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Abstract

A Sidorenko bigraph is one whose density in a bigraphon W is minimized pre-
cisely when W is constant. Several techniques of the literature to prove the Sidorenko
property consist of decomposing (typically in a tree decomposition) the bigraph into
smaller building blocks with stronger properties. One prominent such technique is that
of N -decompositions of Conlon–Lee, which uses weakly Hölder (or weakly norming)
bigraphs as building blocks. In turn, to obtain weakly Hölder bigraphs, it is typical
to use the chain of implications reflection bigraph =⇒ cut-percolating bigraph =⇒
weakly Hölder bigraph. In an earlier result by the author with Razborov, we pro-
vided a generalization of N -decompositions, called reflective tree decompositions, that
uses much weaker building blocks, called induced-Sidorenko bigraphs, to also obtain
Sidorenko bigraphs.

In this paper, we show that “left-sided” versions of the concepts of reflection bigraph
and cut-percolating bigraph yield a similar chain of implications: left-reflection bigraph
=⇒ left-cut-percolating bigraph =⇒ induced-Sidorenko bigraph. We also show that
under mild hypotheses, the “left-sided” analogue of the weakly Hölder property (which
is also obtained via a similar chain of implications) can be used to improve bounds on
another result of Conlon–Lee that roughly says that bigraphs with enough vertices on
the right side of each realized degree have the Sidorenko property.

1 Introduction

In [Sid91] (see also [Sid93]), Sidorenko conjectured that if Ω = (X,µ) and Λ = (Y, ν) are
probability spaces, W : X × Y → R+ is a bounded measurable function (a bigraphon), and
G = (V1, V2, E) is a bipartite graph with a given bipartition (V1, V2) (a bigraph), then

t(G,W ) ≥ t(ρ,W )e(G), (1)

*Institute for Advanced Study, lenacore@ias.edu. This material is based upon work supported by the
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where ρ denotes the edge bigraph, e(G)
def
= |E(G)| is the number of edges of G and

t(G,W )
def
=

∫
XV1×Y V2

∏
(v,w)∈E(G)

W (xv, yw) d(µ⊗ ν)(x, y) (2)

is the non-induced (labeled) density of G in W . Bigraphs G that satisfy (1) for every W are
called Sidorenko bigraphs. In fact, Sidorenko’s Conjecture is often studied under the further
assumption that W is symmetric (i.e., Ω = Λ and W (x, y) = W (y, x) for every x, y ∈ X)
and let us point out right away that even though some of the literature results cited in this
introduction were proved under this further assumption, they all extend straightforwardly
to the asymmetric setting.

Quite a few of the known results on Sidorenko’s Conjecture concern deducing that a bi-
graph is Sidorenko if it can be decomposed into small parts that are all Sidorenko bigraphs.
An alternative way of viewing such results is that each of them recursively defines a sub-
class of Sidorenko bigraphs containing some base bigraphs (typically only the edge bigraph)
and that is closed under some “valid” amalgamations. One is then interested in the case
when “valid” amalgamations allow for highly non-trivial bigraphs in the common set of the
amalgamation.

Arguably, one of the richest such recursively defined subclasses of Sidorenko bigraphs
is provided by Szegedy in [Sze15a]. However, to properly describe which amalgamations
are “valid” in Szegedy’s framework, extra information needs to be carried around about the
bigraphs G: essentially a family of probability distributions on homomorphisms from G to all
possible target bigraphons, and “validness” of an amalgamation of G1 and G2 along a set V is
determined by compatibility of the marginals of the distributions on V and a relative entropy
inequality. To make the result concrete, Szegedy then shows that the second condition is
satisfied if we instead recursively enforce the common part G1|V ∼= G2|V to be a forest (and
start from the edge bigraph).

In a different but similar flavor, Conlon–Kim–Lee–Lee [CKLL18b] showed that that the
class of Sidorenko graphs contains all strongly tree decomposable graphs, that is, graphs G
containing a tree decomposition T = (V (T ), E(T )) such that

i. For each tree vertex U ∈ V (T ), G|U is a tree.

ii. For each tree edge {U1, U2} ∈ E(T ), the intersection U1 ∩ U2 induces a forest G|U1∩U2 .

iii. For each tree edge {U1, U2} ∈ E(T ) there is an isomorphism f between the minimal
subtrees of G|U1 and G|U2 that contain U1 ∩ U2 such that f fixes U1 ∩ U2 pointwisely.

This result was also recursively extended to higher-order strong tree decomposable graphs
in [CKLL18a], but even then the common sets in the amalgamations are still required to be
forests.

Moving away from the case when the common sets in the amalgamations are required to
be forests, Conlon–Lee [CL17] generalized the result above by connecting it to the theory
of weakly norming bigraphs (a.k.a. weakly Hölder bigraphs) of Hatami [Hat10], i.e., bigraphs
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G such that W 7→ t(G, |W |)1/e(G) is a norm in the space of bounded measurable functions
X × Y → R (up to a.e. equivalence). Namely, they showed that if N is weakly norming,
then the same result holds for N-decomposable graphs, which are graphs G containing a tree
decomposition T such that

i. For each tree vertex U ∈ V (T ), G|U is isomorphic to N .

ii. For each tree edge {U1, U2} ∈ E(T ) there is an isomorphism between G|U1 and G|U2

that fixes U1 ∩ U2 pointwisely.

However, the main disadvantage of this result is that very few bigraphs are weakly norm-
ing: Hatami himself showed [Hat10, Theorem 2.10(ii)] that any weakly norming bigraph
is necessarily biregular after removing isolated vertices (in [DGH+18], it is shown that
weakly norming bigraphs are precisely those that satisfy the step Sidorenko property studied
in [KMPW19] and implicitly in [Lov12, §14.2]). Nevertheless, in the same paper, Conlon–Lee
showed that many non-trivial examples of weakly norming bigraphs can be obtained through
a chain of implications: reflection bigraph =⇒ cut-percolating bigraph =⇒ weakly norm-
ing bigraph (see Sections 2.4 and 2.5 below for formal definitions of these concepts). Perhaps
one of the most interesting examples of weakly norming bigraphs arising from this chain of
implications are the incidence bigraphs of the complete k-uniform hypergraphs K

(k)
n (see

Figure 1).
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Figure 1: Incidence bigraphs of complete k-uniform hypergraphs K
(k)
4 on 4 vertices.

In a recent work with Razborov [CR21, Theorem 3.5], we showed that the strong tree
decompositions and N -decompositions results can be both unified and generalized under
the weaker notion of reflective tree decompositions. The formal definition1 of reflective

1For the reader’s convenience, this definition and the associated result are included in Appendix A, but
these are not necessary for our results.
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tree decompositions is more technical than that of N -decompositions, but the result in
particular implies that all N -decomposable bigraphs are Sidorenko bigraph even when N is
only required to be an induced-Sidorenko bigraph, that is, when

t(N,W )

t(ρ,W )e(N)
≥ t(H,W )

t(ρ,W )e(H)

for every induced subgraph H of N and every bigraphon W : Ω× Λ → R+ that is biregular,
i.e., it satisfies ∫

X

W (x′, y) dµ(x′) =

∫
Y

W (x, y′) dν(y′) = t(ρ,W )

for almost every x ∈ X and almost every y ∈ Y (every weakly norming bigraph is induced-
Sidorenko, see Remark 2.11).

It was already observed in [CR21] that there are several induced-Sidorenko bigraphs that
are not biregular (hence not weakly norming): the class of induced-Sidorenko bigraph is
closed under amalgamations with trees along a single vertex and the amalgamation of k
copies of the 4-cycle along the same edge (a.k.a. the k-book bigraph, see Figure 2) is induced-
Sidorenko.

B2 B4 B6

Figure 2: Book bigraphs.

Our first main result is to show (Theorems 3.1 and 3.2) how “left-sided” versions of the
concepts of reflection bigraphs and cut-percolation of Conlon–Lee yield a similar chain of
implications to obtain several examples of induced-Sidorenko bigraphs: left-reflection bigraph
=⇒ left-cut-percolating bigraph =⇒ induced-Sidorenko bigraph. Let us point out right
away that even though the natural analogue of weakly norming, called left-weakly Hölder,
also follows from left-cut-percolation (Theorem 3.3, see also Theorem 3.4), it is a different
notion from induced-Sidorenko (and our proof requires the full power of left-cut-percolation
to get induced-Sidorenko). See also Figure 3 for a summary of the implications between these
properties of bigraphs. The most important example of left-reflection bigraph (Theorem 3.5)
is the incidence bigraph of the complete hypergraph Kk1,...,kt

n on n vertices and in uniformities
k1, . . . , kt (see Figure 4).
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Reflection Cut-percolating
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(or weakly Hölder)

Edge-transitive Biregular

Left-reflection Left-cut-percolating
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transitive

Left-regular

Right-uniform
color-edge-transitive
left-weakly Hölder

Left-weakly Hölder Induced-Sidorenko

Strong Sidorenko Sidorenko

[CL17, Corollary 4.9
and Theorem 4.12] [CL17, Theorem 3.3]

Remark 2.6

Remark 2.5
[Hat10, Theorem 2.10(ii)]

Remark 2.11
Theorem 3.1

Theorem 3.4

Remark 2.5

Theorem 3.3
Theorem 3.2

Theorem 3.7

Remark 2.13

Remark 2.2

Figure 3: Implications between properties considered under the assumption that the bigraph is non-trivial and does not
have any isolated vertices. Arrows are labeled with the location of their proofs and arrows with easy proofs are either
labeled by remarks or unlabeled (when the proof is trivial). In this diagram, the properties about colored bigraphs should
be read as some coloring of the bigraph turns it into a colored bigraph with that property.
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Figure 4: Incidence bigraph of the complete hypergraph K2,3
4 on 4 vertices in uniformities

2 and 3. This is the amalgamation of the incidence bigraph of the complete 2-uniform
hypergraph K

(2)
4 and the incidence bigraph of the complete 3-uniform hypergraph K

(3)
4 over

their left side (see also Figure 1).

One of the most interesting applications of the theory of reflection bigraphs of Conlon–Lee
(in fact, it uses a hypergraph analogue of it) is the following theorem.

Theorem 1.1 (Conlon–Lee [CL21, Theorem 1.1]). Let G = (V1, V2, E) be a bigraph, let r
be the maximum degree of a vertex in V2 and for each k ∈ {2, . . . , r}, let dk be the number
of vertices in V2 that have degree k.

If
(|V1|
r

)(
r
k

)
divides dk for every k ∈ {2, . . . , r}, then G is a Sidorenko bigraph.

As our second main result, we generalize the theorem above by weakening the divisibility
condition to the condition that dk is either zero or at least

(|V1|
k

)
(Theorem 3.6) note that this

also improves the first non-zero value of dk that is valid. In fact, we show that such bigraphs
satisfy a stronger inequality (see Definition 2.1) that was initially used by Sidorenko [Sid91,
Equation (2)] to study his conjecture. This result is derived from the aforementioned fact
that the incidence bigraph of Kk1,...,kt

n is a left-reflection bigraph and we also show how the
left-weakly Hölder property (along with some extra mild properties) yields a similar result
based on the symmetries of the underlying bigraph (Theorem 3.7).

