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Abstract

Sidorenko’s Conjecture says that the minimum density of a bigraph
G in a bigraphon W of a given edge density is attained when W
is a constant function. A consequence of a result by B. Szegedy is
that it is enough to show Sidorenko’s Conjecture under the further
assumption that W is biregular. In this paper, we retrieve this result
with a more elementary proof. With this biregularity result and
some ideas of its proof, we also obtain simple proofs of several other
results related to Sidorenko’s Conjecture. Furthermore, we also show
that bigraphs that have a special type of tree decomposition, called
reflective tree decomposition, satisfy Sidorenko’s conjecture. This both
unifies and generalizes the notions of strong tree decompositions and
N -decompositions from the literature.

1 Introduction

In [Sid91] (see also [Sid93]), Sidorenko conjectured that if Ω = (X,µ) and
Λ = (Y, ν) are probability spaces, W : X × Y → R+ is a bounded measurable
function (a bigraphon), and G = (V1, V2, E) is a bipartite graph with a given
bipartition (V1, V2) (a bigraph), then

t(G,W ) ≥ t(ρ,W )e(G), (1)
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where ρ denotes the bigraph consisting of a single edge, e(G)
def
= |E(G)| is the

number of edges in G and the density of G in W is naturally defined as

t(G,W )
def
=

∫
XV1×Y V2

∏
(v,w)∈E(G)

W (xv, yw) d(µV1 ⊗ νV2)(x, y). (2)

Bigraphs G that satisfy (1) for every W are called Sidorenko bigraphs.
A tensor power trick [Sid91, Remark 2] implies that to show that G is a

Sidorenko bigraph, it is sufficient to prove that there exists cG > 0 such that
for every W , we have

t(G,W ) ≥ cG · t(ρ,W )e(G). (3)

With this tensor power trick, Sidorenko showed [Sid91, Theorem 10] that his
conjecture is equivalent to a conjecture by Simonovits [Sim84, Conjecture 8].
Since Simonovits’s Conjecture is a weak version of another joint conjec-
ture with Erdős [ES84, Conjecture 2] on supersaturation (see also [Sim84,
Conjecture 7]), Sidorenko’s Conjecture is sometimes referred to as Erdős–
Sidorenko–Simonovits Conjecture, possibly with some permutation of these
names. While quite easy to prove (see Lemma 4.1 below for a general version),
this tensor power trick has been essential to several results in the literature,
see [CFS10, LS11, KLL16, CKLL18b, CKLL18a, Sid21] for some examples.

From an easy adaptation of the graphon theory (see [Lov12] for an in-
troduction to the topic) to the case of bigraphs, (3) is in turn equivalent
to

t(G,H) ≥ cG · t(ρ,H)e(G) (4)

for every bigraph H = (U1, U2, F ), where

t(G,H)
def
=
|Hom(G,H)|
|U1||V1| · |U2||V2|

and Hom(G,H) is the set of all bigraph homomorphisms from G to H,
i.e., functions f : V1 ∪ V2 → U1 ∪ U2 such that f(Vi) ⊆ Ui (i = 1, 2) and
(v, w) ∈ E =⇒ (f(v), f(w)) ∈ F . In fact, Sidorenko’s Conjecture is often
studied under the further assumption that W is symmetric (i.e., Ω = Λ and
W (x, y) = W (y, x) for every x, y ∈ X), in which case G and H become
ordinary graphs (but G is still bipartite).
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It was proved in [Sze15b, Theorem 4] that it is sufficient to show (4) under
the further assumption that H is edge-vertex transitive (i.e., the natural
actions of the automorphism group of H on the sets V1(H), V2(H) and E(H)
are transitive). In this paper we recover an important consequence of this
result through a different, more elementary, method. More specifically, we
prove (Theorem 3.1) that in order to show that a bigraph is Sidorenko, it is
sufficient to show (3) under the additional assumption that W is biregular in
the sense ∫

Y

W (x0, y) dν(y) =

∫
X

W (x, y0) dµ(x) = t(ρ,W ) (5)

for almost every x0 ∈ X and almost every y0 ∈ Y .
Our techniques and the biregularity assumption allow us to both retrieve

several results from the literature in the non-symmetric setting with a much
simpler proof and provide some generalizations.

For example, not only can we obtain an easy proof of the non-symmetric
analogue of a result of [LS11, Lemmas 3.2 and 3.4 and Theorem 5] that
amalgamations of Sidorenko bigraphs along a vertex are Sidorenko bigraphs
(Theorem 3.2), but we can prove a weak converse: if G′ is the amalgamation
of k copies of G along the same vertex, then G is Sidorenko if and only
if G′ is Sidorenko (Theorem 3.3). Of course, these two results also follow
from [Sze15b].

When studying (1), Sidorenko in fact introduced a stronger (a priori)
conjecture [Sid91, Equation (2)] that in particular implies

t(G,W ) ≥

(∫
X

(∫
Y

W (x, y) dν(y)

)e(G)/|V1(G)|

dµ(x)

)|V1(G)|

.

One way of interpreting the right-hand side is as t(K1,d,W )e(G)/d, where K1,d

is the (left) d-star bigraph, except that in the above d
def
= e(G)/|V1(G)|, which

is not necessarily an integer. Our methods allow us to retrieve a weaker
version of this implication in the “ordinary” setting; namely, we show that
every Sidorenko bigraph G = (V1, V2, E) in which all vertices of V1 have degree
at least d satisfies t(G,W ) ≥ t(K1,d,W )e(G)/d (Theorem 3.4).

Finally, by using the biregularity assumption we are able to unify and
generalize (Theorem 3.5) the results of [CKLL18b, Theorem 1.2] on strong
tree decompositions and of [CL17, Theorem 5.12] on N -decompositions as par-
ticular cases of what we call reflective tree decompositions (see Definition 2.2);
this result holds in both the non-symmetric and symmetric settings.
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This paper is organized as follows. In Section 2 we establish necessary
notation. In Section 3 we state our results. In Section 4 we present the main
lemma used in the proofs. In Section 5 we prove our biregularity result. In
Section 6, we prove the aforementioned applications of our biregularity result
and our main lemma to amalgamations and the strengthened K1,d version
of Sidorenko’s Conjecture. In Section 7 we prove the result on reflective
tree decompositions. In Section 8 we show how to adapt the material from
Sections 4, 5 and 7 to the symmetric setting. We finish the paper with a brief
discussion and some open problems in Section 9.

2 Preliminaries

Throughout the text, we will use the notation N def
= {0, 1, . . .} for non-negative

integers and N+
def
= N \ {0} for positive integers. For n ∈ N, we let [n]

def
=

{1, . . . , n}. We also let R be the set of real numbers and R+ the set of
non-negative real numbers. Given a set V , we denote its power set by

2V
def
= {W |W ⊆ V }.

2.1 Bigraphs

A bigraph is a triple G = (V1, V2, E), where V1 and V2 are disjoint finite sets
and E ⊆ V1 × V2. We will also use the following notation (i = 1, 2):

Vi(G)
def
= Vi, vi(G)

def
= |Vi|, V (G)

def
= V1 ∪ V2,

E(G)
def
= E, e(G)

def
= |E|, v(G)

def
= |V1|+ |V2|.

For v ∈ V (G), we denote by dG(v) its degree. We also let

δi(G)
def
= min

v∈Vi(G)
dG(v), ∆i(G)

def
= max

v∈Vi(G)
dG(v).

