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We are grateful for the excellent working conditions provided by the IAS for our group
to work (amidst periodic confectionary distractions) on our multi-volume monograph in-
progress, which is tentatively titled: Open Dynamical Systems Avoiding Arbitrary Balls:
Statistics, Geometry, and Thermodynamic Formalism. Our team is normally spread be-
tween Wisconsin, Ontario, Warsaw, and Texas. Thus having this dedicated time in Prince-
ton to focus our energies on this large project provided the perfect momentum to complete
approximately 5 chapters of the first volume, which we hope to have submitted by the end
of this year. Beyond our work on open systems, we also started fruitful discussions on a
few other projects that we hope to revisit in the future.

Figure 1. Selfie-breaks while working in our office, and on the last day of our visit.

The theory of open dynamical systems, also known as dynamical systems with holes,
naturally models physical systems where some escape of mass, or “leakage” occurs. One of
the first mathematical treatments of such systems goes back to the 1980’s ([45], [46], see
also [47]) for the doubling map of the circle. One considers the doubling map T (x) := 2x
mod 1 acting on the circle S1 = R/Z. For ε > 0, one takes as a “hole” the open interval
Uε := (0, ε) of the circle, and defines the set

(0.1) K(ε) := {x ∈ R/Z : T n(x) /∈ (0, ε) ∀n ≥ 0}
that is, the set of points that never “fall” into the hole under forward iteration.

The set K(ε) is usually a Cantor set with measure zero, but positive Hausdorff dimen-
sion. The dependence of K(ε) on ε is rather subtle: for instance, it is natural to consider
the dimension function

(0.2) η(ε) := HD(K(ε)).

Such a function is continuous [45], but not smooth: in fact, it is locally constant on a
countable union of intervals moreover, the local Hölder exponent of η in a neighborhood of
some ε is equal to the value of η(ε) [5].
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Figure 2. The Hausdorff dimension function η(ε) = HD(K(ε)). One can
see the intervals where the function is locally constant.

The above example can be generalized to a wide class of dynamical systems, and this
has sparked, in the following three decades, a growing body of literature: see e.g. [1], [4],
[11], [10], [13], [14], [15], [16], [17], [18], [22], [26], [28], [29], [36] [37].

The goal of our book is to present a general theory of open dynamical systems in
arbitrary metric spaces, which is both as self-contained as possible, but also introduces
new results, in particular by considering arbitrary metric balls as holes.

Basic definitions. In general, one considers a transformation T : X → X of a metric
space (X, ρ). Let us fix a reference point ξ ∈ X and, for every ε > 0, consider the ball
B(ξ, ε), of center ξ and radius ε, which we will treat as a “hole”. Then one has the set

(0.3) KT,ξ(ε) :=
{
x ∈ X : T n(x) /∈ B(ξ, ε) ∀n ≥ 0

}
=
∞⋂
n=0

T−n(X \B(ξ, ε)),

of points that never fall into the hole under forward iteration, which is usually called the
survival set. The set KT,ξ is a closed, forward invariant set. Usually, the survival set has
measure zero, but its Hausdorff dimension is positive.

Another natural way of measuring the “size” of the hole is to consider its escape rate,
which is the exponential rate of decay of the measure of the set of points that are not
absorbed by the hole up to time n. More precisely, given a Borel probability T -invariant
measure µ on X, one defines the set

An :=
{
x ∈ X : T k(x) /∈ B(ξ, ε) ∀ 0 ≤ k ≤ n− 1

}
of points that do not fall into the hole before n steps, and the lower escape rate

(0.4) RT,µ(B(ξ, ε)) := − lim sup
n→∞

1

n
log µ (An)
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and, analogously, the upper escape rate RT,µ(B(ξ, ε)). If these are equal, then the common
value