The paper is organized as follows. In Section 2, we give definitions and establish the nota-
tion necessary to state our main results. In Section 3, we state our main results. In Section 4,
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we prove all theorems that do not directly involve Sidorenko’s Conjecture, that is, Theo-
rems 3.1, 3.3 and 3.5 (these theorems are mostly direct analogues of Conlon–Lee [CL21]). In
Section 5, we prove Theorem 3.2 that establishes the connection with the induced-Sidorenko
property. In Section 6, we prove Theorem 3.6 on Sidorenko bigraphs with enough vertices
of each degree and its symmetries-based generalization, Theorem 3.7. We finish the paper
with a brief discussion and some open problems in Section 7

2 Preliminaries

Throughout the text, we will use the notation N def
= {0, 1, . . .} for non-negative integers and

N+
def
= N \ {0} for positive integers. For n ∈ N, we let [n] def

= {1, . . . , n}. We also let R be the
set of real numbers and R+ the set of non-negative real numbers. Given a set V , we denote

its power set by 2V
def
= {W | W ⊆ V }.

2.1 Bigraphs

A bigraph is a triple G = (V1, V2, E), where V1 and V2 are disjoint finite sets and E ⊆ V1×V2.
We will also use the following notation (i = 1, 2):

Vi(G)
def
= Vi, vi(G)

def
= |Vi|, V (G)

def
= V1 ∪ V2,

E(G)
def
= E, e(G)

def
= |E|, v(G)

def
= |V1|+ |V2|.

(3)

For v ∈ V (G), we denote its neighborhood by

NG(v)
def
= {w ∈ V (G) | (v, w) ∈ E(G) ∨ (w, v) ∈ E(G)}.

and its degree by dG(v)
def
= |NG(v)|.

We say that G is left d-regular (right d-regular, respectively) if dG(v) = d for every
v ∈ V1(G) (v ∈ V2(G), resp.). We say that G is biregular if it is both left d1-regular and right
d2-regular for some d1, d2 ∈ N. An isomorphism between bigraphs G1 and G2 is a bijection
f : V (G1) ↣ V (G2) such that f(Vi(G1)) = Vi(G2) (i = 1, 2) and (v, w) ∈ E(G1) ⇐⇒
(f(v), f(w)) ∈ E(G2) ((v, w) ∈ V1(G1) × V2(G1)); when such an isomorphism exists, we
say that G1 and G2 are isomorphic, which is denoted G1

∼= G2. An automorphism of G
is an isomorphism of G to itself and we denote the set of automorphisms of G by Aut(G).
A homomorphism from a bigraph G1 to a bigraph G2 is a (not necessarily injective) map
f : V (G1) → V (G2) such that f(Vi(G1)) ⊆ f(Vi(G2)) (i = 1, 2) and f(E(G1)) ⊆ E(G2). An
endomorphism of G is a homomorphism of G to itself. The set of endomorphisms of G is
denoted End(G).

For U ⊆ V (G), we let G|U be the subgraph induced by U in G, that is, we let

Vi(G|U)
def
= Vi(G) ∩ U, E(G|U)

def
= E(G) ∩ ((U ∩ V1(G))× (U ∩ V2(G))).
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We also let G− U
def
= G|V (G)\U . Furthermore, for a set of edges E ⊆ E(G), we let G− E

def
=

(V1(G), V2(G), E(G) \ E) be the subgraph obtained from G by removing the edges in E.

We denote the edge bigraph by ρ
def
= ({1}, {2}, {(1, 2)}), the d-star bigraph by K1,d

def
=

({0}, [d], {(0, i) | i ∈ [d]}) and the dual d-star bigraph by Kd,1
def
= ([d], {0}, {(i, 0) | i ∈ [d]}).

2.2 Flags

It will be convenient to also work with partially labeled bigraphs and for this purpose we
will borrow some terminology from the theory of flag algebras [Raz07].

More specifically, we work in the theory T 2
Graph of graphs augmented with a 2-coloring

of its vertices. Thus, a flag is a partially labeled bigraph, that is, a pair F = (G, θ), where
G is a bigraph and θ : [k] ↣ V (G) is an injection for some k ∈ N. We use the notation

|F | def
= G for the underlying bigraph of F and the notation θF

def
= θ for the labeling of F . We

will often abuse notation and write F = (G, (θ(1), θ(2), . . . , θ(k))), listing the values of θ. In
fact, we will abuse the notation even more and write F = (G,U) for some set U ⊆ V (G) to
be understood as F = (G, θ) for some θ : [|U |] ↣ V (G) with im(θ) = U , whenever the exact
ordering is either clear from the context or unimportant.

An isomorphism between flags F1 = (G1, θ1) and F2 = (G2, θ2) is an isomorphism f
between G1 and G2 that preserves the partial labeling in the sense that f ◦ θ1 = θ2; when
such an isomorphism exists, we say that F1 and F2 are isomorphic and denote it by F1

∼= F2.
If F1 = (G1, θ1) and F2 = (G2, θ2) are flags such that θ2 ◦ θ−1

1 is an isomorphism between
G1|im(θ1) and G2|im(θ2) (that is, in the terminology of flag algebras, these flags are of the
same type), we let F1 ⊔ F2 be the flag obtained from the disjoint union of F1 and F2 by

identifying vertices with the same label2. For i ∈ [2], we let ei
def
= (ρ, i). For a bigraph G, we

let GL def
= (G, V1(G)) be the flag in which all left vertices of G are labelled.

2.3 Bigraphons

Given probability spaces Ω = (X,µ) and Λ = (Y, ν), a bigraphon over Ω and Λ is a bounded
measurable function W : X×Y → R+, where X×Y is equipped with the product σ-algebra
and the product measure µ⊗ ν; we will denote bigraphons by W : Ω× Λ → R+.

When taking integrals, our functions will always be bounded and hence Fubini’s Theorem
will apply and we will be omitting references to it. If V is a set, we let ΩV = (XV , µV ) be
the product probability space of |V | copies of Ω; we will usually abuse notation and denote
µV simply by µ. Given x ∈ XV and S ⊆ V , we let xS ∈ XS be the projection of x to the
coordinates in S.

For a bigraph G and a bigraphon W : Ω×Λ → R+, we let t(G,W ) ∈ R+ be given by (2).
More generally, for a flag F = (G, θ) and a bigraphon W : Ω× Λ → R+, we let the function

2We avoid using F1F2 here to not conflict with the product as defined in flag algebras.
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t(F,W ) : ΩV1(G)∩im(θ) × ΛV2(G)∩im(θ) → R+ be given by

t(F,W )(x, y)
def
=

∫
XV1(G)\im(θ)×Y V2(G)\im(θ)

∏
(v,w)∈E(G)

W (x′′v, y
′′
w) d(µ⊗ ν)(x′, y′),

where

x′′v
def
=

{
xv, if v ∈ V1(G) ∩ im(θ),

x′v, if v ∈ V1(G) \ im(θ);
y′′w

def
=

{
yw, if w ∈ V2(G) ∩ im(θ),

y′w, if w ∈ V2(G) \ im(θ).

When V1(G) ∩ im(θ) = ∅, we will simplify the notation to t(F,W )(y), and likewise for
V2(G) ∩ im(θ) = ∅.

A bigraphon W : Ω× Λ → R+ is called left-regular if it satisfies

t(e1,W )(x) = t(ρ,W )

for almost every x ∈ X. Dually, it is called right-regular if

t(e2,W )(y) = t(ρ,W )

for almost every y ∈ Y . Finally, it is called biregular if it is both left regular and right
regular.

As mentioned in the introduction, a Sidorenko bigraph G is a bigraph such that t(G,W ) ≥
t(ρ,W )e(G) for every bigraphonW . While studying Sidorenko bigraphs, Sidorenko considered
a stronger inequality [Sid91, Equation (2)] that yields the class of strong Sidorenko bigraphs
defined below.

Definition 2.1. A bigraph G is a strong Sidorenko bigraph3 if for every bigraphon W : Ω×
Λ → R+ and all sequences f = (fv)v∈V1(G) and g = (gw)w∈V2(G) of bounded measurable
functions fv : Ω → R+, gw : Λ → R+, we have

t(G; f, g;W ) ≥ t

ρ; ∏
v∈V1(G)

f 1/e(G)
v ,

∏
w∈V2(G)

g1/e(G)
w ;W

e(G)

,

where

t(G; f, g;W )
def
=

∫
XV1(G)×Y V2(G)

∏
v∈V1(G)

fv(xv) ·
∏

w∈V2(G)

gw(yw) ·
∏

(v,w)∈E(G)

W (xv, yw) d(µ⊗ ν)(x, y)

and

t

ρ; ∏
v∈V1(G)

f 1/e(G)
v ,

∏
w∈V2(G)

g1/e(G)
w ;W


def
=

∫
X×Y

∏
v∈V1(G)

fv(x)
1/e(G) ·

∏
w∈V2(G)

gw(y)
1/e(G) ·W (x, y) d(µ⊗ ν)(x, y).

3In fact, Sidorenko’s condition in [Sid91, Equation (2)] also involves global weight functions f and g and
allows for arbitrary measure spaces (that are not necessarily probability spaces), but it is not hard to see
that the condition stated here is equivalent (see Appendix B).
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Remark 2.2. By simply taking all functions fv and gw to be constant equal to 1, we deduce
that strong Sidorenko bigraphs are Sidorenko bigraphs. However, it is not hard to see that
taking W and gw to be constant equal to 1, we retrieve an instance of Hölder’s inequality
for the fv functions that only holds if e(G) ≥ v1(G). Other than examples that satisfy
e(G) < min{v1(G), v2(G)} (or are indirectly obtained from such examples), it is not known
whether the strong Sidorenko property is strictly stronger than the Sidorenko property.

We say that a bigraph G1 weakly dominates G2 if

t(G1,W )

t(ρ,W )e(G1)
≥ t(G2,W )

t(ρ,W )e(G2)

for every biregular non-zero bigraphon W .
An induced-Sidorenko bigraph G is a bigraph that weakly dominates all of its induced

subgraphs.

2.4 Cut-percolation

We start by recalling the definitions of [CL17, §3] pertaining cut-percolation.
A cut-involution of a bigraph G is an automorphism ϕ ∈ Aut(G) that satisfies:

i. ϕ is an involution, i.e., ϕ = ϕ−1.

ii. The set Fix(ϕ) of points that are fixed by ϕ is a vertex-cut in the bigraph G, i.e.,
G− Fix(G) is disconnected.

(If G is already disconnected, then the empty set is declared to be a vertex-cut.)
The subgroup of Aut(G) generated by cut-involutions of G is called the cut-involution

group of G.
A fold4 of G is a pair (ϕ, L), where ϕ is a cut-involution of G and L ⊆ V (G) is such that

i. G|L is a union of connected components of G− Fix(ϕ).

ii. (L,Fix(ϕ), ϕ(L)) is a partition of V (G).

The set L is called the left side of the fold (ϕ, L) (but note that it is not necessarily contained
in V1(G)).

Remark 2.3. Not every cut-involution can be completed to a fold. A simple counter-
example is the bigraph G of Figure 5 given by

V1(G)
def
= {0, 2, 4}, V2(G)

def
= {1, 3, 5, 6}, E(G)

def
= {(0, 1), (0, 3), (0, 5), (0, 6), (2, 1), (2, 3), (4, 1), (4, 3)}

and the cut-involution ϕ that maps (1, 2, 5) to (3, 4, 6) and fixes 0. In fact, it is straightforward
to check that a necessary and sufficient condition for the existence of some L so that (ϕ, L)
is a fold is that no connected component of G− Fix(ϕ) is fixed by ϕ as a set.
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Figure 5: Example of Remark 2.3 of a bigraph with a cut-involution that does not yield a
fold.