We say that G is left d-regular (right d-regular, respectively) if dG(v) = d
for every v ∈ V1(G) (v ∈ V2(G), resp.). We say that G is biregular if it is
both left d1-regular and right d2-regular for some d1, d2 ∈ N. An isomorphism
between bigraphs G1 and G2 is a bijection f : V (G1) � V (G2) such that
f(Vi(G1)) = Vi(G2) (i = 1, 2) and (v, w) ∈ E(G1) ⇐⇒ (f(v), f(w)) ∈ E(G2)
((v, w) ∈ V1(G1)× V2(G1)); when such an isomorphism exists, we say that G1

and G2 are isomorphic and denote this as G1
∼= G2.
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For U ⊆ V (G), we let G|U be the subgraph induced by U in G, that is, we
let

Vi(G|U)
def
= Vi(G) ∩ U, E(G|U)

def
= E(G) ∩ ((U ∩ V1(G))× (U ∩ V2(G))).

For v ∈ V (G), we let G− v def
= G|V (G)\{v} be the bigraph obtained from G by

removing v. For E ⊆ E(G), we also let G − E def
= (V1(G), V2(G), E(G) \ E)

be the spanning subgraph obtained from G by removing the edges in E. The

dual bigraph of G is the bigraph G∗
def
= (V2, V1, E

∗), where E∗
def
= {(w, v) |

(v, w) ∈ E(G)}. We denote the edge bigraph ({1}, {2}, {(1, 2)}) by ρ and the
d-star bigraph ({0}, [d], {(0, i) | i ∈ [d]}) by K1,d (thus, ρ ∼= K1,1).

2.2 Flags

It will be convenient to also work with partially labeled bigraphs and for
this purpose we will borrow some terminology from the theory of flag alge-
bras [Raz07].

More specifically, we work in the theory T 2
Graph of graphs augmented with

a 2-coloring of its vertices. Thus, a flag is a partially labeled bigraph, that is,
a pair F = (G, θ), where G is a bigraph and θ : [k] � V (G) is an injection

for some k ∈ N. We use the notation |F | def= G for the underlying bigraph

of F and the notation θF
def
= θ for the labeling of F . We will often abuse

notation and write F = (G, (θ(1), θ(2), . . . , θ(k))), listing the values of θ. In
fact, we will abuse the notation even more and write F = (G,U) for some set
U ⊆ V (G) to be understood as F = (G, θ) for some θ : [|U |] � V (G) with
im(θ) = U , whenever the exact ordering is either clear from the context or
unimportant.

An isomorphism between flags F1 = (G1, θ1) and F2 = (G2, θ2) is an
isomorphism f between G1 and G2 that preserves the partial labeling in the
sense that f ◦ θ1 = θ2; when such an isomorphism exists, we say that F1 and
F2 are isomorphic and denote it by F1

∼= F2.
If F1 = (G1, θ1) and F2 = (G2, θ2) are flags such that θ2 ◦ θ−11 is an

isomorphism between G1|im(θ1) and G2|im(θ2) (that is, in the terminology of
flag algebras, these flags are of the same type), we let F1 t F2 be the flag
obtained from the disjoint union of F1 and F2 by identifying vertices with
the same label1. For k ∈ N+, we further let Ftk be defined recursively as

1We avoid using F1F2 here to not conflict with the product as defined in flag algebras.
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Ft1
def
= F and Ft(k+1) def

= Ftk t F .
A left 1-flag (right 1-flag, respectively) is a flag F = (G, θ) in which im(θ) is

a single vertex in V1(G) (V2(G), resp.). We let e1
def
= (ρ, 1) and KL

1,d
def
= (K1,d, 0)

be the unique left 1-flags such that |e1| = ρ and |KL
1,d|

def
= K1,d (thus e1 ∼= KL

1,1).

We also let e2
def
= (ρ, 2) be the unique right 1-flag such that |e2| = ρ.

2.3 Bigraphons

Given probability spaces Ω = (X,µ) and Λ = (Y, ν), a bigraphon over Ω
and Λ is a bounded measurable function W : X × Y → R+, where X × Y is
equipped with the product σ-algebra and the product measure µ⊗ ν; we will
denote bigraphons by W : Ω× Λ→ R+.

The dual bigraphon of W is the bigraphon W ∗ : Λ × Ω → R+ defined

by W ∗(y, x)
def
= W (x, y). Given two bigraphons W1 : Ω1 × Λ1 → R+ and

W2 : Ω2×Λ2 → R+, their tensor product is the bigraphon W1⊗W2 : (Ω1×Ω2)×
(Λ1×Λ2)→ R+ given by (W1⊗W2)((x1, x2), (y1, y2))

def
= W1(x1, y1)·W2(x2, y2).

For k ∈ N+, the kth tensor power W⊗k of a bigraphon W is defined inductively

by W⊗1 def
= W and W⊗(k+1) def

= W⊗k ⊗W .
For a bigraphon W : Ω × Λ → R+ over spaces Ω = (X,µ) and Λ =

(Y, ν) and measurable sets X ′ ⊆ X, Y ′ ⊆ Y of positive measure, we let
W |X′×Y ′ : Ω|X′ × Λ|Y ′ → R+ be the bigraphon that is the restriction of W

to X ′ × Y ′ over the conditional probability spaces Ω|X′
def
= (X ′, µ|X′) and

Λ|Y ′
def
= (Y ′, ν|Y ′) (that is, their underlying measures are given by µ|X′(A)

def
=

µ(A)/µ(X ′) and ν|Y ′(B)
def
= ν(B)/ν(Y ′)).

When taking integrals, our functions will always be bounded and hence
Fubini’s Theorem will apply and we will be omitting explicit references to it.
If V is a set, we let ΩV = (XV , µV ) be the product probability space of |V |
copies of Ω; we will usually abuse notation and denote µV simply by µ. Given
x ∈ XV and S ⊆ V , we let xS ∈ XS be the projection of x to the coordinates
in S.

For a bigraph G and a bigraphon W : Ω× Λ→ R+, we let t(G,W ) ∈ R+

be given by (2). More generally, for a flag F = (G, θ) and a bigraphon
W : Ω×Λ→ R+, we let the function t(F,W ) : ΩV1(G)∩im(θ)×ΛV2(G)∩im(θ) → R+
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be given by

t(F,W )(x, y)
def
=

∫
XV1(G)\im(θ)×Y V2(G)\im(θ)

∏
(v,w)∈E(G)

W (x′′v, y
′′
w) d(µ⊗ ν)(x′, y′),

where

x′′v
def
=

{
xv, if v ∈ V1(G) ∩ im(θ),

x′v, if v ∈ V1(G) \ im(θ);
y′′w

def
=

{
yw, if w ∈ V2(G) ∩ im(θ),

y′w, if w ∈ V2(G) \ im(θ).

When V1(G) ∩ im(θ) = ∅, we will simplify the notation to t(F,W )(y), and
likewise for V2(G) ∩ im(θ) = ∅. We define further

δ(F,W )
def
= ess inf{t(F,W )(x, y) | (x, y) ∈ XV1(G)∩im(θ) × Y V2(G)∩im(θ)};

∆(F,W )
def
= ess sup{t(F,W )(x, y) | (x, y) ∈ XV1(G)∩im(θ) × Y V2(G)∩im(θ)}.

A bigraphon W is called F -regular if δ(F,W ) = ∆(F,W ) = t(|F |,W ) (of
course, equality between any two of these implies that all of them are equal).
For the particular cases of e1-regular and e2-regular we use the names left
regular and right regular, respectively. A bigraphon is biregular if it is both
left regular and right regular.