RT,µ(B(ξ, ε)) := RT,µ(B(ξ, ε)) = RT,µ(B(ξ, ε))

is called the escape rate generated by the map T and the hole B(ξ, ε).
In a slightly more general context, one can replace the hole B(ξ, ε) by an arbitrary mea-

surable subset Γ of X in (0.3) and (0.4), and form the corresponding set KT (Γ). Following
[11] we call a Borel probability measure ν on X \ Γ conditionally invariant if there exists
α ∈ (0, 1] such that

(0.5) ν
(
(X \ Γ) ∩ T−1(A)

)
= αν(A)

for every Borel set A ⊂ X \Γ. In slightly different terms, a Borel probability measure ν on
X is conditionally invariant with respect to X \ Γ if ν(X \ Γ) = 1 and

(0.6) ν ◦ T−1 = αν.

If µ is an equilibrium state of some potential ψ : X → R, then one can ask about
the existence, uniqueness, and geometric and stochastic properties of equilibrium states
(commonly called survival equilibria) for the potentials ψΓ := ψ|KT (Γ) : KT (Γ)→ R and the
dynamical system T |Γ : Γ→ Γ.

Motivating questions. Using these notions, the fundamental questions in the theory
of open systems can be formulated as follows:

(1) Do the escape rates exist? If, so how are these related to the measures µ(B(ξ, ε))?
And, more subtly: how do escape rates change as the hole changes? In particular,
what is the relation between the quantities |RT,µ(B(ξ, ε)) − RT,µ(B(ξ, r))| and
|µ(B(ξ, ε))− µ(B(ξ, r))|?

(2) What is the asymptotic behavior of HD(X) − HD(KT,ξ(ε)) when ε ↘ 0? And,
more generally: given r ≥ 0, what is the asymptotic behavior of HD(KT,ξ(r)) −
HD(KT,ξ(ε)) when ε→ r?

(3) What do the conditionally invariant measures generated by the holes B(ξ, ε) look
like?

(4) What about the dynamics of T |KT,ξ(ε) : KT,ξ(ε)→ KT,ξ(ε)? Are there any natural
significant invariant measures, with respect to which the dynamics of T |KT,ξ(ε) does
not differ too much from the dynamics of T : X → X? More specifically, what
about survival equilibria?

We develop several techniques to answer the above questions for a large class of systems.
Our book intends to provide an expository account of these concepts and will simultaneously
contains many original theorems.

In particular, we extend the work of [22], where the authors study thermodynamic
formalism for open systems with holes, under the constraint that holes are a finite union
of cylinders of the same depth. This was improved in [37], where the hole is allowed to be
a countable union of cylinders, still of the same depth. In our current project we no longer
require this assumption, thus the “hole” generating the open system may be an arbitrary
metric ball, provided that it satisfies a certain “thin boundary” condition.
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Symbolic dynamics, Perron Frobenius operators, and Banach spaces. The
general approach to these questions is based on the following framework. First, one starts
working in the symbolic dynamic context, more precisely with countable alphabet subshifts
of finite type, whose thermodynamic formalism was laid down in [32] and [33].

We consider a countable (finite or infinite) set E, which we treat as our “alphabet”,
a finitely primitive incidence matrix A : E × E → {0, 1}, and a summable Hölder con-
tinuous potential ϕ : E∞A → R, and we work with the shift map σ : E∞A → E∞A . The
holes are then quite general open sets U ⊆ E∞A , while the σ–invariant measure is µϕ, the
Gibbs/equilibrium state of the potential ϕ.

The first key idea is to define, for each open set U , the singularly perturbed Perron–
Frobenius operator

g 7−→ LU(g) := Lϕ(g11Uc).