Given a fold (ϕ, L), the left-folding and right-folding maps are the maps ϕL, ϕ
∗
L : V (G) →

V (G), respectively, defined by

ϕL(v)
def
=

{
ϕ(v), if v /∈ L;

v, otherwise
ϕ∗
L(v)

def
=

{
ϕ(v), if v ∈ L;

v, otherwise.

Note that these are endomorphisms of G.
A cut-percolating sequence of a bigraph is a sequence of sets E0, E1, . . . , Em ⊆ E(G) such

that |E0| = 1, Em = E(G) and for every i ∈ [m], there exists a fold (ϕi, Li) of G such
that Ei = (ϕi)

−1
Li
(Ei−1). In this definition, when want to make explicit the folds used in

the cut-percolating sequence, we say that it is a cut-percolating sequence with respect to
Φ = ((ϕ1, L1), . . . , (ϕm, Lm)).

A bigraph is called cut-percolating if it has a cut-percolating sequence. In fact, if S is a
set of folds of G, we say that G is cut-percolating under S if it has a cut-percolating sequence
with respect to a sequence of folds in S.

The left-sided analogue of the above is defined in terms of left vertices.

Definition 2.4. A left-cut-percolating sequence of a bigraph is a sequence of sets U0, U1, . . . , Um ⊆
V1(G) such that |U0| = 1, Um = V1(G) and for every i ∈ [m], there exists a fold (ϕ, L) of G
such that Ui = ϕ−1

L (Ui−1). Again, we say that this sequence is a left-cut-percolating sequence
with respect to Φ = ((ϕ1, L1), . . . , (ϕm, Lm)) when we want to make the sequence of folds
explicit.

A bigraph is called left-cut-percolating if it has a left-cut-percolating sequence. For a set
of folds S of G, we say that G left-cut-percolating under S if it has a left-cut-percolating
sequence with respect to a sequence of folds in S.

Remark 2.5. The cut-percolating sequence of a cut-percolating bigraph G shows that the
orbit of the single edge in E0 under the action of the cut-involution group of G is E(G),

4Let us remark that in [CL17, §3], Conlon–Lee use the same name “cut-involution” for folds, leaving the
choice of the set L implicit.
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so G is edge-transitive under its cut-involution group action. By the same token, a left-
cut-percolating bigraph is necessarily left-vertex-transitive under its cut-involution group
action.

In fact, both these statements trivially remain true replacing the cut-involution group of
G with its subgroup generated by the cut-involutions that appear in the sequence of folds
used by the cut-percolating sequence.

Remark 2.6. It is easy to see that every cut-percolating bigraph without isolated vertices
is left-cut-percolating by simply tracking down the left endpoints of the edges in a cut-
percolating sequence.

2.5 Reflection bigraphs

Again, we start by recalling the definitions of [CL17, §4] pertaining reflection bigraphs.
Let R ⊆ GLn(R) be a finite reflection group (i.e., a finite group generated by reflections)

and let T ⊆ R be the set of reflections in R. The set Φ of unit vectors that are orthogonal to
some hyperplane that is fixed by an element of T is called root system of R and its elements
are called roots. Given further an ordered basis U = (u1, . . . , un) of Rn, a root α ∈ Φ is called
positive (with respect to U) if it can be written as α =

∑n
i=1 ciui with ci0 > 0, where i0 ∈ [n]

is the first index for which ci is non-zero; otherwise, the root is called negative. The set Φ is
then partitioned into the sets Φ+ and Φ− of positive and negative roots, respectively.

For α ∈ Φ, let Hα be the hyperplane (through the origin) orthogonal to α, let sα ∈ T be
the reflection on Hα and let

D+
α

def
= {x ∈ Rn | ⟨x, α⟩ > 0}; D−

α
def
= {x ∈ Rn | ⟨x, α⟩ < 0}.

Dually, for t ∈ T , we let αt ∈ Φ+ be the unique positive root such that sαt = t. We also use

the shorthands Ht
def
= Hαt , D

+
t

def
= D+

αt
and D−

t
def
= D−

αt
.

A set ∆ ⊆ Φ+ is a simple system if every α ∈ Φ+ can be written as a conic combination
(i.e., a linear combination with non-negative coefficients) of elements of ∆ and ∆ is minimal
with this property. It is known (see [Hum90, §1.3 and 1.5]) that ∆ is unique with respect to

U , its elements are linearly independent and S∆
def
= {sα | α ∈ ∆} generates R. The elements

of ∆ are called simple roots and the elements of S∆ are called simple reflections.
For I ⊆ S∆, let

C(I)
def
=

(⋂
s∈I

Hs

)
∩

 ⋂
s∈S∆\I

D+
s

 .
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Given S1, S2 ⊆ S∆, the (S1, S2;S∆)-reflection bigraph5 is the bigraph G defined by

V1(G)
def
= R/R1 = {rR1 | r ∈ R},

V2(G)
def
= R/R2 = {rR2 | r ∈ R},

E(G)
def
= {(rR1, rR2) | r ∈ R},

where Ri is the subgroup of R generated by Si. In words, the left and right vertices are
the left cosets of R1 and R2, respectively and an edge is present whenever these left cosets
intersect.

In [CL17, Corollary 4.9], Conlon–Lee showed that every reflection t ∈ T naturally defines
a fold (ϕ(t;S1, S2;S∆), L(t;S1, S2;S∆)) of the (S1, S2;S∆)-reflection bigraph G given by

ϕ(t;S1, S2;S∆)(rRi)
def
= trRi, (r ∈ R, i ∈ [2])

L(t;S1, S2;S∆)
def
= {rRi | r(C(Si)) ⊆ D+

αt
, i ∈ [2]}.

We will call such folds reflection folds of the reflection bigraph G.
The left-sided analogue of reflection bigraphs uses multiple subgroups for the right ver-

tices.

Definition 2.7. Given S0, S1, . . . , Sk ⊆ S∆, the (S0;S1, . . . , Sk;S∆)-left-reflection bigraph
is the amalgamation of the (S0, Si;S∆)-reflection bigraphs Gi (i ∈ [k]) over the left side,
that is, it is obtained from their disjoint union by identifying the correponding left vertices.
Formally, it is the bigraph G defined by

V1(G)
def
= R/R0 = {rR0 | r ∈ R},

V2(G)
def
=

k⊔
i=1

R/Ri
def
= {(rRi, i) | r ∈ R, i ∈ [k]},

E(G)
def
= {(rR0, (rRi, i)) | r ∈ R, i ∈ [k]}.

Equivalently, in flag language, we have G
def
= |
⊔k
i=1G

L
i |.

For each t ∈ T , the reflection fold (ϕ(t;S0;S1, . . . , Sk;S∆), L(t;S0;S1, . . . , Sk;S∆)) of G is
the amalgamation of the reflection folds (ϕ(t;S0, Si;S∆), L(t;S0, Si;S∆)) of the Gi; formally,
we define

ϕ(t;S0;S1, . . . , Sk;S∆)(rR0)
def
= trR0,

ϕ(t;S0;S1, . . . , Sk;S∆)((rRi, i))
def
= (trRi, i),

L(t;S0;S1, . . . , Sk;S∆)
def
= {rR0 | r(C(S0)) ⊆ D+

αt
} ∪

⋃
i∈[k]

{(rRi, i) | r(C(Si)) ⊆ D+
αt
}.

5In [CL17], the group R is also included in this notation, but since it can be retrieved from S∆, we drop
it from the notation here.

13



The natural coloring of the (S0;S1, . . . , Sk;S∆)-left-reflection-bigraph G is the function
c : E(G) → [k] given by

c(rR0, (rRi, i))
def
= i.

2.6 Colored bigraphs and left-weakly Hölder bigraphs

A colored bigraph is a pair H = (G, c), where G is a bigraph and c : E(G) → C is a function

called coloring. We use the shorthand notations cH
def
= c, CH

def
= C and G(H)

def
= G. We also

abuse notation of (3) by applying it directly to H (e.g., E(H)
def
= E(G(H))). For each i ∈ C,

we let ei(H)
def
= |c−1(i)| be the number of edges that have color i and for each v ∈ V (G), we

let

dH,i(v)
def
= |{w ∈ V (G) | (v, w) ∈ c−1(i) ∨ (w, v) ∈ c−1(i)}|

denote its i-degree in H. We say that H is left-color-regular if dH,i(v) = dH,i(w) for every
i ∈ CH and every v, w ∈ V1(H) (which is equivalent to saying that dH,i(v) = ei(H)/v1(H)
for every v ∈ V1(H)).

For U ⊆ V (H), we let H|U
def
= (G(H)|U , cH |E(G(H)|U )) be the colored bigraph induced by U .

For a set of colors C ′ ⊆ CH , we let HC′ = (GC′ , cHC′ ) be the colored bigraph obtained from H

by keeping only edges that have color in C ′, that is, we have GC′
def
= G(H)−c−1

H (CH \C ′) and

cHC′
def
= cH |E(GC′ ). We say that H is right-uniform if the coloring c factors as c(v, w) = f(w)

for some function f : V2(G) → C. An isomorphism between colored bigraphs H1 = (G1, c1)
and H2 = (G2, c2) is an isomorphism f between G1 and G2 that preserves the coloring in
the sense that c1(v, w) = c2(f(v), f(w)) for every (v, w) ∈ E(G1). An automorphism of H is
an isomorphism of H to itself and we denote the set of automorphisms of H by Aut(H). A
colored bigraph H is called color-edge-transitive if for every (v1, w1), (v2, w2) ∈ E(H) with
cH(v1, w1) = cH(v2, w2), there exists an automorphism σ ∈ Aut(H) such that ϕ(v1) = v2 and
σ(w1) = w2.

Given a colored bigraph H and a sequence of bigraphonsW = (Wi)i∈CH
all over the same

spaces Ω = (X,µ) and Λ = (Y, ν), we define

t(H,W )
def
=

∫
XV1(H)×Y V2(H)

∏
(v,w)∈E(H)

WcH(v,w)(xv, yw) d(µ⊗ ν)(x, y).

Remark 2.8. Note that if σ ∈ Aut(G), we have t((G, c),W ) = t((G, c ◦ σ),W ) (even if σ is
not in Aut((G, c))) by simply renaming the integration variables.

The notions of flags F = (H, θ) over colored bigraphs H = (G, c) and the corresponding
function t(F,W ) are defined analogously to Section 2.2.

As mentioned in the introduction, a weakly norming bigraph, or a weakly Hölder bigraph is
a bigraph G such thatW 7→ t(G, |W |)1/e(G) defines a norm in the space of bounded functions
X × Y → R up to a.e. equivalence. In [Hat10, Theorem 2.10(ii)], Hatami showed that a
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bigraph G is weakly norming if and only if for every coloring c : E(G) → C and for every
sequence of bigraphons W = (Wi)i∈C , we have the following Hölder-like inequality

t((G, c),W ) ≤
∏

(v,w)∈E(G)

t(G,Wc(v,w))
1/e(G).