A graphon is a symmetric bigraphon W in the sense that Ω = Λ and
W (x, y) = W (y, x) for every x, y ∈ X. As mentioned in the introduction, a
Sidorenko bigraph G is a bigraph such that t(G,W ) ≥ t(ρ,W )e(G) for every
bigraphon W . A symmetrically Sidorenko bigraph G is a bigraph such that
t(G,W ) ≥ t(ρ,W )e(G) for every graphon W (in this case, one can think of
G as of a bipartite graph since the choice of bipartition does not affect this
inequality). Clearly, every Sidorenko bigraph is also symmetrically Sidorenko
but whether the converse is true is unknown.

2.4 Weak domination and reflective tree decomposi-
tions

Definitions in this section are needed only for Theorem 3.5.

Inspired by [CL17], we give the following definition of weak domination
between bigraphs.
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Definition 2.1. LetG1 andG2 be bigraphs. We say thatG1 weakly dominates
G2 if

t(G1,W )

t(ρ,W )e(G1)
≥ t(G2,W )

t(ρ,W )e(G2)

for every biregular non-zero bigraphon W . We say that a bigraph G is
induced-Sidorenko if it weakly dominates all of its induced subgraphs.

Remark 1. In [CL17, §5.2], domination between bigraphs G1 and G2 is de-
fined by the requirement t(G1,W )1/e(G1) ≥ t(G2,W )1/e(G2) for every bigraphon
W . It is easy to see that as long as e(G1) ≥ e(G2) and G2 is Sidorenko (which
is the case we are mostly interested in), domination implies weak domination.
That explains our choice of the terminology. Let us also note that our main
result, Theorem 3.1, readily implies that if G1 weakly dominates G2 and G2

is Sidorenko then G1 is Sidorenko as well.

Recall that for a bigraph G, the 2-core of G is a maximal connected
subgraph in which all vertices have degree at least 2. When G is connected,
it contains only one 2-core, which we denote C2(G). It can be obtained by
progressively removing, in an arbitrary order, vertices of degree less than 2
until no such vertices remain.

For a flag F = (G, θ) with G connected, we define the 2-core C2(F ) as
the flag of the form F ′ = (G′, θ), where G′ is the maximal subgraph in which
all vertices that are not in im(θ) have degree at least two; this can of course
be obtained by progressively removing vertices of degree less than 2 that are
not in im(θ).

Remark 2. Since in a biregular bigraphon W , we have t(G,W ) = t(G −
v,W )t(ρ,W )dG(v) whenever dG(v) ≤ 1, it follows that G weakly dominates H
if and only if C2(G) weakly dominates C2(H).

We now define a generalization of the notions of strong tree decomposi-
tions [CKLL18b, §1] and N -decompositions [CL17, §5.3], which themselves
are generalizations of the usual notion of tree decompositions [Hal76, RS84].

Definition 2.2. Given a connected non-trivial bigraph G, a reflective tree
decomposition of G is a tree T such that

i. We have V (T ) ⊆ 2V (G) and V (G) =
⋃
U∈V (T ) U .

ii. For every (v, w) ∈ E(G), there exists U ∈ V (T ) such that v, w ∈ U .

iii. For every U1, U2 ∈ V (T ) and every U3 ∈ V (T ) in the unique path from
U1 to U2 in T , we have U1 ∩ U2 ⊆ U3.
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iv. For every {U1, U2} ∈ E(T ) we have C2(FU1U2)
∼= C2(FU2U1), where

FUiUj
def
= (G|Ui , U1 ∩U2) (we assume that each vertex of U1 ∩U2 receives

the same label in FU1U2 as in FU2U1).

Condition (iv) above in particular implies that for every U1, U2 ∈ V (T ),
we have C2(G|U1)

∼= C2(G|U2) (since C2(|F |) = C2(|C2(F )|)); this common
2-core bigraph is called the core of the decomposition.

Remark 3. The fact that G is connected implies that each |FU1U2| for
{U1, U2} ∈ E(T ) and each G|U for U ∈ V (T ) is connected. Furthermore,
condition (iv) is equivalent to the same condition obtained by replacing FUiUj

with F ′UiUj
def
= (G|Ui − E(G|U1∩U2), U1 ∩ U2) and it also equivalent to the exis-

tence of an automorphism of the flag F
def
= (C2(G|U1∪U2), U1 ∩ U2) that maps

U1 ∩ V (|F |) to U2 ∩ V (|F |).
Items (i), (ii) and (iii) alone say that T is a usual tree decomposition.

Strong tree decompositions of [CKLL18b, §1] are precisely reflective tree
decompositions whose core is empty (i.e., G|U is a tree for every U ∈ V (T )) and
N -decompositions of [CL17, §5.3] are obtained by replacing the requirement
C2(FU1U2)

∼= C2(FU2U1) in (iv) with FU1U2
∼= FU2U1 instead (this forces all G|U

for U ∈ V (T ) to be isomorphic to a fixed bigraph N).

3 Main results

In this section we present our main results.

Theorem 3.1. Let G be a bigraph. If there exists cG > 0 such that t(G,W ) ≥
cG ·t(ρ,W )e(G) for every biregular bigraphon W , then G is a Sidorenko bigraph.

Theorem 3.2. If F1 and F2 are left (or right) 1-flags such that |F1| and |F2|
are Sidorenko bigraphs, then |F1 t F2| is a Sidorenko bigraph.

The next theorem can be seen as a partial converse to Theorem 3.2.

Theorem 3.3. Let F be a left 1-flag and k ∈ N+. Then |F | is a Sidorenko
bigraph if and only if |Ftk| is a Sidorenko bigraph.

As we mentioned in the introduction, Theorems 3.2 and 3.3 also follow
from [Sze15b] (but our proofs are simpler).

Theorem 3.4. If G is a Sidorenko bigraph with δ1(G) ≥ d, then t(G,W ) ≥
t(K1,d,W )e(G)/d for every bigraphon W .
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Theorem 3.5. If T is a reflective tree decomposition of a connected non-
trivial bigraph G whose core H weakly dominates G|U1∩U2 for every {U1, U2} ∈
E(T ), then G weakly dominates H. In particular, if H is a Sidorenko bigraph,
then G is also a Sidorenko bigraph.

Note that in Theorem 3.5 above, if the core H is an induced-Sidorenko
bigraph, then both the condition that it weakly dominates G|U1∩U2 for every
{U1, U2} ∈ E(T ) and the fact that H is a Sidorenko bigraph follow (see
Remark 2). Hence in that case we can conclude that G is a Sidorenko
bigraph.

As we mentioned in Remark 3, the notions of strong tree decompositions
and N -decompositions are particular cases of reflective tree decompositions.
The corresponding results can be retrieved from Theorem 3.5 above as follows.
For [CKLL18b, Theorem 1.2], any two forests weakly dominate each other
for obvious reasons, which implies that strongly tree decomposable bigraphs
are Sidorenko bigraphs. For [CL17, Theorem 5.12], by [Hat10, Theorem 2.14],
every weakly norming bigraph N dominates any of its (not necessarily induced)
subgraphs, so it is an induced-Sidorenko bigraph, hence any N -decomposable
bigraph for a weakly norming bigraph N is a Sidorenko bigraph.

However, let us note that there are many induced-Sidorenko bigraphs that
are not weakly norming bigraphs. For example, any weakly norming bigraph
without isolated vertices is necessarily biregular [Hat10, Theorem 2.10(ii)], but
the induced-Sidorenko property is trivially preserved under amalgamations
with trees along a single vertex, which will destroy biregularity. For a less
trivial example, let Bk be the k-book bigraph (see Figure 1), that is, the graph
obtained by gluing k copies of 4-cycles along the same edge; since we can
also see Bk as the amalgamation of two copies of Bk−1 along a Bk−2 (with

the convention B0
def
= ρ), by inductive application of Theorem 3.5 above and

Remark 2, all Bk are induced-Sidorenko bigraphs.