Usually, as in [32] and [33], Perron-Frobenius operators act on the Banach space Hb
θ(E

∞
A )

of bounded Hölder continuous functions. However, if the hole U is quite general, and we
want it to be such, the characteristic function 11Uc is not Hölder, and, as a consequence,
the operator LU does not preserve Hb

θ(E
∞
A ). We tackle this issue by defining a different,

bigger Banach space, denoted in [22] and in [37] by Bθ(mϕ), endowed with two new norms
‖ · ‖Bθ(mϕ) and ‖ · ‖mϕ,θ,U . The first crucial point is that the characteristic function 11Uc
belongs to the Banach space Bθ(mϕ) for a large collection of sets U . Then,

LU
(
Bθ(mϕ)

)
⊆ Bθ(mϕ)

and the operator LU : Bθ(mϕ) → Bθ(mϕ) is bounded. In order for this operator to result
in a rich thermodynamic formalism, one would like to show that the operator LU is quasi–
compact and r(LU), the spectral radius of LU , is a unique eigenvalue of LU of modulus
r(LU); moreover that this eigenvalue is simple.

Perturbative schemes. Moreover, in order to answer the previous questions (1)-(4),
we need to be able to control the statistical and geometric properties of the system un-
der “deformations” of the hole. This is done by considering perturbations of the Perron-
Frobenius operators as follows.

To set this up, we introduce the notion of a perturbative scheme, namely a family
U = (Uε)ε∈Γ of open holes in E∞A , where the space of parameters Γ is a topological space
with a marked element denoted by 0, satisfying certain natural conditions. For any ε ∈ Γ,
we define the perturbed operator Lε as

Lε(g) := Lϕ(g11Ucε )

The problem is, however, that the standard perturbation theory of linear operators (see
[24]) does not apply as the operators Lε, acting on

(
Bθ(mϕ), ‖ · ‖Bθ(mϕ)

)
(not to mention

Hθ(E
∞
A )), are not in general small perturbations of Lϕ.

The remedy comes from introducing yet another norm, which we denote by ‖ · ‖mϕ,θ,U .
The key point is that although the differences between the operators Lε and Lϕ are actually
always large in the Bθ-norm, these are, however, small if the input Banach space is Bθ(mϕ)
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endowed with the “strong” norm ‖ · ‖Bθ(mϕ) while the output is the same vector space but
endowed with the appropriately defined “weak” norm ‖ · ‖mϕ,θ,U .

We assume all the holes in our perturbation scheme to satisfy a uniform thin boundary
condition. The norm ‖ · ‖mϕ,θ,U is crafted so that, if the hole Uε shrinks to a point, then the
perturbed operators

Lε : (Bθ(mϕ), ‖ · ‖Bθ(mϕ)) −→ (Bθ(mϕ), ‖ · ‖mϕ,θ,U)

are close to Lϕ, and converge to Lϕ sufficiently fast, so that the perturbation theorem of
Keller and Liverani (see [28], compare also [27]) applies. This yields our main perturbative
result, viz. the perturbed operators Lε, with all ε ∈ Γ sufficiently close to 0, have the same
spectral structure as the operator Lϕ : Bθ(mϕ) −→ Bθ(mϕ), in particular these are quasi–
compact with spectral gap.

In fact, one has the spectral decomposition

Lε = λεQε + ∆ε,

where Qε : Bθ(mϕ)→ Bθ(mϕ) is a projector (Q2
ε = Qε) onto the 1–dimensional eigenspace

of the real eigenvalue λε (of maximal modulus), and there exist κ ∈ (0, eP(ϕ)) and C > 0
such that

‖∆k
ε‖Bθ(mϕ) ≤ Cκk

for all integers k ≥ 0. Moreover,
lim
ε→0

λε = eP(ϕ)

Furthermore, ‖Qε‖Bθ(mϕ) ≤ C and

lim
ε→0
|||Qε −Qϕ||| = 0,

where ||| · ||| is the norm of bounded operators acting from (Bθ(mϕ), ‖·‖Bθ(mϕ)) to (Bθ(mϕ), ‖·
‖mϕ,θ,U), and Qϕ is the projector associated to the original operator Lϕ.