Furthermore, in [DGH+18], weakly norming bigraphs are further characterized as precisely
those bigraphs that have the step Sidorenko property studied in [KMPW19] and implicitly
in [Lov12, §14.2].

The left-sided analogue of this is a bit more technical and is defined for colored bigraphs
instead.

Definition 2.9. A left-coloring of a bigraph G is a function ℓ : V1(G) → C.
Given both a coloring c : E(G) → C ′ and a left-coloring ℓ : V1(G) → C of the same

bigraph G, we define the coloring ℓ⊗ c : E(G) → C × C ′ by

(ℓ⊗ c)(v, w) = (ℓ(v), c(v, w)).

A colored bigraph H = (G, c) is called left-weakly Hölder if for every left-coloring
ℓ : V1(G) → C of G(H) and every sequence of bigraphons W = (Wi)i∈C×CH

, we have

t((G, ℓ⊗ c),W ) ≤
∏

v∈V1(G)

t((G, ℓ(v)⊗ c),W )1/v1(G),

where ℓ(v) on the right-hand side is interpreted as the left-coloring V1(G) → C that is
constant equal to ℓ(v).

Remark 2.10. If C ′ ⊆ CH for a left-weakly Hölder bigraph H, then HC′ is also left-weakly
Hölder. This can be seen by setting Wi ≡ 1 for every i ∈ C × (CH \ C ′) in the left-weak
Hölder property of H.

Remark 2.11. By [Hat10, Theorem 2.14], every weakly norming bigraphG satisfies t(G,W )1/e(G) ≥
t(H,W )1/e(H) for any (not necessarily induced) subgraph H of G, which in particular implies
that G is induced-Sidorenko, since (assuming G is non-empty) for an induced subgraph H
of G, we have

t(G,W ) = t(G,W )e(H)/e(G) · t(G,W )1−e(H)/e(G) ≥ t(H,W ) · t(ρ,W )e(G)−e(H).

Remark 2.12. Since by [Hat10, Theorem 2.10(ii)] every weakly norming bigraph without
isolated vertices is biregular, it follows that if G is weakly norming, without any isolated
vertices and c is a constant coloring of G, then (G, c) is left-weakly Hölder, as for every
left-coloring ℓ, we have

t((G, ℓ⊗ c),W ) ≤
∏

(v,w)∈E(G)

t(G,W(ℓ(v),c0))
1/e(G) =

∏
v∈V1(G)

t(G,W(ℓ(v),c0))
dG(v)/e(G)

=
∏

v∈V1(G)

t(G,W(ℓ(v),c0))
1/v1(G),

where c0 is the unique element in im(c).
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Remark 2.13. An argument analogous to that of Remark 2.12 can be used to show that the
underlying bigraph of left-weakly Hölder bigraphs H = (G, c) is Sidorenko: let v0 ∈ V1(G) be

a non-isolated vertex, let ℓ : V1(G) → {0, 1} be given by ℓ(v)
def
= 1[v = v0] and for a bigraphon

W , considering the sequence W ′ = (W ′
t,i)t∈{0,1},i∈CH

given by W ′
0,i

def
= 1 and W ′

1,i
def
= W , we

get

t(ρ,W )e(G) ≤ t(K1,dG(v0),W )e(G)/dG(v0) = t((G, ℓ⊗ c),W ′)e(G)/dG(v0)

≤ t((G, ℓ(v0)⊗ c),W ′)e(G)/(v1(G)dG(v0))
∏

v∈V1(G)\{v0}

t((G, ℓ(v)⊗ c),W ′)e(G)/(v1(G)dG(v0))

= t(G,W )e(G)/(v1(G)dG(v0)) = t(G,W ),

where the first inequality follows from Jensen’s Inequality and the last equality follows from
Lemma 5.1 in Section 5 below (as the derivation above holds for every bigraphonW ). In fact,
a similar argument in Lemma 6.2 will show that every left-weakly Hölder bigraph without
isolated vertices is necessarily left-color-regular.

3 Main results

In this section we state our main results.

Theorem 3.1. Every left-reflection bigraph is left-cut-percolating under reflection folds.

Theorem 3.2. Every left-cut-percolating bigraph is induced-Sidorenko.

Theorem 3.3. Let G be a left-cut-percolating bigraph under a set S of folds of G. If
c : E(G) → C is a coloring of G that is invariant under the subgroup of Aut(G) generated
by {ϕ | (ϕ, L) ∈ S}, then (G, c) is left-weakly Hölder.

Theorem 3.4. Let G be a left-reflection bigraph and let c be its natural coloring. Then
(G, c) is right-uniform, color-edge-transitive and left-weakly Hölder.

Theorem 3.5. Let n, t ∈ N+ and let k1, . . . , kt ∈ [n]. Then the incidence bigraph G of the
complete hypergraph on n vertices and in uniformities k1, . . . , kt defined by

V1(G)
def
= [n],

V2(G)
def
=

t⊔
i=1

(
[n]

ki

)
def
=

{
(U, i)

∣∣∣∣ U ∈
(
[n]

ki

)
, i ∈ [t]

}
,

E(G)
def
=

{
(v, (U, i))

∣∣∣∣ v ∈ U, i ∈ [t], U ∈
(
[n]

ki

)}
is a left-reflection bigraph.

As mentioned in the introduction, the next theorem generalizes Theorem 1.1 from [CL21,
Theorem 1.1].
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Theorem 3.6. Let G be a bigraph without isolated vertices and for each k ∈ N, let dk
def
=

|{w ∈ V2(G) | dG(w) = k}| be the number of vertices in V2(G) that have degree k.
If for each k ≥ 2, we have either dk = 0 or dk ≥

(
v1(G)
k

)
, then G is a strong Sidorenko

bigraph.

Theorem 3.7. Let H be a non-trivial right-uniform color-edge-transitive left-weakly Hölder
bigraph without isolated vertices and let G be a bigraph with V1(G) = V1(H) and without
isolated vertices. For every U ⊆ V1(G), let

dG(U)
def
= |{w ∈ V2(G) | NG(w) = U}|,

dH(U)
def
= |{w ∈ V2(H) | NH(w) = U}|.

Suppose further that for every U ⊆ V1(G) with |U | ≥ 2 the following hold.

i.
∑

σ∈Aut(H) dG(σ(U)) = 0 if and only if
∑

σ∈Aut(H) dH(σ(U)) = 0.

ii.
∑

σ∈Aut(H) dG(σ(U)) ≥
∑

σ∈Aut(H) dH(σ(U)).

Then G is a strong Sidorenko bigraph. In particular, G(H) is a strong Sidorenko bigraph.

The most useful examples of right-uniform color-edge transitive left-weakly Hölder bi-
graphs to be used in the theorem above are obtained from left-reflection bigraphs through
Theorem 3.4.

4 Left-sided properties

In this section, we show the theorems that do not directly involve Sidorenko’s Conjecture,
that is, Theorems 3.1, 3.3 and 3.5. These theorems are mostly direct analogues of Conlon–
Lee [CL17].

Theorem 3.1 will be easily derived from the following property of left-cut-percolating
sequences.

Lemma 4.1. LetG1, . . . , Gk be bigraphs with V1(G1) = · · · = V1(Gk) and V2(G1), . . . , V2(Gk)
pairwise disjoint and let G be the amalgamation of G1, . . . , Gk over the left side, i.e., we have

V1(G)
def
= V1(G1), V2(G)

def
=
⋃
i∈[k]

V2(Gi), E(G)
def
=
⋃
i∈[k]

E(Gi).

Suppose further that G1 has a left-cut-percolating sequence U0, U1, . . . , Um with respect
to Φ = ((ϕ1, L1), . . . , (ϕm, Lm)) and for every i ∈ [m] and j ∈ {2, . . . , k}, there exists a fold
(ψij, Lij) of Gj such that ϕi|V1(G1) = ψij|V1(Gj) and Li ∩ V1(G1) = Lij ∩ V1(Gj).

Then U0, U1, . . . , Um is a left-cut-percolating sequence inG with respect to Φ̂ = ((ϕ̂1, L̂1), . . . , (ϕ̂m, L̂m)),

where L̂i
def
= Li ∪

⋃k
j=2 Lij and

ϕ̂i(v) =

{
ϕi(v), if v ∈ V (G1),

ψij(v), if v ∈ V (Gj), j ∈ {2, . . . , k}

is the amalgamation of ϕi, ψ2k, . . . , ψik.
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Proof. Since (ϕ̂i)L̂i
|V1(G) = (ϕi)Li

|V1(G1), it will follow that U0, U1, . . . , Um is a left-cut-percolating

sequence of G with respect to Φ̂ as long as we show that Φ̂ is indeed a sequence of folds of
G.

Fix i ∈ [m], write ψi1
def
= ϕi and Li1

def
= Li. The fact that ϕ̂i is an involution of G follows

simply because the functions ψi1, . . . , ψik are involutions of their respective bigraphs and
they coincide in the common part V1(G1).

From the same property, it also follows that Fix(ϕ̂i) =
⋃k
j=1 Fix(ψij) and ϕ̂i(L̂i) =⋃k

j=1 ψij(Lij) and thus ϕ̂i is a cut-involution of G and (L̂i,Fix(ϕ̂i), ϕ̂i(L̂i)) forms a parti-
tion of V (G).

It remains to show that G|L̂i
is a union of connected components of G − Fix(ϕ̂i). To

show this, it is sufficient to show that if v1, v2 ∈ V (G) \ Fix(ϕ̂i) are in the same component

of G − Fix(ϕ̂i) and v1 ∈ L̂i, then v2 ∈ L̂i. But indeed, if we partition any path P from v1
to v2 into segments P1, . . . , Pn such that each segment Pt is completely contained in V (Gjt)
for some jt ∈ [k], then Pt must be entirely contained in Ljt as Ljt is a union of connected

components of Gjt − Fix(ψij) (and Fix(ψij) = Fix(ϕ̂i) ∩ V (Gj)). Therefore (ϕ̂i, L̂i) is a fold
of G. ■

We now prove Theorem 3.1, which says that every left-reflection bigraph is left-cut-
percolating under reflection folds.

Proof of Theorem 3.1. Let G be an (S0;S1, . . . , Sk;S∆)-left-reflection bigraph relative to the
reflection group R with set of reflections T and for each j ∈ [k] let Gj be the (S0, Sj;S∆)-
reflection bigraph.

By [CL17, Corollary 4.9 and Theorem 4.12], there exists a cut-percolating sequence
E0, . . . , Em with respect to a sequence Φ = ((ϕ1, L1), . . . , (ϕm, Lm)) of reflection folds of
G1 (i ∈ [m]).

Since G1 does not have isolated vertices, by Remark 2.6, setting Ui
def
= Ei ∩ V1(G1)

(i ∈ {0, 1, . . . ,m}) gives a left-cut-percolating sequence of G1 with respect to Φ.
For each i ∈ [m], let ti ∈ T be a reflection defining the reflection fold (ϕi, Li) of G1,

that is, we have ϕi = ϕ(ti;S0, S1;S∆) and Li = L(ti;S0, S1;S∆) and for each j ∈ {2, . . . , k},
let (ψij, Lij)

def
= (ϕ(ti;S0, Sj;S∆), L(ti;S0, Sj;S∆)) be the reflection fold of Gj defined by the

same reflection ti. Then the hypotheses of Lemma 4.1 are satisfied and we deduce that G is
left-cut-percolating with respect to a sequence of reflection folds. ■

To prove Theorem 3.3, we need to recall another definition and lemma from [CL17].