B2 B4 B6

Figure 1: Book bigraphs.
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4 The tensor power trick and the main lemma

We start with a slightly more general version of the tensor power trick of [Sid91,
Remark 2] that we will need later.

Lemma 4.1 (Tensor power trick). Let W be a class of bigraphons that
is closed under tensor powers, let G1, . . . , Gn, H1, . . . , Hm be bigraphs and
r1, . . . , rn, s1, . . . , sm ∈ R+. If there exists c > 0 such that

n∏
i=1

t(Gi,W )ri ≥ c ·
m∏
j=1

t(Hj,W )sj

for every W ∈ W , then the same inequality holds with c replaced by 1.

Proof. Since W is closed under tensor powers, for W ∈ W and k ∈ N+, we
have

n∏
i=1

t(Gi,W )ri =

(
n∏
i=1

t(Gi,W
⊗k)ri

)1/k

≥

(
c ·

m∏
j=1

t(Hj,W
⊗k)sj

)1/k

= c1/k ·
m∏
j=1

t(Hj,W )sj

and letting k →∞ gives the result.

The proof of the biregularity result, Theorem 3.1, consists of the construc-
tion of a biregular bigraphon W ′ from a bigraphon W with the following
properties:

i. t(ρ,W ′) = t(ρ,W );

ii. for every bigraph G there exists a constant CG > 0 depending only on
G such that for any bigraphon W , t(G,W ′) ≤ CG · t(G,W ).

This construction will actually be a chain of steps so that we obtain
progressively better “regularity properties”. Namely, the steps are:

1. W1 satisfies ∆(e1,W1) ≤ 2 · t(ρ,W1).

2. W2 satisfies max{∆(e1,W2),∆(e2,W2)} ≤ 2 · t(ρ,W2).

11



3. W3 satisfies min{δ(e1,W3), δ(e2,W3)} ≥ 2−10 · t(ρ,W3).

4. W4 is left regular and satisfies δ(e2,W4) ≥ 2−10 · t(ρ,W4).

5. W5 is biregular.

It turns out that all steps except for step (3) can be performed by the same
construction in Lemma 4.2 below that improves the “quality of regularity” of
its input. In fact, we will state this construction in a slightly more general
setting so that we can also use it for Theorems 3.3 and 3.4 (for Theorem 3.1
we will take F = e1, for Theorem 3.3 we will take F as in its statement and
for Theorem 3.4, we will take F = KL

1,d).

Lemma 4.2. Let d ∈ N+, let F = (G, θ) be a left 1-flag such that G is left
d-regular and let ε > 0.

Then for every bigraphon W : Ω× Λ→ R+ over spaces Ω = (X,µ) and
Λ = (Y, ν), there exists a bigraphon W ′ : Ω′×Λ→ R+ such that the following
hold.

i. We have ∆(F,W ′) ≤ (1 + ε) · t(G,W ′).

ii. We have

δ(F,W ′) ≥ min

{
t(G,W ′),

δ(F,W )

ε

}
.

iii. For every right 1-flag F ′ = (G′, θ′) such that G′ is left d-regular, we
have

t(F ′,W ′)(y) = t(F ′,W )(y)

for every y ∈ Y .

iv. For every bigraph G′ with ∆1(G
′) ≤ d, we have

t(G′,W ′) ≥
(

1 +
1

ε

)e(G′)/d−v1(G′)

· t(G′,W ).
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v. For every bigraph G′ with δ1(G
′) ≥ d, we have

t(G′,W ′) ≤
(

1 +
1

ε

)e(G′)/d−v1(G′)

· t(G′,W ).

vi. For every left d-regular bigraph G′, we have t(G′,W ′) = t(G′,W ).

Proof. If t(G,W ) = 0, then we can simply take Ω′
def
= Ω and W ′ def= W , so

suppose that t(G,W ) > 0.
Define the function f : X → R+ by

f(x)
def
= max{t(F,W )(x), ε · t(G,W )} ≥ ε · t(G,W ) > 0 (6)

and let Z
def
=
∫
X
f(x) dµ(x). Let Ω′

def
= (X,µ′), where µ′ is the probability

measure such that dµ′(x) = (f(x)/Z) dµ(x). Since t(F,W )(x) ≤ f(x) ≤
t(F,W )(x) + ε · t(G,W ), we have

0 < t(G,W ) ≤ Z ≤ (1 + ε) · t(G,W ). (7)

Define now the bigraphon W ′ : Ω′ × Λ→ R+ by

W ′(x, y)
def
=

(
Z

f(x)

)1/d

·W (x, y).

(Note that (6) and the upper bound of (7) imply that W ′ is bounded.)
We start by showing that W ′ satisfies the last three items. Indeed, if G′

is a bigraph, then we have

t(G′,W ′) =

∫
XV1(G

′)×Y V2(G′)

∏
(v,w)∈E(G′)

W ′(xv, yw) d(µ′ ⊗ ν)(x′, y)

= Ze(G′)/d−v1(G′)

∫
XV1(G

′)×Y V2(G′)

∏
(v,w)∈E(G′)

W (xv, yw)

·
∏

v∈V1(G′)

f(xv)
1−dG′ (v)/d d(µ⊗ ν)(x, y).

(8)

If ∆1(G
′) ≤ d, then the exponent of Z in the above is non-positive and

the exponent of f(xv) is non-negative, hence (6) and the upper bound of Z
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in (7) imply

t(G′,W ′) ≥ ((1 + ε) · t(G,W ))e(G
′)/d−v1(G′) · t(G′,W ) ·

∏
v∈V1(G′)

(ε · t(G,W ))1−dG′ (v)/d

=

(
1 +

1

ε

)e(G′)/d−v1(G′)

t(G′,W ).

Thus, item (iv) follows.
On the other hand, if δ1(G

′) ≥ d instead, then the exponent of Z is
non-negative and the exponent of f(xv) is non-positive, so the same bounds
on f(x) and Z flip the inequality above to give item (v). Item (vi) follows by
combining items (iv) and (v) when G′ is left d-regular.

For items (i) and (ii), since G is left d-regular, a calculation analogous to
the one in (8) for t(F,W ′)(x) has the exponent of Z being 1 (since the labeled
vertex is not integrated out) and exponents of all f(xv) being 0 except for
the one corresponding to the labeled vertex, which has exponent −1 instead
(as the labeled vertex is not integrated), so we get

t(F,W ′)(x) =
Z

f(x)
· t(F,W )(x) ≤ Z ≤ (1 + ε) · t(G,W ),

where the inequalities follow from (6) and the upper bound in (7), respectively.
Thus, item (i) follows.

On the other hand, by using the full definition of f(x) from (6) and the
lower bound in (7) instead, we get

t(F,W ′)(x) ≥ min

{
t(G,W ),

t(F,W )(x)

ε

}
,

and since t(G,W ) = t(G,W ′) by item (vi), we conclude that item (ii) holds.

Finally, for item (iii), since G′ is left d-regular, a calculation analogous
to the one in (8) has exponents of Z and the f(xv) all zero (as the labeled
vertex is on the right), so we get t(F ′,W ′)(y) = t(F ′,W )(y).