We go on to prove a far reaching continuity strengthening of the above results. Namely
that for all r ∈ Γ sufficiently close to 0, we have that

lim
ε→r

λε = λr

and
lim
ε→r
|||Qε −Qr||| = 0.

The latter two results are starting points to calculate the asymptotic of escape rates at any
point sufficiently close to 0 ∈ Γ.

We prove that any perturbative scheme can be enlarged so that each of its holes can
be sufficiently well approximated by holes consisting of carefully chosen unions of cylinders
of the same length. This enlargement/approximation is key, and we will use it throughout
our book. Its first consequence is that the eigenfunctions ρε produced as elements of the
Banach space Bθ(mϕ) can be globally extended, i.e. as Borel bounded functions defined on
all of E∞A satisfying pointwise the eigenvalue equation

Lε(ρε) = λερε.
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We then study analytic families of Perron–Frobenius operators all of which act, and are
bounded, on the same Banach space Bθ(mψ) where ψ is a 1–cylinder Hölder continuous
potentials. Following some technical work we obtain analytic dependence of eigenvalues,
eigenfunctions, projectors, and other relevant spectral objects.

Next we consider the restriction of the potential ϕ to these survival sets K(ε) and ask
about significant invariant measures it generates. What is really remarkable is that although
the maps σ : K(ε) −→ K(ε) need not be (and usually are not!) Markov or topologically
mixing, these maps and potentials ϕ|K(ε) nevertheless bear lots of similarities with finitely
primitive countable alphabet subshifts of finite type. This is transparently reflected in the
nearly classical version of the Variational Principle, the uniqueness of (survival) equilibrium
states for the map σ : K(ε) −→ K(ε) and potentials ϕ|K(ε), and stochastic properties
of these states such as ergodicity, and most notably the Almost Sure Invariance Principle,
which also implies an exponential decay of correlations, the Central Limit Theorem and
the Law of Iterated Logarithm. Both proofs of the existence and uniqueness of survival
equilibrium states are highly technical and subtle, the latter using in particular the globally
defined eigenfunctions ρε mentioned above, and adapting the method of differentiability of
topological pressure on survival sets.

Going beyond continuous parameter dependence of the eigenvalues λε, we determine
the rate of convergence, i.e. that the limits

(0.7) lim
ε↘r

λr − λε
µ̃r(A(r, ε))

exist and we can determine their values. Here A(r, ε) = Uε 	 Ur, where 	 denotes the
symmetric difference between sets, and µ̃r is the survival equilibrium state on the set
K(Ur) we discussed in the previous paragraph.

We proved the following

Theorem 0.0.1. Let E be a countable alphabet, let A : E × E → {0, 1} be a finitely
primitive incidence matrix, let ϕ : E∞A −→ R be a 1–cylinder Hölder continuous summable
potential, and let U = (Uε)ε∈Γ be a totally linear perturbative scheme with respect to the
measure mϕ. Then, for all positive r < ε ∈ Γ small enough, the escape rates Rµ̃r(Uε) exist,
and moreover

Rµ̃r(Uε) = Rµ̃r(A(r, ε)) = log λr − log λε.

Applying this formula and Eq. (0.7), we get another remarkable expression for escape
rates, namely the existence of the limit

lim
ε↘r

Rµ̃r(Uε)

µ̃r(Uε)
= lim

ε↘r

Rµ̃r(A(r, ε))

µ̃r(A(r, ε))

and an explicit formula expressing it.

The base for all our forthcoming applications to smooth and conformal dynamical sys-
tems is via studying conformal Graph Directed Markov Systems (GDMS), whose foundations
were laid down in [33]. In this chapter, we deal with measures on the limit set JS of a GDMS
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S that are projections under the map πS : E∞A −→ JS of Gibbs states for 1–cylinder Hölder
continuous summable potentials. One of our main results in this vein is the following.