Definition 4.2 (slightly adapted from Conlon–Lee [CL17, §3]). Let G be bigraph, let
c : E(G) → C be a coloring of G and let Φ = ((ϕ1, L1), . . . , (ϕm, Lm)) be a sequence of
folds of G. The Cauchy–Schwarz tree rooted at (G, c) corresponding to Φ is the rooted
complete binary tree T (G, c,Φ) of height m in which each vertex is labeled by a coloring of
c so that:

i. The root of T (G, c,Φ) is labeled by c.

18



ii. If a node at height i ∈ {0, 1, . . . ,m− 1} is labeled by c′, then its left and right children
are labeled by c ◦ (ϕi)Li

and c ◦ (ϕi)∗Li
, respectively.

Lemma 4.3 (adapted from Conlon–Lee [CL17, §3]). Let G be a bigraph, let c : E(G) → C
be a coloring of G, let (ϕ, L) be a fold of G and letW = (Wj)j∈C be a sequence of bigraphons.
Then

t((G, c),W ) ≤ t((G, c ◦ ϕL),W )1/2 · t((G, c ◦ ϕ∗
L),W )1/2,

More generally, if Φ = ((ϕ1, L1), . . . , (ϕm, Lm)) is a sequence of folds of G and c1, . . . , c2m
are the colorings (with multiplicities) that label the leaves of the Cauchy–Schwarz tree
T (G, c,Φ), then

t((G, c),W ) ≤
2m∏
t=1

t((G, ct),W )2
−m

.

Proof. For the first statement, let

G0
def
= G|Fix(ϕ), G1

def
= G|L∪Fix(ϕ) − E(G0), G2

def
= G|ϕ(L)∪Fix(ϕ) − E(G0),

c0
def
= c|E(G0), c1

def
= c|E(G1), c2

def
= c|E(G2),

F0
def
= ((G0, c0),Fix(ϕ)), F1

def
= ((G1, c1),Fix(ϕ)), F2

def
= ((G2, c2),Fix(ϕ)).

By Cauchy–Schwarz Inequality, we have

t((G, c),W ) =

∫
XV1∩Y V2

t(F0,W )(x, y) · t(F1,W )(x, y) · t(F2,W )(x, y) d(µ⊗ ν)(x, y)

≤
(∫

XV1∩Y V2

t(F0,W )(x, y) · t(F1,W )(x, y)2 d(µ⊗ ν)(x, y)

)1/2

·
(∫

XV1∩Y V2

t(F0,W )(x, y) · t(F2,W )(x, y)2 d(µ⊗ ν)(x, y)

)1/2

= t((G, c ◦ ϕL),W )1/2 · t((G, c ◦ ϕ∗
L),W )1/2,

where Vi
def
= Vi(G) ∩ Fix(ϕ).

The statement for Cauchy–Schwarz trees follows by induction. ■

We now show Theorem 3.3, whose statement is repeated below.

Theorem 3.3. Let G be a left-cut-percolating bigraph under a set S of folds of G. If
c : E(G) → C is a coloring of G that is invariant under the subgroup of Aut(G) generated
by {ϕ | (ϕ, L) ∈ S}, then (G, c) is left-weakly Hölder.

Proof of Theorem 3.3. Let U0, . . . , Um be a left-cut-percolating sequence of G with respect

to a sequence Φ
def
= ((ϕ1, L1), . . . , (ϕm, Lm)) of folds in S and for each t ∈ N+, let Φ

t be the
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concatenation of Φ with itself t times. Let also Ŝ be the subgroup of Aut(G) generated by
{ϕ | (ϕ, L) ∈ S}.

Let us call a coloring of G left-constant if it is of the form ℓ ⊗ c for some constant
left-coloring ℓ : V1(G) → C ′.

We claim that for any left-coloring ℓ : V1(G) → C ′, at least a 1 − (1 − 2−m)t fraction of
the leaves of the Cauchy–Schwarz tree T (G, ℓ⊗ c,Φt) are labeled by left-constant colorings
of G.

For t = 1, since U0, . . . , Um is a left-cut-percolating sequence, the label of the leftmost
leaf of T (G, ℓ⊗ c,Φ) is

c0
def
= (ℓ⊗ c) ◦ (ϕ1)L1 ◦ · · · ◦ (ϕm)Lm = (ℓ ◦ (ϕ1)L1 ◦ · · · ◦ (ϕm)Lm)⊗ c,

where the equality follows from the fact that c is Ŝ-invariant. This means that if v0 is the
unique element of U0, then for every (v, w) ∈ E(G), we have

c0(v, w) = ((ℓ ◦ (ϕ1)L1 ◦ · · · (ϕm)Lm)(v), c(v, w)) = (ℓ(v0), c(v, w)),

so c0 = ℓ(v0) ⊗ c(v, w). Therefore at least a 2−m = 1 − (1 − 2−m)1 fraction of leaves are
labeled by constant left-colorings

Suppose now that t ≥ 2 and note that if a node of T (G, ℓ ⊗ c,Φt) is labeled by a left-
constant coloring c0, then all of its descendants must also be labeled by c0. By induction, we
also know that at least a 1− (1− 2−m)t−1 fraction of the nodes at level (t− 1)m are labeled
by left-constant colorings. On the other hand, the case t = 1 above also guarantees that for
each node at level (t− 1)m, at least one of its descendant leaves is labeled by a left-constant
coloring. This means that the fraction of leaves of T (G, ℓ ⊗ c,Φt) labeled by left-constant
colorings is at least

(1− (1− 2−m)t−1) +
(1− 2−m)t−1

2m
= 1− (1− 2−m)t,

as desired.

Note now that the definition of T (G, ℓ ⊗ c,Φt) ensures that each of the left-constant
colorings that appears in the leaves must be of the form ℓ(v) ⊗ c for some v ∈ V1(G). This
means that if C is the set of colorings c′ : E(G) → C ′ × C that are not left-constant, then
applying Lemma 4.3 to T (G, ℓ⊗ c,Φt) and using the claim above, we get that

t((G, ℓ⊗ c),W ) ≤
∏

v∈V1(G)

t((G, ℓ(v)⊗ c),W )α
t
v ·
∏
c′∈C

t((G, c′),W )β
t
c′

for some αtv ∈ [0, 1] and βtc ∈ [0, 1] satisfying∑
v∈V1(G)

αtv +
∑
c′∈C

βtc′ = 1,
∑

v∈V1(G)

αtv ≥ 1− (1− 2−m)t.
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Letting t→ ∞ along some subsequence such that (αtv)t is convergent for every v ∈ V1(G),
we get

t((G, ℓ⊗ c),W ) ≤
∏

v∈V1(G)

t((G, ℓ(v)⊗ c),W )αv

for some αv ≥ 0 such that
∑

v∈V1(G) αv = 1, since we have βc
′
t ≤ (1− 2−m)t

t→∞−−−→ 0 for every
c′ ∈ C.

Recall from Remark 2.5 that G is left-vertex-transitive under the action of Ŝ. Then, by
Remark 2.8 we get

t((G, ℓ⊗ c),W ) =
∏
σ∈Ŝ

t((G, (ℓ⊗ c) ◦ σ),W )1/|Ŝ|

≤
∏
σ∈Ŝ

∏
v∈V1(G)

t((G, (ℓ(v)⊗ c) ◦ σ),W )αv/|Ŝ|

=
∏
σ∈Ŝ

∏
v∈V1(G)

t((G, (ℓ(σ(v))⊗ c)),W )αv/|Ŝ|

=
∏

v∈V1(G)

t((G, ℓ(v)⊗ c),W )1/v1(G),

where the second equality follows since c is Ŝ-invariant and the third equality follows since
G is left-vertex-transitive under the action of Ŝ. Therefore (G, c) is left-weakly Hölder. ■

Finally, for Theorem 3.5, which says that the incidence bigraph of the complete hyper-
graph on n vertices and in uniformities k1, . . . , kt is a left-reflection bigraph, we will heavily
rely on the fact that the incidence bigraph of complete ki-uniform hypergraph is a reflection
bigraph.

Proof of Theorem 3.5. Recall from [CL17, Example 4.4] that the symmetric group Sn on
n points with its natural embedding in GLn(R) is generated by the transpositions, which

are the reflections of Sn. By using the canonical ordered basis U
def
= (e1, . . . , en), the set of

positive roots of Sn is precisely

Φ+ =

{
ei − ej√

2

∣∣∣∣ 1 ≤ i < j ≤ n

}
,

the set of simple roots is

∆ =

{
ei − ei+1√

2

∣∣∣∣ i ∈ [n− 1]

}
,

and the set of simple reflections is

S∆ = {ti,i+1 | i ∈ [n− 1]},
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where ti,j is the transposition that swaps i and j.

For k ∈ [n], let Sk
def
= S∆ \ {tk,k+1}, which generates the naturally embedded subgroup

Rk
def
= Sk×Sn−k. The left-cosets ofRk can be identified with

(
[n]
k

)
naturally via σRk 7→ σ([k]),

which means that the (S1, Sk;S∆)-reflection bigraph is isomorphic to the incidence bigraph
of the complete k-uniform hypergraph H on n vertices given by

V1(H)
def
= [n], V2(H)

def
=

(
[n]

k

)
, E(H)

def
=

{
(i, A) ∈ [n]×

(
[n]

k

) ∣∣∣∣ i ∈ A

}
,

and the isomorphism is given by

Sn/R1 ∋ σR1 7→ σ(1) ∈ V1(H),

Sn/Rk ∋ σRk 7→ σ([k]) ∈ V1(H).

Thus the (S1;Sk1 , . . . , Skt ;S∆)-left-reflection bigraph is isomorphic to the incidence bi-
graph G of the complete hypergraph on n vertices and in uniformities k1, . . . , kt, with the
isomorphism given by

Sn/R1 ∋ σR1 7→ σ(1) ∈ V1(G),

Sn/Rki ∋ σRki 7→ (σ([k]), j) ∈ V2(G). ■

We conclude this section proving Theorem 3.4, which says that left-reflection bigraphs
become right-uniform color-edge-transitive left-weakly Hölder bigraphs when equipped with
their natural coloring.

Proof of Theorem 3.4. The fact that G is left-weakly Hölder follows from Theorems 3.1
and 3.3 by noting that the natural coloring of a left-reflection bigraph is invariant under
the subgroup generated by the cut-involutions coming from reflection folds.

It is also obvious from the definition of the natural coloring that it is right-uniform.
Finally, since each of the color classes ofG yields a reflection bigraph, which is cut-percolating
under reflection folds by [CL17, Corollary 4.9 and Theorem 4.12], hence edge-transitive with
respect to cut-involutions coming from reflection folds (see Remark 2.5), it follows that G
is color-edge-transitive under the action of the group generated by cut-involutions coming
from reflection folds. ■

5 Induced-Sidorenko

In this section, we prove Theorem 3.2 that says that every left-cut-percolating bigraph is
induced-Sidorenko.