5 Biregularity

In this section we prove our biregularity result, Theorem 3.1. Let us first
extract from Lemma 4.2 its partial case d = 1, F = e1, F

′ = e2 needed for
that purpose.
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Corollary 5.1. For every ε > 0 and every bigraphon W : Ω× Λ→ R+ over
spaces Ω = (X,µ) and Λ = (Y, ν), there exists a bigraphon W ′ : Ω′ ×Λ→ R+

such that the following hold.

i. We have ∆(e1,W
′) ≤ (1 + ε) · t(ρ,W ′).

ii. We have

δ(e1,W
′) ≥ min

{
t(ρ,W ′),

δ(e1,W )

ε

}
.

iii. For every y ∈ Y , t(e2,W
′)(y) = t(e2,W )(y). Therefore, t(ρ,W ′) =

t(ρ,W ).

iv. For every bigraph G we have

t(G,W ′) ≤
(

1 +
1

ε

)e(G)

· t(G,W ).

Proof. The only thing to be explained here is the absence of the condition
δ1(G) ≥ 1 in item (iv) (that corresponds to item (v) in Lemma 4.2). This is
simply because removing all isolated vertices in V1(G) does not change any
of the three quantities in this inequality.

As we will see below, Corollary 5.1 will take care of all steps in our program,
except for W2 =⇒ W3. This remaining step is performed by Lemma 5.2, which
can be seen as a limit, non-symmetric version of the argument in [CKLL18b,
Lemma 3.4].

Lemma 5.2. If W : Ω× Λ→ R+ is a bigraphon over spaces Ω = (X,µ) and
Λ = (Y, ν) such that

max{∆(e1,W ),∆(e2,W )} ≤ 2 · t(ρ,W ), (9)

then there exists a bigraphon W ′ : Ω′×Λ′ → R+ such that the following hold.

i. We have t(ρ,W ′) = t(ρ,W ).

ii. We have min{δ(e1,W ′), δ(e2,W
′)} ≥ 2−10 · t(ρ,W ′).
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iii. For every bigraph G, we have t(G,W ′) ≤ 23v(G)+e(G) · t(G,W ).

Proof. If t(ρ,W ) = 0, then we can simply take Ω′
def
= Ω, Λ′

def
= Λ and W ′ def= W ,

so suppose t(ρ,W ) > 0.
Without loss of generality, let us assume that the probability spaces Ω

and Λ are atomless (if not, we can simply replace each atom of the space by
a copy of an interval of appropriate length equipped with Lebesgue measure).

Let α ∈ (0, 1), to be specified later. We define sequences of measurable
sets X = X0 ⊇ X1 ⊇ X2 ⊇ · · · and Y = Y0 ⊇ Y1 ⊇ Y2 ⊇ · · · using the
following algorithm.

1. Let X0
def
= X and Y0

def
= Y .

2. Given Xi and Yi,

a. if there exists a measurable R1
i ⊆ Xi with µ|Xi(R1

i ) = α and
t(e1,W |Xi×Yi)(x) < t(ρ,W |Xi×Yi)/10 for every x ∈ R1

i , then let

Xi+1
def
= Xi \R1

i and Yi+1
def
= Yi;

b. otherwise, if there exists a measurable R2
i ⊆ Yi with ν|Yi(R2

i ) = α
and t(e2,W |Xi×Yi)(y) < t(ρ,W |Xi×Yi)/10 for every y ∈ R2

i , then

let Xi+1
def
= Xi and Yi+1

def
= Yi \R2

i ;

c. otherwise, stop the construction.

The first order of business is to show that the construction above stops
in finitely many steps. To do so, note first that if Xi gets changed at some
stage i, then we have

t(ρ,W |Xi+1×Yi+1
) =

t(ρ,W |Xi×Yi)−
∫
R1
i
t(e1,W |Xi×Yi)(x) dµ|Xi(x)

µ|Xi(Xi+1)

≥ 1− α/10

1− α
· t(ρ,W |Xi×Yi).

By symmetry, the same conclusion holds when Yi gets changed. Thus, by
induction, we conclude that whenever the algorithm proceeds to the ith stage,
we have

t(ρ,W |Xi×Yi) ≥
(

1− α/10

1− α

)i
t(ρ,W ) ≥ t(ρ,W ). (10)
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Since t(ρ,W |Xi×Yi) ≤ ‖W‖∞, it follows that the construction indeed must
halt in finitely many steps. Let i0 be the step at which this happens. The
heart of the whole argument is to bound i0 as a function of α only; more
specifically, we are going to prove that

i0 ≤
1

log2(1− α/10)− log2

√
1− α

. (11)

Towards that end, let us define

Di
def
= ∆(e1,W |Xi×Yi) ·∆(e2,W |Xi×Yi).

We claim that for every i ∈ {0, . . . , i0}, we have

Di ≤
4t(ρ,W )2

(1− α)i
;

we prove this by induction on i.
For i = 0 this immediately follows from the assumption (9).
For the inductive step, if the bigraphon gets decreased by removing

Rj
i (j = 1, 2) then we have

∆(ej,W |Xi+1×Yi+1
) ≤ ∆(ej,W |Xi×Yi);

∆(e3−j,W |Xi+1×Yi+1
) ≤ ∆(e3−j,W |Xi×Yi)

1− α
.

This completes the inductive step.

We now conclude that

t(ρ,W |Xi0×Yi0 ) ≤ min{∆(e1,W |Xi0×Yi0 ),∆(e2,W |Xi0×Yi0 )}

≤
√
Di0 ≤

2

(1− α)i0/2
· t(ρ,W ).

Comparing this with the bound (10) gives us (11), as desired.
Note also that a simple induction gives

min{µ(Xi0), ν(Yi0)} ≥ (1− α)i0 . (12)

Let

X ′
def
= {x ∈ Xi0 | t(e1,W |Xi0×Yi0 )(x) ≥ t(ρ,W |Xi0×Yi0 )/10},

Y ′
def
= {y ∈ Yi0 | t(e2,W |Xi0×Yi0 )(y) ≥ t(ρ,W |Xi0×Yi0 )/10}
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and note that since the probability spaces Ω and Λ are atomless, we must
have µ|Xi0 (X ′) ≥ 1− α and ν|Yi0 (Y ′) ≥ 1− α since otherwise we could have
continued with the algorithm. Together with (11) and (12), this gives

min{µ(X ′), ν(Y ′)} ≥ (1− α)1+1/(log2(1−α/10)−log2
√
1−α).

Let M = M(α) be the right-hand side of the above; a straightforward
calculation shows that

lim
α→0

M(α) =

√
2

8
. (13)

Now, let Ŵ
def
= W |X′×Y ′ . Note that for every bigraph G, we have

t(G, Ŵ ) ≤ t(G,W )

µ(X ′)v1(G) · ν(Y ′)v2(G)
≤ t(G,W )

M v(G)
. (14)

Note also that by (10),

t(ρ, Ŵ ) ≥ t(ρ,W |Xi0×Yi0 )

−
∫
Xi0\X′

t(e1,W |Xi0×Yi0 )(x) dµ|Xi0 (x)

−
∫
Yi0\Y ′

t(e2,W |Xi0×Yi0 )(y) dν|Yi0 (y)

≥
(

1− α

5

)
· t(ρ,W |Xi0×Yi0 ) ≥ t(ρ,W )

2
.

(15)

Finally, from the definition of X ′ and Y ′, we have

min{δ(e1, Ŵ ), δ(e2, Ŵ )} ≥
t(ρ,W |Xi0×Yi0 )

10
− α · ‖W‖∞

≥ t(ρ,W )

10
− α · ‖W‖∞,

(16)

where the first inequality follows from µ(Xi0 \X ′), ν(Yi0 \ Y ′) < α and the
second inequality again follows from (10).