Theorem 0.0.2. Let S = {ϕe}e∈E be a finitely irreducible conformal Graph Directed
Markov System. Let ϕ : E∞A −→ R be a Hölder continuous summable potential. As usual,
denote its equilibrium/Gibbs state by µϕ. Fix a point z ∈ JS which is not periodic, i.e.
ϕω(z) 6= z for all ω ∈ E∗A.

If Γ ⊆ [0,+∞) is an infinite set clustering at 0 and
(
π−1
S (B(z, ε)

)
ε∈Γ

is a perturbative
scheme with respect to the measure mϕ, then for all 0 < b ∈ Γ small enough the escape
rates

(0.8) RS,ϕ(B(z, b)) := Rµ̃a

(
π−1
S (B(z, b))

)
= P(ϕ)− log λb,

exist and moreover,

(0.9) lim
ε↘0

RS,ϕ(B(z, ε))

µ̃ϕ ◦ π−1
S (B(z, ε))

= P(ϕ).

Geometric potentials. Next we move to geometry. In order to capture the conformal
structure of the limit sets we are interested in, we introduce complex potentials of the
following form, usually called geometric potentials. For every ξ ∈ C the complex-valued
function ζξ is defined as

ζξ(ω) := ξ log |ϕ′ω1
(πS(σ(ω)))|,

and for every ξ ∈ C with Re(ξ) ∈ Γζ the operator Lξ : Cb(E
∞
A )→ Cb(E

∞
A ) is given by the

formula

Lξg(ω) :=
∑
e∈E

Aeω1=1

g(eω) exp(ζξ(eω)) =
∑
e∈E

Aeω1=1

g(eω)|ϕ′e(πζ(ω))|ξ.

Furthermore, given ε ∈ Γ, the perturbed operator Lξ,ε, acting on the “common” Banach
space Bθ

(
mζt

)
with appropriately chosen t, is given by the formula

Lξ,εg(ω) :=
∑
e∈E

Aeω1=1

g(eω)11Uε(eω) exp
(
ξ log |ϕ′e(πS(ω))|

)
,

where, we recall, U = (Uε)ε∈Γ is the collection of holes. Denoting by λt,ε the leading
eigenvalues of the operators Lt,ε, we show the existence, for every ε, of a unique parameter
t, denoted by bε, such that

λt,ε = 1.

We then show that

HD(K(Uε)) = bε

which is a generalization of Bowen’s formula for the Hausdorff dimension of survival sets
K(Uε). We do need here real analytic dependence of λt,ε on t in order to get the asymptotics
of

|HD(K(Uε))− HD(K(Ur))| = |bε − br|,
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and we reap the fruits of our previous work on analytic dependence of perturbed eigenvalues
on complexified parameters.

As an ultimate result we get the following theorem, in which Kz(ε) := K(B(z, ε)) and
µ̃bS(ε),r are the appropriate survival equilibrium states.

Theorem 0.0.3. Let S be a finitely irreducible strongly regular conformal GDMS. For
ε > 0 sufficiently small, let bε denote the Bowen parameters of the system S. Fix z ∈ JS .
Assume that Γ ⊆ [0,+∞) is an infinite set clustering at 0 and

(
π−1
S (B(z, ε)

)
ε∈Γ

, is a
perturbative scheme. We then have that

(0.10) lim
ε↘r

HD(Kz(r))− HD(Kz(ε))

µ̃bS(r),r

(
π−1(A−+(z; r, ε))

) = − λ2
r

λ′r(br)

if r ∈ Γ+ is sufficiently small, and

(0.11) lim
ε↗r

HD(Kz(ε))− HD(Kz(r))

µ̃bS(ε),r

(
π−1(A−+(z; ε, r))

) = − λ2
r

λ′r(br)

if r ∈ Γ− is sufficiently small.

