Quantum states live in a complex inner product space. This handout will give the definition and introduce their properties, asking you to prove some of the basic ones.

1 The definition

While a real inner product $\langle x, y\rangle$ is bilinear (linear in each variable separately), there is a slight difference for complex inner products. A complex inner product $\langle x \mid y\rangle$ is linear in y and conjugate linear in x.

Definition $1 A$ complex inner product space is a vector space V over the field \mathbf{C} of complex numbers together with a function

$$
\langle\cdot \mid \cdot\rangle: V \times V \longrightarrow \mathbf{C},
$$

satisfying for all $x, y, y_{1}, y_{2} \in V$, and $\alpha \in \mathbf{C}$

$$
\begin{aligned}
\left\langle x, y_{1}+y_{2}\right\rangle & =\left\langle x, y_{2}\right\rangle+\left\langle x, y_{2}\right\rangle \\
\langle x, \alpha y\rangle & =\alpha\langle x, y\rangle \\
\langle y, x\rangle & =\overline{\langle x, y\rangle} \\
\langle x, x\rangle & >0 \text { if } x \neq 0 .
\end{aligned}
$$

Exercise 1 Prove that if $\langle\cdot \mid \cdot\rangle$ is a complex inner prodcut on V, then $\langle\cdot \mid \cdot\rangle$ is conjugate linear in the first variable, i.e.,

$$
\begin{aligned}
\left\langle x_{1}+x_{2}, y\right\rangle & =\left\langle x_{1}, y\right\rangle+\left\langle x_{2}, y\right\rangle \\
\langle\alpha x, y\rangle & =\bar{\alpha}\langle x, y\rangle
\end{aligned}
$$

Example 1 Let $V=\mathbf{C}^{n}$. For $z, w \in \mathbf{C}^{n}$, we may write $z=\left(z_{1}, \ldots, z_{n}\right)$, and $w=$ $\left(w_{1}, \ldots, w_{n}\right)$, and define

$$
\langle z \mid w\rangle=\sum_{j=1}^{n} \overline{z_{j}} w_{j} .
$$

Exercise 2 Prove (or at least convince yourself) that the formula above satisfies the definition of a complex inner product.

One then has a notion of norm:

Definition 2 If V is a complex inner product space and $v \in V$, we define the norm of v by

$$
\|v\|=\sqrt{\langle v \mid v\rangle} .
$$

Just like real inner product spaces, complex inner product spaces enjoy these three properties

1. (Triangle Inequality)

$$
\|x+y\| \leq\|x\|+\|y\|
$$

2. (Cauchy-Schwarz Inequality)

$$
|\langle x \mid y\rangle| \leq\|x\| \cdot\|y\|
$$

3. (Gram-Schmidt Orthonormalization) Any orthonormal set in V can be extended to an orthonormal basis of V.

2 Adjoints

If A is an matrix with entries in \mathbf{C}, then we use A^{\dagger} to represent the conjugate transpose of A. Thus, the (j, k) entry of A^{\dagger} is $\overline{a_{k j}}$, the conjugate of the (k, j) entry of A.
Just like the regular transpose, we have the following properties of the conjugate transpose, which you may check if you like:

$$
\begin{aligned}
(A+B)^{\dagger} & =A^{\dagger}+B^{\dagger} \\
(\alpha A)^{\dagger} & =\bar{\alpha} A^{\dagger} \\
(A B)^{\dagger} & =B^{\dagger} A^{\dagger} \\
\left(A^{\dagger}\right)^{\dagger} & =A
\end{aligned}
$$

If A is a complex $n \times n$ matrix, then A^{\dagger} is characterized by the following property:

$$
\begin{equation*}
\langle z \mid A w\rangle=\left\langle A^{\dagger} z \mid w\right\rangle \tag{1}
\end{equation*}
$$

known as the adjoint property.
Exercise 3 Prove that the equation above holds for all $n \times n$ complex matrices A, and all $z, w \in \mathbf{C}^{n}$.

3 Unitary Maps

An $n \times n$ complex matrix U is called unitary if

$$
U^{\dagger} U=I
$$

There are many equivalent ways to say that a matrix is unitary.

Theorem 3 Let U be an $n \times n$ complex matrix. Show that the following are equivalent

1. U is unitary.
2. $U U^{\dagger}=I$.
3. U preserves the inner product, i.e. $\langle U v, U w\rangle=\langle v, w\rangle$ for all $v, w \in \mathbf{C}^{n}$.
4. The rows (or columns) of A form an orthonormal basis of \mathbf{C}^{n}.

Exercise 4 Prove this theorem.
Exercise 5 Suppose that U is unitary and let $\lambda \in \mathbf{C}$ be an eigenvalue of U. Prove that $|\lambda|=1$.

It is also true that U is unitary if and only if U preserves the complex norm. (Postponed for later. Or try it now.)