By (13), if we choose α ∈ (0, 1) small enough then

M(α) ≥ 1

8
,

1

10
− α · ‖W‖∞

t(ρ,W )
≥ 1

16
. (17)
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Finally, define

W ′ def=
t(ρ,W )

t(ρ, Ŵ )
· Ŵ

so that item (i) follows trivially. Since t(ρ, Ŵ ) ≥ t(ρ,W )/2, the first condition
in (17) along with (14) gives

t(G,W ′) ≤ 2e(G) · t(G, Ŵ ) ≤ 23v(G)+e(G) · t(G,W ), (18)

and item (iii) also follows.
For item (ii), note that (16) and the second condition in (17) imply

min{δ(e1,W ′), δ(e2,W
′)} =

t(ρ,W )

t(ρ, Ŵ )
·min{δ(e1, Ŵ ), δ(e2, Ŵ )}

≥ t(ρ,W )

t(ρ, Ŵ )
· t(ρ,W )

16

≥ t(ρ,W )

t(ρ, Ŵ )
· 2−10 · t(ρ, Ŵ )

= 2−10 · t(ρ,W ′),

where the last inequality follows from (18).

Proof of Theorem 3.1. We make the constructions W =⇒ W1 =⇒ W2 =⇒
W3 =⇒ W4 =⇒ W5, where the first two arrows are applications of Corollary 5.1
and its dual, respectively, with ε = 1, the third arrow is an application of
Lemma 5.2 and the last two arrows are applications of Corollary 5.1 and its
dual, respectively, with ε = 2−10.

Checking all necessary conditions is straightforward, the only thing worth
noticing is (bi)regularity of W4 and W5. It is implied by the following
computation on the base of items (ii) and (iii) in Corollary 5.1:

δ(e1,W5) = δ(e1,W4) ≥ min

{
t(ρ,W4),

δ(e1,W3)

2−10

}
= t(ρ,W5),

δ(e2,W5) ≥ min

{
t(ρ,W5),

δ(e2,W4)

2−10

}
≥ min

{
t(ρ,W5),

δ(e2,W3)

2−10

}
= t(ρ,W5).
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We also have the following chain of inequalities.

t(G,W ) ≥ 2−e(G) · t(G,W1) ≥ 2−2e(G) · t(G,W2)

≥ 2−3v(G)−3e(G) · t(G,W3) ≥ 1025−e(G) · 2−3v(G)−3e(G) · t(G,W4)

≥ 1025−2e(G) · 2−3v(G)−3e(G) · t(G,W5)

≥ 1025−2e(G) · 2−3v(G)−3e(G) · cG · t(ρ,W5)
e(G)

= 1025−2e(G) · 2−3v(G)−3e(G) · cG · t(ρ,W )e(G).

Therefore, G is a Sidorenko bigraph by Lemma 4.1.

Theorem 3.1 has the following simple but very useful corollary (that of
course can be extracted already from the approximate version in [CKLL18b]).

Corollary 5.3. If v is a vertex of degree 1 in a bigraph G, then G is a
Sidorenko bigraph if and only if G− v is a Sidorenko bigraph.

Proof. Follows from Theorem 3.1 and the fact that in a biregular bigraphon
W we have t(G,W ) = t(G− v,W ) · t(ρ,W ).

6 1-flags and d-stars

In this section we show how Theorem 3.1, along with Lemma 4.2, yields
Theorems 3.2, 3.3 and 3.4.

Proof of Theorem 3.2. Let W : Ω × Λ → R+ be a biregular bigraphon over
spaces Ω = (X,µ) and Λ = (Y, ν) and for each i ∈ [2], let fi ∈ R+ be such
that

µ({x ∈ X | t(Fi,W )(x) < fi}) ≤
1

3
,

µ({x ∈ X | t(Fi,W )(x) ≤ fi}) ≥
1

3
.

Let Ui
def
= {x ∈ X | t(Fi,W )(x) ≤ fi} (so that µ(Ui) ≥ 1/3) and let Wi

def
=

W |Ui×Y .
Since W is left regular, it follows that Wi is also left regular and hence

t(ρ,W ) = t(ρ,Wi). On the other hand, since |Fi| is a Sidorenko bigraph, we
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have

t(ρ,W )e(|Fi|) = t(ρ,Wi)
e(|Fi|) ≤ t(|Fi|,Wi)

≤ 1

µ(Ui)v1(|Fi|)

∫
Ui

t(Fi,W )(x) dµ(x) ≤ fi
µ(Ui)v1(|Fi|)−1

≤ 3v1(|Fi|)−1 · fi.

Let now X ′
def
= {x ∈ X | t(F1,W )(x) ≥ f1 ∧ t(F2,W )(x) ≥ f2} and note

that µ(X ′) ≥ 1/3, so we have

t(|F1 t F2|,W ) ≥
∫
X′
t(F1,W )(x) · t(F2,W )(x) dµ(x) ≥ 1

3
· f1 · f2

≥ 1

3v1(|F1|)+v1(|F2|)−1
· t(ρ,W )e(|F1|)+e(|F2|)

=
1

3v1(|F1tF2|)
· t(ρ,W )e(|F1tF2|).

Hence |F1 t F2| is a Sidorenko bigraph by Theorem 3.1.

Proof of Theorem 3.3. The forward direction follows by inductive application
of Theorem 3.2.

For the reverse direction, let us first prove the case in which |F | is left
d-regular for some d ∈ N+. Given a bigraphon W : Ω × Λ → R+, we
apply Lemma 4.2 with ε = 1 to get a bigraphon W ′ such that ∆(F,W ′) ≤
2 · t(|F |,W ′) = 2 · t(|F |,W ). In particular, we have

t(|Ftk|,W ′) =

∫
X

t(F,W ′)(x)k dµ(x) ≤ 2k · t(|F |,W )k.

Since |Ftk| is a Sidorenko bigraph, we conclude

t(|F |,W ) ≥ 1

2
· t(|Ftk|,W ′)1/k ≥ 1

2
· t(ρ,W ′)e(|F

tk|)/k =
1

2
· t(ρ,W ′)e(|F |),

so |F | is a Sidorenko bigraph by Lemma 4.1.

Let us now show the general case. Let d
def
= ∆1(|F |) and let F̂ be the

flag obtained from F by adding d · v1(|F |) − e(|F |) vertices to V2(|F |) and

connecting each of these newly added vertices to a single left vertex so that |F̂ |
is left d-regular. By repeated application of Corollary 5.3, |F | is a Sidorenko

bigraph if and only if |F̂ | is so.
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Note now that even though |F̂tk| is not left regular, it can also be obtained
from Ftk by adding vertices to V2(F

tk) and connecting each of them to a
single left vertex. Again, by Corollary 5.3, |Ftk| is a Sidorenko bigraph if

and only if |F̂tk| is so. Since |F̂ | is left d-regular, the result now follows from
the previous case.

To prove Theorem 3.4, we will use steps similar to Theorem 3.1 with the
differences that this time we are only interested in the left regularity, and we
focus on KL

1,d rather than on e1 so that in particular the density of K1,d will
be preserved throughout our transformations. Fortunately, since now we are
only concerned with the left side, the analogue of the crucial Lemma 5.2 is
much easier to prove.

Lemma 6.1. If W : Ω × Λ → R+ is a bigraphon over spaces Ω = (X,µ)
and Λ = (Y, ν) such that ∆(KL

1,d,W ) ≤ 2 · t(K1,d,W ), then there exists a
bigraphon W ′ : Ω′ × Λ→ R+ such that the following hold.

i. We have t(K1,d,W
′) = t(K1,d,W ).

ii. We have δ(KL
1,d,W

′) ≥ t(K1,d,W
′)/6.

iii. For every bigraph G, we have t(G,W ′) ≤ 3v1(G) · t(G,W ).