We start with a lemma that is often viewed as an obstacle for inequalities concerning
densities in bigraphons. However, this lemma can also be used positively to deduce equalities
of exponents (see for example its use in Remark 2.13).
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Lemma 5.1. LetW be a non-zero bigraphon, let G1, . . . , Gn be bigraphs and let r1, . . . , rn ∈
R. If for every λ > 0, we have

n∏
i=1

t(Gi, λW )ri ≥ 1,

then
∑n

i=1 ri · e(Gi) = 0.

Proof. Since t(Gi, λW ) = λe(Gi) · t(Gi,W ), we must have

λ
∑n

i=1 ri·e(Gi)

n∏
i=1

t(Gi,W )ri ≥ 1

for every λ > 0. Since W is non-zero, we have t(Gi,W ) > 0. If the exponent of λ is positive,
then making λ small enough violates the inequality above. If the exponent of λ is negative,
then making λ large enough violates the inequality above. ■

We now introduce the notion of 2-threshold subgraphs.

Definition 5.2. Let G be a bigraph and let f : V (G) → {0, 1, 2}, the 2-threshold subgraph
of G corresponding to f is the spanning subgraph Gf of G defined by

V1(Gf )
def
= V1(G), V2(Gf )

def
= V2(G),

E(Gf )
def
= {(v, w) ∈ E(G) | f(v) + f(w) ≥ 2}.

We let T2(G) be the set of all 2-threshold subgraphs of G.
Given an endomorphism ϕ ∈ End(G) of G and a spanning subgraph G′ of G, we let

ϕ−1(G′) be the spanning subgraph of G defined by

V1(ϕ
−1(G′))

def
= V1(G), V2(ϕ

−1(G′))
def
= V2(G),

E(ϕ−1(G′))
def
= ϕ−1(E(G′)) = {(v, w) ∈ E(G) | (ϕ(v), ϕ(w)) ∈ E(G′)}.

Remark 5.3. It is easy to see that if f = 1V for some V ⊆ V (G), then Gf = G− (E(G) \
E(G|V )), that is, 2-threshold subgraphs corresponding to {0, 1}-valued functions essentially
capture induced subgraphs (except for the presence of extra isolated vertices to make them
spanning).

It is also easy to see that for an endomorphism ϕ ∈ End(G) of G and f : V (G) → {0, 1, 2},
we have ϕ−1(Gf ) = Gf◦ϕ.

Lemma 5.4. Let G be a left-cut-percolating bigraph and let

T
def
= {Gf ∈ T2(G) | f : V (G) → {0, 1, 2}, f−1(2) ⊆ V1(G)}.
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Then there exists m ∈ N+ such that for every H ∈ T , there exist ℓH ∈ N with ℓH ≤
e(G)/v1(G) and a function rH : T → R+ such that

∑
H′∈T rH(H

′) = 1− 2−m and

t(H,W ) ≤ t(G,W )1/2
m

t(ρ,W )ℓH
·
∏
H′∈T

t(H ′,W )rH(H′).

for every biregular non-zero bigraphon W .

Proof. Let U0, . . . , Um be a left-cut-percolating sequence of G with respect to a sequence of
folds Φ = ((ϕ1, L1), . . . , (ϕm, Lm)) and let v0 be the unique element of U0.

Fix an element H = Gf (f : V (G) → {0, 1, 2} with f−1(2) ⊆ V1(G)) of T and let us first
prove the case when f(v0) = 2 and in this case, we will show that we can take ℓH = 0.

Note that there is a natural one-to-one correspondence between colorings c : E(G) →
{0, 1} of G and spanning subgraphs of G in which a coloring c corresponds to the spanning

subgraph Gc given by E(Gc)
def
= c−1(1) and a spanning subgraph G′ of G corresponds to the

coloring cG′
def
= 1E(G′). Consider the sequence W ′ = (W ′

0,W
′
1) of bigraphons, where W

′
0

def
= 1

and W ′
1

def
= W and note that t((G, c),W ′) = t(Gc,W ).

Consider now the Cauchy–Schwarz tree T (G, cH ,Φ) and since the folding maps are en-
domorphisms of G, by Remark 5.3, all of the nodes of this tree are labeled by colorings of
the form cH′ for some H ′ ∈ T . Note further that by the same remark, the leftmost leaf of Φ

has label c0
def
= cGg , where g : V (G) → {0, 1} is given by

g
def
= f ◦ (ϕ1)L1 ◦ · · · (ϕm)Lm ,

and since U0, . . . , Um is left-cut-percolating, we have g(v) = g(v0) = 2 for every v ∈ V1(G),
which implies Gc0 = Gg = G. By Lemma 4.3, it follows that

t(H,W ) = t((G, cH),W ) ≤ t(G,W )1/2
m ·

∏
H′∈T

t(H ′,W )rH(H′),

where rH(H
′) is the number of non-leftmost leaves of T (G, cH ,Φ) that are labeled by cH′

divided by 2m (note that cG can also appear as the label of non-leftmost leaves) and thus∑
H′∈T rH(H

′) = 1− 2−m.

We now consider the case when f(v) = 2 for some v ∈ V1(G) (but not necessarily v = v0)
and we will also show that in this case we can take ℓH = 0. By Remark 2.5, we know that
G is left-vertex-transitive, so letting ψ ∈ Aut(G) be an automorphism with ψ(v0) = v, from
Remarks 2.8 and 5.3, we get

t(H,W ) = t((G, cH),W
′) = t((G, cH ◦ ψ),W ′)

= t(ψ−1(Gf ),W ) = t(Gf◦ψ,W )

so the result follows from the previous case as (f ◦ ψ)(v0) = 2.
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Let us now show the case when im(f) ⊆ {0, 1} and f(v0) = 1. Let f ′ : V (G) → {0, 1, 2}
be the function obtained from f by changing the value of v0 to 2 and let

ℓH
def
= |NG(v0) ∩ f−1(0)| ≤ dG(v0) =

e(G)

v1(G)

be the number of neighbors of v0 that have value 0 under f (the last equality in the above
follows from left-vertex-transitivity). Note that Gf ′ is obtained from Gf by precisely adding
the ℓH edges from v0 to its neighbors in G whose value under f is 0, and since im(f) ⊆ {0, 1},
the right endpoint of these newly added edges were isolated vertices in Gf , hence in Gf ′ they
have only v0 as their neighbor. Since W is biregular, it follows that

t(Gf ′ ,W ) = t(Gf ,W ) · t(ρ,W )ℓH .

Since f ′(v0) = 2, the result now follows from the first case (note that the upper bound on
ℓH for this case is e(G)/v1(G) since the first case was shown with ℓH = 0).

The case when im(f) ⊆ {0, 1} and there exists v ∈ V1(G) with f(v) = 1 follows by
left-vertex-transitivity from the previous case.

The final case is when f |V1(G) = 0. But since f(V2(G)) ⊆ {0, 1}, it follows that H is
empty and since G is a Sidorenko bigraph (by Theorem 3.3 and Remark 2.13), we get

t(H,W ) = 1 ≤ t(G,W )1/2
m

t(ρ,W )e(G)/2m
=

t(G,W )1/2
m

t(ρ,W )e(G)/2m
· t(H,W )1−2−m

,

which means that the result will follow by setting rH(H
′)

def
= 1[H ′ = H](1 − 2−m) and

ℓH
def
= e(G)/2m as long as we prove the bound ℓH ≤ e(G)/v1(G), that is, we need to show

that v1(G) ≤ 2m. But note that from the definition of left-cut-percolating sequence, we have
|Ui| ≤ 2|Ui−1| for every i ∈ [m], hence a simple induction gives v1(G) = |Um| ≤ 2m|U0| = 2m,
as desired. ■

We conclude this section proving Theorem 3.2, which says that every left-cut-percolating
bigraph is induced-Sidorenko.

Proof of Theorem 3.2. Let G be a left-cut-percolating bigraph and G′ be an induced bigraph
of G and let us show that G weakly dominates G′.

Let T and m be as in Lemma 5.4 and for each H ∈ T , let ℓH and rH also be as in the

same lemma. Let also p
def
= 1− 2−m.

LetH
def
= G1V (G′)

be the 2-threshold subgraph ofG corresponding to the indicator function

1V (G′) of V (G′). Note that H ∈ T and since E(H) = E(G′), for every biregular non-zero
bigraphon W , we have t(G′,W ) = t(H,W ), so to show that G weakly dominates G′, we can
show that it weakly dominates H (see Remark 5.3).

We construct a sequence (αn)n∈N of non-negative reals and a sequence (rn)n∈N of functions
rn : T → R+ such that the following hold.
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i. For every n ∈ N and every biregular non-zero bigraphon W , we have

t(H,W ) ≤ t(G,W )1−p
n

t(ρ,W )αn

∏
H′∈T

t(H ′,W )rn(H
′). (4)

ii. For every n ∈ N, we have ∑
H′∈T

rn(H
′) = pn.

iii. For every n ∈ N, we have

αn ≤ αn+1 ≤ αn + pn · e(G)
v1(G)

.

The construction is by induction: we start with α0 = 0 and r0(H
′) = 1[H = H ′] and for

n ∈ N+, we define

αn
def
= αn−1 +

∑
H′∈T

rn−1(H
′) · ℓH′ , rn(H

′)
def
=
∑
H′′∈T

rH′′(H ′) · rn−1(H
′′).

The three items follow by induction when we apply Lemma 5.4 to all H ′ ∈ T on the right-
hand side of (4).

Note that the second item ensures that limn→∞ rn(H
′) = 0 for every H ′ ∈ T and the third

item ensures that the limit α
def
= limn→∞ αn exists as the sequence (αn)n∈N is non-decreasing

and upper bounded by e(G)/((1− p)v1(G)). By letting n→ ∞ in (4), we conclude that for
every biregular non-zero bigraphon W , we have

t(H,W ) ≤ t(G,W )

t(ρ,W )α

and since this holds for every such W , by Lemma 5.1, it follows that α = e(G)− e(H), so G
weakly dominates H as desired. ■

6 Symmetrizations and fractional powers of colored bi-

graphs

In this section we prove Theorems 3.6 and 3.7. We start by showing how the former (which
is restated below) is a particular case of the latter.

Theorem 3.6. Let G be a bigraph without isolated vertices and for each k ∈ N, let dk
def
=

|{w ∈ V2(G) | dG(w) = k}| be the number of vertices in V2(G) that have degree k.
If for each k ≥ 2, we have either dk = 0 or dk ≥

(
v1(G)
k

)
, then G is a strong Sidorenko

bigraph.
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Proof of Theorem 3.6. Without loss of generality, suppose that V1(G) = [n]. Let

K
def
= {dG(w) | w ∈ V2(G)} \ {0, 1} = {k ∈ {2, . . . , n} | dk ̸= 0}

and enumerate its elements as k1, . . . , kt. Let G′ be the incidence bigraph of the complete
hypergraph on n vertices and in uniformities k1, . . . , kt. By Theorem 3.5, we know that G′ is
a left-reflection bigraph. It is straightforward to see that its natural coloring c : E(G′) → [t]
is the unique function such that dG′(w) = kc(v,w) for every (v, w) ∈ E(G′). By Theorem 3.4,

we know that H
def
= (G, c) is left-weakly Hölder. Note also that Aut(H) = Aut(G′) (and is

isomorphic to the symmetric group Sn on n points). Furthermore, note that for U ⊆ [n],
we have ∑

σ∈Aut(H)

dG(σ(U)) =
|Aut(H)| · d|U |(

n
|U |

) ,

∑
σ∈Aut(H)

dH(σ(U)) =

{
|Aut(H)|, if |U | ∈ K,

0, otherwise.

