Complex Inner Product Spaces PCMI USS, Summer 2023

Quantum states live in a **complex inner product space**. This handout will give the definition and introduce their properties, asking you to prove some of the basic ones.

1 The definition

While a real inner product $\langle x, y \rangle$ is bilinear (linear in each variable separately), there is a slight difference for complex inner products. A complex inner product $\langle x|y \rangle$ is linear in y and *conjugate linear* in x.

Definition 1 A complex inner product space is a vector space V over the field \mathbf{C} of complex numbers together with a function

$$\langle \cdot | \cdot \rangle : V \times V \longrightarrow \mathbf{C},$$

satisfying for all $x, y, y_1, y_2 \in V$, and $\alpha \in \mathbf{C}$

$$\langle x, y_1 + y_2 \rangle = \langle x, y_2 \rangle + \langle x, y_2 \rangle \langle x, \alpha y \rangle = \alpha \langle x, y \rangle \langle y, x \rangle = \overline{\langle x, y \rangle} \langle x, x \rangle > 0 \text{ if } x \neq 0.$$

Exercise 1 Prove that if $\langle \cdot | \cdot \rangle$ is a complex inner product on V, then $\langle \cdot | \cdot \rangle$ is conjugate linear in the first variable, i.e.,

$$\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle \langle \alpha x, y \rangle = \overline{\alpha} \langle x, y \rangle$$

Example 1 Let $V = \mathbb{C}^n$. For $z, w \in \mathbb{C}^n$, we may write $z = (z_1, \ldots, z_n)$, and $w = (w_1, \ldots, w_n)$, and define

$$\langle z|w\rangle = \sum_{j=1}^{n} \overline{z_j} w_j.$$

Exercise 2 Prove (or at least convince yourself) that the formula above satisfies the definition of a complex inner product.

One then has a notion of norm:

Definition 2 If V is a complex inner product space and $v \in V$, we define the norm of v by

$$||v|| = \sqrt{\langle v|v\rangle}.$$

Just like real inner product spaces, complex inner product spaces enjoy these three properties

1. (Triangle Inequality)

$$||x + y|| \le ||x|| + ||y||$$

2. (Cauchy-Schwarz Inequality)

$$|\langle x|y\rangle| \le ||x|| \cdot ||y||$$

3. (Gram-Schmidt Orthonormalization) Any orthonormal set in V can be extended to an orthonormal basis of V.

2 Adjoints

If A is an matrix with entries in **C**, then we use A^{\dagger} to represent the conjugate transpose of A. Thus, the (j, k) entry of A^{\dagger} is $\overline{a_{kj}}$, the conjugate of the (k, j) entry of A.

Just like the regular transpose, we have the following properties of the conjugate transpose, which you may check if you like:

$$(A+B)^{\dagger} = A^{\dagger} + B^{\dagger}$$
$$(\alpha A)^{\dagger} = \overline{\alpha} A^{\dagger}$$
$$(AB)^{\dagger} = B^{\dagger} A^{\dagger}$$
$$(A^{\dagger})^{\dagger} = A$$

If A is a complex $n \times n$ matrix, then A^{\dagger} is characterized by the following property:

$$\langle z|Aw\rangle = \langle A^{\dagger}z|w\rangle \tag{1}$$

known as the **adjoint** property.

Exercise 3 Prove that the equation above holds for all $n \times n$ complex matrices A, and all $z, w \in \mathbf{C}^n$.

3 Unitary Maps

An $n \times n$ complex matrix U is called **unitary** if

$$U^{\dagger}U = I.$$

There are many equivalent ways to say that a matrix is unitary.

Theorem 3 Let U be an $n \times n$ complex matrix. Show that the following are equivalent

- 1. U is unitary.
- 2. $UU^{\dagger} = I$.
- 3. U preserves the inner product, i.e. $\langle Uv, Uw \rangle = \langle v, w \rangle$ for all $v, w \in \mathbb{C}^n$.
- 4. The rows (or columns) of A form an orthonormal basis of \mathbb{C}^n .

Exercise 4 Prove this theorem.

Exercise 5 Suppose that U is unitary and let $\lambda \in \mathbf{C}$ be an eigenvalue of U. Prove that $|\lambda| = 1$.

It is also true that U is unitary if and only if U preserves the complex norm. (Postponed for later. Or try it now.)