Proof. If t(K1,d,W ) = 0, we can simply takeW ′ def= W , so suppose t(K1,d,W ) >
0. Let

X̂
def
= {x ∈ X | t(KL

1,d,W )(x) ≥ t(K1,d,W )/2}

and note that since ∆(KL
1,d,W ) ≤ 2 · t(K1,d,W ), Markov’s Inequality implies

µ(X̂) ≥ 1/3.

Let Ŵ
def
= W |X̂×Y and note that

t(G, Ŵ ) ≤ 1

µ(X̂)v1(G)
· t(G,W ) ≤ 3v1(G) · t(G,W );

t(K1,d, Ŵ ) ≥ t(K1,d,W );

δ(KL
1,d, Ŵ ) ≥ 1

2
· t(K1,d,W ) ≥ 1

6
· t(K1,d, Ŵ ).

Thus, defining W ′ def
= (t(K1,d,W )/t(K1,d, Ŵ ))1/d · Ŵ gives the desired

result.
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Proof of Theorem 3.4. We make the constructions W =⇒ W1 =⇒ W2 =⇒
W3, where the first and third arrows are applications of Lemma 4.2 both with
F = KL

1,d but with ε = 1 and ε = 1/6, respectively, and the second arrow is
an application of Lemma 6.1.

Our constructions ensure that t(K1,d,Wi) = t(K1,d,W ) for every i ∈ [3].
Note also that

δ(KL
1,d,W3) ≥ min

{
t(K1,d,W3),

δ(KL
1,d,W2)

1/6

}
= t(K1,d,W3),

so W3 is KL
1,d-regular. Since t(e1,W3)(x) = t(KL

1,d,W3)(x)1/d for every x,
it follows that W3 is left regular, which in particular implies t(K1,d,W3) =
t(ρ,W3)

d.
Then we can deduce the following chain of inequalities.

t(G,W ) ≥ 2v1(G)−e(G)/d · t(G,W1)

≥ 2v1(G)−e(G)/d · 3−v1(G) · t(G,W2)

≥ 2v1(G)−e(G)/d · 3−v1(G) · 7v1(G)−e(G)/d · t(G,W3)

≥ 2v1(G)−e(G)/d · 3−v1(G) · 7v1(G)−e(G)/d · t(ρ,W3)
e(G)

= 2v1(G)−e(G)/d · 3−v1(G) · 7v1(G)−e(G)/d · t(K1,d,W3)
e(G)/d

= 2v1(G)−e(G)/d · 3−v1(G) · 7v1(G)−e(G)/d · t(K1,d,W )e(G)/d.

Since this is true for every bigraphon W , by Lemma 4.1 we conclude that
t(G,W ) ≥ t(K1,d,W )e(G)/d, again for every W .

7 Reflective tree decompositions

In this section we prove Theorem 3.5 on reflective tree decompositions.

Proof of Theorem 3.5. Let W be the class of biregular bigraphons that are
bounded away from zero. We claim that it is sufficient to show that

t(G,W )

t(ρ,W )e(G)
≥ t(H,W )

t(ρ,W )e(H)
(19)

only for W ∈ W . Indeed, if W is an arbitrary non-zero biregular bigraphon,

then it can be approximated by Wε
def
= W + ε ∈ W (ε > 0) and (19) for
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W follows by applying the Dominated Convergence Theorem to the same
inequality for Wε as ε→ 0.

Since W is closed under tensor powers, by Lemma 4.1, it is enough to
prove (19) for every W ∈ W up to a multiplicative constant that does not
depend on W .

For convenience of notation, by possibly replacing W : Ω× Λ→ R+ with
W ′ : (Ω× Λ)× (Ω× Λ)→ R+ given by W ′((x1, y1), (x2, y2)) = W (x1, y2), we
may assume that Ω = Λ (but W is still not necessarily symmetric!).

Given a subtree T ′ of T , let VT ′
def
=
⋃
U∈V (T ′) U , GT ′

def
= G|VT ′ and

dT ′
def
= e(GT ′)−

∑
{U1,U2}∈E(T ′)

e(|C2(F
′
U1U2

)|),

where F ′U1U2

def
= (G|U1 − E(G|U1∩U2), U1 ∩ U2) is as in Remark 3, which guar-

antees that the summand does not depend on the orientation of the edge
{U1, U2}.

Given further a bigraphon W : Ω×Ω→ R+ inW over a space Ω = (X,µ),
let fT ′ : ΩVT ′ → R+ be given by

fT ′(x)
def
=

t((GT ′ , VT ′),W )(x)∏
{U1,U2}∈E(T ′) t(C2(F ′U1U2

),W )(xU1∩U2)
.

Let us remark that the flag (GT ′ , VT ′) is trivial (totally labeled) hence the ex-
pression t((GT ′ , VT ′),W )(x) is simply equal to

∏
(v,w)∈E(GT ′ )W (xv, xw), where

we assume that v ∈ V1, w ∈ V2 and no integration takes place. For the sake
of uniformity, however, we stick to the former notation.

Note that since W is bounded away from zero, all functions fT ′ are
bounded.

Claim 7.1. For every U0 ∈ V (T ) and every x ∈ XU0 , we have∫
XV (G)\U0

fT (x, x′) dµ(x′) = t(ρ,W )dT−e(G|U0
) · t((G|U0 , U0),W )(x). (20)

Proof. We will show by induction on v(T )− v(T ′) that if T ′ is a subtree of T
with U0 ∈ V (T ′), then∫

XV (G)\U0

fT (x, x′) dµ(x′) = t(ρ,W )dT−dT ′ ·
∫
XVT ′ \U0

fT ′(x, x′) dµ(x′). (21)
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Once this is proved then (20) follows by taking T ′ as the subtree of T with
V (T ′) = {U0}.

If T ′ = T , then (21) holds trivially. If T ′ is a proper subtree of T containing
U0, then let T ′′ be a subtree of T containing T ′ as a subtree and having exactly
one more vertex U1 than T ′, which must necessarily be a leaf of T ′′, so we
can let U2 be its unique neighbor in T ′. By inductive hypothesis, we have∫

XV (G)\U0

fT (x, x′) dµ(x′) = t(ρ,W )dT−dT ′′ ·
∫
XVT ′′ \U0

fT ′′(x, x′) dµ(x′).

But note that in the expression for fT ′′(x, x′), variables indexed by U1 \ VT ′

appear only in the numerator, so integrating these in the right-hand side of
the above gives∫

XV (G)\U0

fT (x, x′) dµ(x′)

= t(ρ,W )dT−dT ′′ ·
∫
XVT ′ \U0

fT ′(x, x′) ·
t(F ′U1U2

,W )(xU1∩U2)

t(C2(F ′U1U2
),W )(xU1∩U2)

dµ(x′).

SinceW is biregular, the fraction under the integral is equal to t(ρ,W )e(|F
′
U1U2

|)−e(|C2(F ′
U1U2

)|),
and (21) follows.

Let now

Z
def
=

∫
XV (G)

fT (x) dµ(x).