Since dk ≥
(
n
k

)
for every k ∈ K, the result now follows from Theorem 3.7. ■

To prove Theorem 3.7, we will need to work with fractional colored bigraphs and a notion
that we call color-Sidorenko defined below. The intuition is that a fractional colored bigraph
encodes the left side of a right-uniform colored bigraph as its vertex set V and counts how
many vertices on the right side have neighborhood in color i ∈ C exactly equal to a set
U ⊆ V , except that we allow this count to be fractional.

Definition 6.1. A colored fractional bigraph is a function h : 2V ×C → R+, where V and C
are sets, called vertex set and color set of h, respectively. We use the shorthand notations

Vh
def
= V and Ch

def
= C and we let

v(h)
def
= |Vh|,

ei(h)
def
=
∑
U⊆Vh

|U | · h(U, i) (i ∈ C),

e(h)
def
=
∑
i∈C

ei(h).

For each i ∈ Ch and each v ∈ Vh, the i-degree of v in h is defined as

dh,i(v)
def
=
∑
U⊆Vh
v∈U

h(U, i).

We say that h is color-regular if for every i ∈ Ch and every v1, v2 ∈ Vh, we have dh,i(v1) =
dh,i(v2) (which is equivalent to saying that dh,i(v) = ei(h)/v(h) for every v ∈ Vh and every
i ∈ Ch).
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Given a right-uniform colored bigraph H without isolated vertices, its corresponding
colored fractional bigraph hH : 2V1(H) × CH → R+ is defined by

hH(U, i)
def
= |{w ∈ V2(H) | NH(w) = U ∧ ∀v ∈ NH(w), cH(v, w) = i}|.

Given a colored fractional bigraph h and a sequence W = (Wi)i∈Ch
of bigraphons over

the same spaces Ω = (X,µ) and Λ = (Y, ν), we let

t(h,W )
def
=

∫
XVh

∏
U⊆Vh

∏
i∈Ch

t(KL
|U |,1,Wi)(xU)

h(U,i) dµ(x).

(Note that this ensures that t(H,W ) = t(hH ,W ) for right-uniform colored bigraphs H.)

Given a colored fractional bigraph h and a tuple p⃗
def
= (pi)i∈Ch

∈ RCh
+ , the p⃗ color-power

of h is the colored fractional bigraph hp⃗ : 2Vh × Ch → R+ given by

hp⃗(U, i)
def
= h(U, i) · pi

We extend this definition to right-uniform colored bigraphs H without isolated vertices as

H p⃗ def
= hp⃗H .
Given a set of colors C, the C-rainbow star is the connected colored bigraph ρC with one

vertex on the left side and one edge of each color in C. Formally, it is given by

V1(ρC)
def
= {1}, V2(ρC)

def
= C, E(ρC)

def
= {1} × C,

and cρC : E(ρC) → C is defined by

cρC (1, i)
def
= i (i ∈ C).

Given a colored fractional bigraph h with e(h) > 0, we let ρh
def
= ρp⃗Ch

, where p⃗ = (pi)i∈Ch
is

given by pi
def
= ei(h)/e(h). We extend this definition to right-uniform colored bigraphs H by

letting ρH
def
= ρhH .

A colored fractional bigraph h with e(h) > 0 is called color-Sidorenko if for every sequence
W = (Wi)i∈Ch

of bigraphons over the same spaces we have

t(h,W ) ≥ t(ρh,W )e(h).

A right-uniform colored bigraph H is called color-Sidorenko if its corresponding colored
fractional bigraph hH is color-Sidorenko.

We start by showing that right-uniform left-weakly Hölder bigraphs H are left-color
regular and color-Sidorenko.

Lemma 6.2. If H = (G, c) is a non-trivial left-weakly Hölder bigraph without isolated
vertices, then H is left-color-regular. Furthermore, if H is also right-uniform, then H is
color-Sidorenko.
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Proof. Fix v0 ∈ V1(H) and a sequence W = (Wi)i∈CH
of bigraphons on the same spaces

Ω = (X,µ) and Λ = (Y, ν). Let ℓ : V1(H) → {0, 1} be given by ℓ(v)
def
= 1[v = v0] and define

the sequence W ′ = (W ′
t,i)t∈{0,1},i∈CH

by

W ′
t,i

def
=

{
Wi, if t = 1,

1, if t = 0.

Then we have

t((G, 0⊗ c),W ′) = 1, t((G, 1⊗ c),W ′) = t(H,W ).

Let further H ′ def
= H|v0∪NH(v0) be the restriction of H to v0 and its neighbors and

note that t((G, ℓ ⊗ c),W ′) = t(H ′,W ), so the left-weak Hölder property gives t(H ′,W ) ≤
t(H,W )1/v1(H), which can be rewritten as

t(H,W ) ≥ t(H ′,W )v1(H).

If we instantiate the above to the case whereWi0 = Ŵ for some fixed i0 ∈ CH andWi = 1
every i ̸= i0, we get

t(H{i0}, Ŵ ) ≥ t(K1,dH,i0
(v0), Ŵ )v1(H),

which by Lemma 5.1 implies that ei0(H) = dH,i0(v0) · v1(H), that is, H is left-color-regular.
Going back to the general sequence W , if H is also right-uniform, then we conclude that

t(H,W ) ≥ t(H ′,W )v1(H)

=

(∫
X

∏
i∈CH

(∫
Y

Wi(x, y) dν(y)

)dH,i(v0)

dµ(x)

)v1(H)

≥ t(ρH ,W )e(H),

where the last inequality follows from Jensen’s Inequality for the convex function z 7→
ze(H)/v1(H) and the fact that H is left-color-regular. Therefore H is color-Sidorenko. ■

Our next objective is to prove that color-powers H p⃗ of left-weakly Hölder bigraphs are
also color-Sidorenko under the further assumptions that H is right-uniform and pi ≥ 1 for
every i ∈ CH . To do so we need to establish several lemmas. We start with one that says
that it is sufficient to check the color-Sidorenko property only for sequences of bigraphons in
which all but one are left-regular. The trick employed here is similar to the one in [CR21],
except that since h is color-regular, we can perform a much simpler construction.

Lemma 6.3. Let h be a color-regular colored fractional bigraph and let i0 ∈ Ch be such
that ei0(h) ̸= 0. Suppose that t(h,W ) ≥ t(ρh,W )e(h) for every sequence W = (Wi)i∈Ch

of
positive bigraphons over the same spaces such that Wi is left-regular and non-zero for every
i ∈ Ch \ {i0}. Then h is color-Sidorenko.
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Proof. Without loss of generality, we may suppose that ei(h) ̸= 0 for every i ∈ Ch.

By possibly replacing each Wi with W ϵ
i

def
= ϵ + Wi and applying the Dominated Con-

vergence Theorem letting ϵ → 0, it is sufficient to show that t(h,W ) ≥ t(ρh,W )e(h) holds
for every sequence of bigraphons over the same spaces that are bounded away from 0. Fix
one such sequence W of bigraphons over spaces Ω = (X,µ) and Λ = (Y, ν) and define the
sequence W ′ = (W ′

i )i∈Ch
by

W ′
i (x, y)

def
=


Wi(x, y)

t(e1,Wi)(x)
, if i ̸= i0,

Wi0(x, y) ·
∏

j∈Ch\{i0}

t(e1,Wj)(x)
ej(h)/ei0 (h), if i = i0.

Note that the fact that each Wi is bounded away from 0 ensures that the functions above
are bounded. It is also trivial that W ′

i is left-regular for each i ̸= i0.
Note now that

t(ρh,W
′) =

∫
X

t(e1,Wi0)(x) ·
∏

j∈Ch\{i0}

t(e1,Wj)(x)
ej(h)/ei0 (h)

ei0 (h)/e(h)

·
∏

i∈Ch\{i0}

(
t(e1,Wi)

t(e1,Wi)

)ei(h)/e(h)
dµ(x)

= t(ρh,W ).

On the other hand, since h is color-regular, we have dh,i(v) = ei(h)/v(h) for every i ∈ Ch
and every v ∈ Vh, so we get

t(h,W ′) =

∫
XVh

∏
U⊆Vh

∏
i∈Ch

t(KL
|U |,1,Wi)(xU)

h(U,i)

·
∏
v∈Vh

∏
i∈Ch\{i0}

t(e1,Wi)(x)
ei(h)·dh,i0 (v)/ei0 (h)−dh,i(v)

= t(h,W )

Therefore, we conclude that

t(h,W ) = t(h,W ′) ≥ t(ρh,W
′)e(h) = t(ρh,W )e(h),

so h is color-Sidorenko. ■

The next lemma can be seen as a color version of the induced-Sidorenko property for
right-uniform left-weakly Hölder bigraphs.
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Lemma 6.4. Let H = (G, c) be a right-uniform left-weakly Hölder bigraph, let C ⊆ CH be
a subset of colors. Let also W = (Wi)i∈CH

be a sequence of bigraphons on the same space
such that for each i ∈ CH \ C, the bigraphon Wi is left-regular and non-zero. Then

t(HC ,W ) ≤ t(H,W )∏
i∈CH\C t(ρ,Wi)ei(H)

.

Proof. Without loss of generality, let us suppose that H does not have isolated vertices and
is not trivial.

Fix a vertex v0 ∈ V1(H), let ℓ : V1(G) → {0, 1} be the left-coloring of G defined by

ℓ(v)
def
= 1[v = v0] and let W ′ = (W ′

t,i)t∈{0,1},i∈CH
be given by

W ′
t,i

def
=

{
1, if t = 0 and i /∈ C,

Wi, if t = 1 or i ∈ C.

Then we have

t((G, 0⊗ c),W ′) = t(HC ,W ), t((G, 1⊗ c),W ′) = t(H,W ).

Let now H ′ = (G′, c′) be the colored bigraph obtained from G by removing all edges

with colors in CH \ C that are not adjacent to v0, that is, we have G′ def
= G − {(v, w) ∈

c−1(CH \ C) | v ̸= v0} and c′
def
= c|E(G′). Note that t((G, ℓ ⊗ c),W ′) = t(H ′,W ). Note also

that since H is right-uniform, all edges (v, w) in E(H ′) \ E(HC) satisfy v = v0, dG′(w) = 1
and c(v, w) ∈ CH \ C, so since each Wi with i ∈ CH \ C is left-regular, we get

t(H ′,W ) = t(HC ,W ) ·
∏

i∈CH\C

t(ρ,Wi)
dH,i(v).

Recalling from Lemma 6.2 that dH,i(v) = ei(H)/v1(H), the left-weak Hölder property
gives

t(HC ,W ) ·
∏

i∈CH\C

t(ρ,Wi)
ei(H)/v1(H) = t(H ′,W ) = t((G, ℓ⊗ c),W ′)

≤ t((G, 0⊗ c),W ′)(v1(H)−1)/v1(H) · t((G, 1⊗ c),W ′)1/v1(H)

= t(HC ,W )(v1(H)−1)/v1(H) · t(H,W )1/v1(H),

so the result follows by taking the v1(H)th power. ■

We now prove an inductive form of Jensen’s inequality for moments (this can also be
seen as inductive form of Hölder’s Inequality).