As an illustration of the previous theorem, we can consider the Gauss map G(x) := b 1
x
c,

whose orbits generate the continued fraction expansion of x. This map has countably many
smooth (but not linear) branches, hence it defines a conformal GDMS over the full shift
with countably many symbols. Then, for each r one considers the hole Ur = [0, r), and the
corresponding survival set

B(r) := {x ∈ [0, 1] : Gn(x) ≥ r ∀n ≥ 0}.
These sets are closely related to Diophantine approximation, and are called sets of numbers
of generalized bounded type in [6]. Our results imply that for each r one has a conditionally
invariant measure µ̃r on B(r). Then for any ε > r we have A(0; r, ε) = (r, ε]. Then, as a
corollary of Theorem 0.0.3, we have the limit

lim
ε→r+

HD(B(r))− HD(B(ε))

µ̃r((r, ε])
= − λ2

r

λ′r(br)
.

In fact, much more is true: we do not need to consider as a hole a ball centered at 0, but
rather we can consider for any point z ∈ [0, 1] the family of holes given by balls centered
at z and of radius r, and an analogous result as above holds.

Note that, if instead of G we take the doubling map T (x) = 2x mod 1, and we take
as holes the family Ur = (0, r), the survival set is the set K(ε) considered at the beginning
of the introduction, (Eq. (0.1)), and the dimension function is η(r) := HD(K(r)) as in
(0.2)). In this simple case, where the maps are linear, the alphabet has two symbols, and
the space is one-dimensional, one shows that the conditionally invariant measures satisfy
µ̃r((r, ε]) � |r−ε|η(r); hence, as a corollary of Theorem 0.0.3, we obtain that the local Hölder
exponent of the function η at r equals the value of η(r); this recovers the result from [5]
mentioned at the beginning of the introduction. The technical tour de force presented in
our book provides, among other things, a vast generalization of this result to nonlinear
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systems on arbitrary metric spaces. Let us point out that, even for the Gauss map, such
results were not known in full generality up until now.

Future applications. We end with some highlights of applications to “real” dynam-
ical systems T : X → X, where X is most often, but not always, a closed subset of a
(finitely dimensional) Euclidean space. The general idea to get such applications is based
on utilizing the powerful technique of first return maps. By building on the method of the
first-return map techniques and developing the appropriate large deviations theory we will
fully answer the questions (1)–(4) for conformal dynamical systems T such as Topological

Collet–Eckmann maps of the unit interval [0, 1] and the Riemann sphere Ĉ; for dynamically

semi-regular meromorphic functions from C to Ĉ in the sense of [35]; as well to coarse
expanding dynamical systems, whose thermodynamic formalism was recently laid down by
the four of us and Feliks Przytycki [12]. The point is that such systems admit nice sets (or
families), in the sense of [42] and [39], and these canonically give rise to conformal count-
able alphabet iterated function systems via the first return maps. So, in particular, the
results for such iterated function systems (more generally graph directed Markov systems)
are usable. Furthermore, by utilizing Young’s towers, we also answer such questions for a
large class of smooth dynamical systems and billiards such as those considered for example
in [51], [7], [2], and [8].
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[37] M. Pollicott, M. Urbański, Open Conformal Systems and Perturbations of Transfer Operators, Lecture
Notes in Mathematics 2206 (2018), Springer. (document)

[38] F. Przytycki, J. Rivera-Letelier, S. Smirnov, Equivalence and topological invariance of conditions for
non-uniform hyperbolicity in the iteration of rational maps, Invent. math. 151 (2003), 29–63.

[39] F. Przytycki, J. Rivera-Letelier. Statistical properties of topological Collet-Eckmann maps. Ann. Sci.
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[40] F. Przytycki, M. Urbański, Rigidity of tame rational functions, Bull. Pol. Acad. Sci., Math., 47.2
(1999), 163-182.
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[43] B. Skorulski, M. Urbański, Finer Fractal Geometry for Analytic Families of Conformal Dynamical
Systems, Dynamical Systems 29 (2014), 369–398.
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