By picking U0 ∈ V (T ) arbitrarily and integrating (20) over x, we similarly
get

Z = t(ρ,W )dT−e(H) · t(H,W ). (22)

We now let η be the probability measure such that dη(x) = (fT (x)/Z) dµ(x)
and for each {U1, U2} ∈ E(T ), we let

DU1U2

def
=

{
x ∈ XU1∩U2

∣∣∣∣ t(C2(F
′
U1U2

),W )(x)

≤ t(H,W )

2v(T ) · t(G|U1∩U2 ,W ) · t(ρ,W )e(H)−e(G|U1∩U2
)−e(|C2(F ′

U1U2
)|)

}
;

D′U1U2

def
= {x ∈ XV (G) | xU1∩U2 ∈ DU1U2}.
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Then we have

η(D′U1U2
) =

1

Z

∫
XV (G)

1[xU1∩U2 ∈ DU1U2 ] · fT (x) dµ(x)

=
t(ρ,W )e(H)−e(G|U1

)

t(H,W )

∫
XU1

1[xU1∩U2 ∈ DU1U2 ] · t((G|U1 , U1),W )(x) dµ(x)

=
t(ρ,W )e(H)−e(G|U1

)+e(|F ′
U1U2

|)−e(|C2(F ′
U1U2

)|)

t(H,W )

·
∫
DU1U2

t((G|U1∩U2 , U1 ∩ U2),W )(x) · t(C2(F
′
U1U2

),W )(x) dµ(x)

≤ 1

2v(T )
,

where the second equality follows from Claim 7.1 with U0 = U1 and (22), the
third equality follows since W is biregular and the inequality follows from the
definition of DU1U2 and the fact that e(G|U1)− e(|F ′U1U2

|) = e(G|U1∩U2).

Define then D
def
= XV (G) \

⋃
{U1,U2}∈E(T )D

′
U1U2

and note that

η(D) ≥ 1− e(T )

2v(T )
≥ 1

2
.

We have

t(G,W ) = Z

∫
XV (G)

∏
{U1,U2}∈E(T )

t(C2(F
′
U1U2

),W )(xU1∩U2) dη(x)

≥ Z · η(D) ·
∏

{U1,U2}∈E(T )

t(H,W )

2v(T ) · t(G|U1∩U2 ,W ) · t(ρ,W )e(H)−e(G|U1∩U2
)−e(|C2(F ′

U1U2
)|)

≥ t(ρ,W )dT−e(H) · t(H,W ) · η(D)

(2v(T ))e(T )

∏
{U1,U2}∈E(T )

t(ρ,W )e(|C2(F ′
U1U2

)|)

≥ 1

2e(T )+1 · v(T )e(T )
· t(ρ,W )e(G)−e(H) · t(H,W ),

where the second inequality follows from (22) and since H weakly dominates
each G|U1∩U2 . Therefore (19) holds by Lemma 4.1, so G weakly dominates H.

Finally, if further H is a Sidorenko bigraph, then by Theorem 3.1, G must
also be a Sidorenko bigraph as it weakly dominates H.
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8 The symmetric setting

In this section, we briefly sketch how to adapt the results from Sections 4, 5
and 7 to the symmetric setting. First we note that the tensor power trick of
Lemma 4.1 still holds in the symmetric setting. For Lemma 4.2, we need to
make some adjustments.

Lemma 8.1 (Symmetric version of Lemma 4.2). Let d ∈ N+, let F = (G, θ)
be a left 1-flag such that G is both left and right d-regular and let ε > 0.

Then for every graphon W : Ω× Ω→ R+ over Ω = (X,µ), there exists a
graphon W ′ : Ω′ × Ω′ → R+ such that the following hold.

i. We have ∆(F,W ′) ≤ (1 + ε) · t(G,W ′).

ii. We have

δ(F,W ′) ≥ min

{
t(G,W ′),

δ(F,W )

ε

}
.

iii. For every bigraph G′ with max{∆1(G
′),∆2(G

′)} ≤ d, we have

t(G′,W ′) ≥
(

1 +
1

ε

)2e(G′)/d−v(G′)

· t(G′,W ).

iv. For every bigraph G′ with min{δ1(G′), δ2(G′)} ≥ d, we have

t(G′,W ′) ≤
(

1 +
1

ε

)2e(G′)/d−v(G′)

· t(G′,W ).

v. For every bigraph G′ that is both left and right d-regular, we have
t(G′,W ′) = t(G′,W ).

Proof (sketch). Analogous to that of Lemma 4.2 but using the definition

W ′(x, y)
def
=

(
Z2

f(x)f(y)

)1/d

·W (x, y)

that ensures that W ′ is symmetric.
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Even though it is possible to adapt the proof of Lemma 5.2 to the symmet-
ric setting, we can instead simply use the finite version [CKLL18b, Lemma 3.4]
that inspired it to prove the symmetric version of the biregularity result, The-
orem 3.1.

Theorem 8.2. Let G be a bigraph. If there exists cG > 0 such that t(G,W ) ≥
cG · t(ρ,W )e(G) for every regular graphon W , then G is a symmetrically
Sidorenko bigraph.

Proof (sketch). By [CKLL18b, Lemmas 3.3 and 3.4], it is sufficient to show
that t(G,H) ≥ c′G · t(ρ,H)e(G) for some constant c′G > 0 depending only on G
and every graph H whose degrees are all between dave(H)/8 and 2 · dave(H),
where dave(H) is the average degree of H. By considering the step graphon
associated with H, it follows that it is sufficient to prove that t(G,W ) ≥
c′G · t(ρ,W )e(G) for every graphon W such that

t(ρ,W )

8
≤ δ1(e1,W ) ≤ ∆1(e1,W ) ≤ 2 · t(ρ,W ).

We then apply Lemma 8.1 with ε = 1/8 and F = e1 to get a graphon W ′

that satisfies

δ1(e1,W
′) ≥ min

{
t(ρ,W ′),

δ(e1,W )

1/8

}
= t(ρ,W ),

that is W ′ is regular. Hence,

t(G,W ) ≥ 92e(G)−v(G) · t(G,W ′) ≥ 92e(G)−v(G) · cG · t(ρ,W ′)e(G)

≥ 92e(G)−v(G) · cG · t(ρ,W )e(G),

so G is symmetrically Sidorenko.

Finally, the symmetric analogue of Theorem 3.5 (i.e., once we also replace
weak domination by its symmetric version) can be shown with the same
proof, replacing Theorem 3.1 with Theorem 8.2 for the final statement on
symmetrically Sidorenko bigraphs.

9 Conclusion and open problems

In this paper, we have shown how to reduce Sidorenko’s Conjecture to biregular
bigraphons (or regular graphons in the symmetric case). We have also shown
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that this reduction and the construction of Lemma 4.2 can be used to obtain
simple proofs of some properties of the class of Sidorenko bigraphs.

The proofs in Section 6 heavily rely on the fact that the two sides of
the bigraphs and bigraphons can be manipulated independently. It is then
natural to ask if Theorem 3.4 holds in the symmetric setting as well (the
symmetric analogues of Theorem 3.2 and 3.3 follow from a symmetric analogue
of [Sze15b, Theorem 4]).

In another direction, Conlon–Kim–Lee–Lee [CKLL18a] also provided a
higher-order version of their strong tree decompositions, which is reminiscent
(but yields a completely different class of symmetrically Sidorenko bigraphs)
of Szegedy’s conditionally independent coupling constructions [Sze15a]. While
we believe that a higher-order version of the reflective tree decompositions
result should also hold (more specifically by using the same definition of
higher-order decompositions and simply replacing level 0 with reflective tree
decompositions), these higher-order decompositions have the restriction that
G|U1U2 is a forest for each {U1, U2} ∈ E(T ) and we would like to ask instead
if this restriction can be replaced by some weak domination restriction as in
reflective tree decompositions. One stepping stone toward this goal is the
following natural generalization of Theorem 3.5.

Conjecture 1. If T is a reflective tree decomposition of a connected non-
trivial bigraph G whose core H weakly dominates G|U1∩U2 for every {U1, U2} ∈
E(T ), then for every non-empty V ⊆ V (T ), G weakly dominates G|⋃

U∈V U
.

Theorem 3.5 is the particular case of the conjecture above when V consists
of a single vertex of T .
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