\left(2^{n-k}-2^{i}\right)}
$$

Proof $\#$ stabilizer codes $=$

- $2^{n-k}=\#$ choices for the phase ± 1 of each S_{i}
- \# choices for the $1^{\text {st }}$ generator $=2^{2 n}-1$.
- \# choices for the $2^{\text {nd }}$ generator $=2^{2 n-1}-2$.
- \# choices for the $2^{\text {nd }}$ generator $=2^{2 n-2}-4$.
- $\left.{ }_{2^{i}}^{i}\right)$ \# choices for $n-k$ independent stabilizer generators $=2^{n-k} \prod_{i=0, \ldots, n-k-1}\left(2^{2 n-i}-\right.$
- \# generating sets of $\left\langle S_{1}, \ldots, S_{n-k}\right\rangle=\prod_{i=0, \ldots, n-k-1}\left(2^{n-k}-2^{i}\right)$

Lemmas - Counting stabilizer codes

Lemma. The number of $[[n, k]]$ stabilizer code is

$$
2^{n-k} \prod_{i=0, \ldots, n-k-1} \frac{\left(2^{2 n-i}-2^{i}\right)}{\left(2^{n-k}-2^{i}\right)}
$$

Lemma. Let $E \neq I$. The number of $[[n, k]]$ stabilizer group such that $\sigma(E)=0$ is

$$
2^{n-k} \prod_{i=0, \ldots, n-k-1} \frac{\left(2^{2 n-i-1}-2^{i}\right)}{\left(2^{n-k}-2^{i}\right)}
$$

Proof. Similar.

Good stabilizer codes - Proof

Proof. We can write $Y_{\delta n}(Q)$ as

$$
Y_{\delta n}(Q)=\sum_{\substack{E \in \mathcal{P}_{n} \backslash \mathrm{~S} \\|E| \leq \delta n}} X_{E}(Q)
$$

where

$$
X_{E}(Q)=\left\{\begin{array}{l}
0 \text { if } \sigma(E) \neq 0 \\
1 \text { if } \sigma(E)=0
\end{array}\right.
$$

By linearity of the expectation, we have

$$
\mathbb{E}\left(Y_{\delta n}\right)=\sum_{\substack{E \in \mathcal{P}_{n} \backslash S \\|E| \leq \delta n}} \mathbb{E}\left(X_{E}(Q)\right)
$$

Moreover, $\mathbb{E}\left(X_{E}(Q)\right)=\mathbb{P}(\sigma(E)=0)$.

Good stabilizer codes - Proof

Lemma. For all $E \neq I$, we have $\mathbb{P}(\sigma(E)=0) \leq 2^{-(n-k)}$.

Proof.
$\mathbb{P}(\sigma(E)=0)=\frac{\text { number of }[[n, k]] \operatorname{codes} \text { with } \sigma(E)=0}{\text { number of }[[n, k]] \operatorname{codes}}=\prod_{i=0, \ldots, n-k-1} \frac{\left(2^{2 n-i-}-2^{i}\right)}{\left(2^{2 n-i}-2^{i}\right)} \leq 2^{-(n-k)}$

Application.

$$
\begin{aligned}
& \mathbb{E}\left(Y_{\delta n}\right)=\sum_{\substack{E \in \mathcal{P}_{n} \backslash S \\
|E| \leq \delta n}} \mathbb{P}(\sigma(E)=0) \leq 2^{-(n-k)} \sum_{i \leq \delta n} 3^{i}\binom{n}{i} \leq \operatorname{poly}(n) \cdot 2^{-(n-k)+n(\delta)+n \delta \log _{2} 3} \\
& =\operatorname{poly}(n) \cdot 2^{-n\left(\left(1-h(\delta)-\delta \log _{2} 3\right)-\frac{k}{n}\right)} \\
& \text { which goes to } 0 \text { if } \frac{k}{n}=1-h(\delta)-\delta \log _{2} 3-\varepsilon \text { with } \varepsilon>0 \text {. This concludes the }
\end{aligned}
$$ proof.

Example of LDPC codes

Example - Kitaev's toric code

Consider a cellulation of the torus.

- Place a qubit on each edge.
- Define a X generator for each vertex.
- Define a Z generator for each face.

Example - 3D toric code

Consider a cellulation of a 3-dim manifold.

- Place a qubit on each face.
- Define a X generator for each edge.
- Define a Z generator for each 3cell.

Or

- Place a qubit on each edge.
- Define a X generator for each vertex.
- Define a Z generator for each

Example - Hypergraph product code

Consider two bipartite graph

- Place a quibit on each circlecircle.

O 0 O

- Place a qubit on each squaresquare.
- Define a X generator for each square-circle.
- Define a Z generator for each circle-square.

Comparison of the parameters

Code	k	d
2D toric codes	constant	$\propto \sqrt{n}$
3D toric codes	constant	$\propto n^{1 / 3}$
HGP codes	$\propto n$	$\propto \sqrt{n}$

Hypergraph Product (HGP) Codes

Linear code and transposed code

Linear code parameters
$[n, k, d]$

- $n=\#$ bits,
- $r=$ \# checks
- $k=\operatorname{dim} C$
- $d=\min \{|x|, x \in C, x \neq 0\}$
is the minimum distance.

Transposed code with parameters $\left[n^{T}, k^{T}, d^{T}\right]$

- $n^{T}=r$
- $r^{T}=n$
- $k^{T}=k+n-r$

Product of two linear codes $C_{1} \otimes C_{2}$

Def. A codeword of $C_{1} \otimes C_{2}$ is bitstring forming a $n_{1} \times n_{2}$ matrix x such that

- each row of x is in C_{1},
- each column of x is in C_{2},

is in the product of the Hamming code and the 3 -repetition code.

Prop. The dimension of $C_{1} \otimes C_{2}$ is $k_{1} k_{2}$.

Number of independent generators

\# bits=n

Lemma. The number of independent X generators is

$$
n_{1} r_{2}-k_{1} k_{2}^{T}
$$

where k_{2}^{T} the dimension of the code obtained by swapping bits and checks.

Proof. The term $n_{1} r_{2}$ is the total number of X checks.

If a product of X generators (blue) is equal to I, then:

- each circle-circle qubit is a vertical check for this product
- each square-square qubit is a horizontal check for this product.
Therefore, trivial products of X generators correspond to codewords of the classical product code $C_{1} \otimes C_{2}^{T}$.
This proves that there are $k_{1} k_{2}^{T}$ indenendent relations hetween the x

Number of logical qubits of HGP codes

Lemma. The number of independent X generators is

$$
n_{1} r_{2}-k_{1} k_{2}^{T}
$$

Lemma. The number of independent Z generators is

$$
r_{1} n_{2}-k_{1}^{T} k_{2}
$$

Theorem. For HGP codes, we have

- $n=n_{1} n_{2}+r_{1} r_{2}$
- $k=k_{1} k_{2}+k_{1}^{T} k_{2}^{T}$
- $d \geq \min \left(d_{1}, d_{2}, d_{1}^{T} d_{2}^{T}\right)$