Proposition 6.5. Let p1 ≥ p2 ≥ · · · ≥ pn ≥ 1 and let f1, . . . , fn, g : Ω → R+ be bounded
positive measurable functions in a probability space Ω = (X,µ). Then∫

X

g(x) ·
n∏
i=1

fi(x)
pi dµ(x) ≥

(∫
X
g(x) ·

∏n
i=1 fi(x) dµ(x)

)p1∏n
i=1

(∫
X
g(x) ·

∏n
j=i+1 fj(x) dµ(x)

)pi−pi+1
,

where pn+1
def
= 1 and products of the form

∏t−1
j=t are interpreted as 1.
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Proof. The proof is by induction in n. For n = 0, the result is trivial. The case n = 1 follows
directly from Jensen’s Inequality for the convex function z 7→ zp1 .

Suppose then that n ≥ 2 and that the result holds for n − 1. Then by the n = 1 case
with the same g but taking the whole product as a single function and using the exponent
pn, we have ∫

X

g(x) ·
n∏
i=1

fi(x)
pi dµ(x) ≥

(∫
X
g(x) ·

∏n
i=1 fi(x)

pi/pn dµ(x)
)pn(∫

X
g(x) dµ(x)

)pn−pn+1
.

The result now follows by applying the inductive hypothesis to the integral in the numer-
ator above using g · fn in place of g and exponents p1/pn ≥ · · · ≥ pn−1/pn for the functions
f1, . . . , fn−1, respectively. ■

We can now prove that color-powers of right-uniform left-weakly Hölder bigraphs are
color-Sidorenko.

Lemma 6.6. Let H be a non-trivial right-uniform left-weakly Hölder bigraph without iso-
lated vertices and let p⃗ = (pi)i∈CH

∈ RCH
+ be such that pi ≥ 1 for every i ∈ CH . Then H

p⃗ is
color-Sidorenko.

Proof. By possibly removing unused colors and renaming them, we may assume without loss
of generality that im(cH) = CH = [n] for some n ∈ N+ and that p1 ≥ · · · ≥ pn ≥ 1.

Let h
def
= H p⃗. By Lemma 6.3, it is sufficient to show that t(h,W ) ≥ t(ρh,W )e(h) only

for sequences W = (Wi)
n
i=1 of positive bigraphons on the same spaces such that all Wi are

left-regular except possibly for Wn.

For every i ∈ [n], let Ci
def
= {i+ 1, . . . , n}. We now apply Proposition 6.5 to get

t(h,W ) =

∫
XV1(H)

n∏
i=1

t(HL
{i},W )(x)pi dµ(x)

≥

(∫
XV1(H)

∏n
i=1 t(H

L
{i},W )(x) dµ(x)

)p1
∏n

i=1

(∫
XV1(H)

∏n
j=i+1 t(H

L
{j},W )(x) dµ(x)

)pi−pi+1

=
t(H,W )p1∏n−1

i=1 t(HCi
,W )pi−pi+1

,

where pn+1
def
= 1 (note that the nth term of the final product is omitted because t(HCn ,W ) = 1

as Cn = ∅).
Recall now that all Wi except possibly for Wn are left-regular and non-zero and since

n ∈ C1∩· · ·∩Cn−1, allWj with j ∈ CH \Ci for some i ∈ [n−1] are left-regular and non-zero,
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so by Lemma 6.4 (and recalling that pi ≥ pi+1), we have

t(h,W ) ≥ t(H,W )p1∏n−1
i=1 t(HCi

,W )pi−pi+1

≥ t(H,W )p1 ·
n−1∏
i=1

(∏
j∈CH\Ci

t(ρ,Wj)
ej(H)

t(H,W )

)pi−pi+1

= t(H,W )pn ·
n∏
i=1

t(ρ,Wi)
ei(H)·(pi−pn)

≥ t(ρH ,W )pn·e(H) ·
n∏
i=1

t(ρ,Wi)
ei(H)·(pi−pn)

(5)

where the last inequality follows since H is color-Sidorenko by Lemma 6.2.
Note now that since pn · e(H) +

∑n
i=1 ei(H) · (pi − pn) = e(h), by Hölder’s Inequality, we

have

t(ρh,W ) =

∫
X

n∏
i=1

t(e1,Wi)
pi·ei(H)/e(h) dµ(x)

=

∫
X

(
n∏
i=1

t(e1,Wi)
pn·ei(H)/e(h)

)
·
n∏
i=1

t(e1,Wi)
ei(H)·(pi−pn)/e(h) dµ(x)

≤

(∫
X

n∏
i=1

t(e1,Wi)
ei(H)/e(H)

)pn·e(H)/e(h)

·
n∏
i=1

t(ρ,Wi)
ei(H)·(pi−pn)/e(h)

= t(ρH ,W )pn·e(H)/e(h) ·
n∏
i=1

t(ρ,Wi)
ei(H)·(pi−pn)/e(h).

Plugging the e(h)th power of this inequality in (5) then gives t(h,W ) ≥ t(ρh,W )e(h), that
is, h = H p⃗ is color-Sidorenko. ■

We can finally prove Theorem 3.7 (restated below).

Theorem 3.7. Let H be a non-trivial right-uniform color-edge-transitive left-weakly Hölder
bigraph without isolated vertices and let G be a bigraph with V1(G) = V1(H) and without
isolated vertices. For every U ⊆ V1(G), let

dG(U)
def
= |{w ∈ V2(G) | NG(w) = U}|,

dH(U)
def
= |{w ∈ V2(H) | NH(w) = U}|.

Suppose further that for every U ⊆ V1(G) with |U | ≥ 2 the following hold.

i.
∑

σ∈Aut(H) dG(σ(U)) = 0 if and only if
∑

σ∈Aut(H) dH(σ(U)) = 0.

ii.
∑

σ∈Aut(H) dG(σ(U)) ≥
∑

σ∈Aut(H) dH(σ(U)).
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Then G is a strong Sidorenko bigraph. In particular, G(H) is a strong Sidorenko bigraph.

Proof of Theorem 3.7. First, by [Sid91, Theorem 2], the class of strong Sidorenko bigraphs
is closed under amalgamation with a single edge along a vertex; thus, by an inductive
application of this result, it is sufficient to prove the case when all vertices on the right of G
have degree at least 2, or equivalently, we have dG(U) = 0 whenever |U | ≤ 1.

Without loss of generality, let us assume CH = im(cH).
Since H is right-uniform and does not have isolated vertices, we can define a coloring

rH : V2(H) → CH of the right side of H by letting rH(w) be the color of any (equivalently,
all) edges incident to w. Given a set U ⊆ V1(H), let us also define

DG(U)
def
= {w ∈ V2(G) | NG(w) = U}, DH(U)

def
= {w ∈ V2(H) | NH(w) = U},

so that dG(U) = |DG(U)| and dH(U) = |DH(U)|. For each i ∈ CH , let

Ui
def
= {U ⊆ V1(H) | ∃w ∈ DH(U), rH(w) = i}.

Note that for U ∈ Ui, if Aut(H) · U is the orbit of U under the action of Aut(H), then
color-edge-transitivity of H implies that Aut(H) · U = Ui.

Claim 6.7. For every U1, U2 ⊆ V1(H) and every i ∈ CH , if DH(U1) ∩ r−1
H (i) and DH(U2) ∩

r−1
H (i) are non-empty, then |U1| = |U2| and |DH(U1) ∩ r−1

H (i)| = |DH(U2) ∩ r−1
H (i)|.

Proof. For j ∈ [2], let uj ∈ Uj and let wj ∈ DH(Uj) ∩ r−1
H (i) so that cH(uj, wj) = i. Since

H is color-edge-transitive, there exists σ ∈ Aut(H) such that σ(u1) = u2 and σ(w1) = w2

and since NH(wj) = Uj (j ∈ [2]), we must have σ(U1) = U2, hence |U1| = |U2|. In turn,
since σ(U1) = U2, it also follows that |DH(U1) ∩ r−1

H (i)| = |DH(U2) ∩ r−1
H (i)| as σ is an

automorphism. ■

Let us start by proving the case in which for every U ⊆ V1(H), we have |rH(DH(U))| ≤ 1,
that is, all vertices of DH(U) have the same color. Note that this hypothesis implies that
the Ui are pairwise disjoint. In fact, this along with the hypothesis (i) of the theorem gives
that each w ∈ V2(G) belongs to exactly one set of the form NG(U) for some U ∈ Ui and
some i ∈ CH (recall that the degree of w is at least 2). For each i ∈ CH , define

di(H)
def
=

|Ui|
|Aut(H)|

·
∑

σ∈Aut(H)

dH(σ(U)),

di(G)
def
=

|Ui|
|Aut(H)|

·
∑

σ∈Aut(H)

dG(σ(U)),

pi
def
= di(G)/di(H),

mi
def
= |U |,
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where U is any set in Ui. Claim 6.7 implies that the definitions above do not depend on the
choice of U . Note also that hypothesis (ii) of the theorem gives pi ≥ 1. Finally, define

Vi
def
= {w ∈ V2(G) | ∃U ∈ Ui, NG(w) = U}

so that |Vi| = di(G).
Fix a bigraphon W : Ω × Λ → R+ and sequences f = (fv)v∈V1(G) and g = (gw)w∈V2(G) of

bounded measurable functions fv : Ω → R+ and gw : Λ → R+. For each i ∈ CH , we define
the function ĝi : Λ → R+ by

ĝi(y) =
∏
w∈Vi

gw(y)
1/di(G),

that is, ĝi is the geometric average of the sequence (gw | w ∈ Vi).
Note now that by renaming the variables, for every σ ∈ Aut(H), we have

t(G; f, g;W ) =

∫
XV1(G)×Y V2(G)

∏
v∈V1(G)

fv(xσ(v))
∏

w∈V2(G)

gw(yσ(w))

·
∏

(v,w)∈E(G)

W (xσ(v), yσ(w)) d(µ⊗ ν)(x, y)

=

∫
XV1(G)

∏
v∈V1(G)

fv(xσ(v)) ·
∏
i∈CH

∏
U∈Ui

∏
w∈DG(U)

t(KL
mi,1

,Ww)(xσ(U)) dµ(x),

where Ww(x, y)
def
= W (x, y)gw(y) and the second equality follows from the fact that each

w ∈ V2(G) belongs to exactly one set of the form NG(U) for some U ∈ Ui and some i ∈ CH .
Then Hölder’s Inequality implies

t(G; f, g;W ) ≥
∫
XV1(G)

∏
σ∈Aut(H)

( ∏
v∈V1(G)

fv(xσ(v))

·
∏
i∈CH

∏
U∈Ui

∏
w∈DG(U)

t(KL
mi,1

,Ww)(xσ(U))

)1/|Aut(H)|

dµ(x). (6)

Let us analyze each of the terms under the integral above.
For the part corresponding to the family of functions f , by Lemma 6.2, we know that H

is left-color-regular and since it is also color-edge-transitive, it follows that it is left-vertex-
transitive. Finally, since V1(G) = V1(H), we get∏

σ∈Aut(H)

∏
v∈V1(G)

fv(xσ(v))
1/|Aut(H)| =

∏
v1,v2∈V1(G)

fv1(xv2)
1/v1(G). (7)
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The other part is more involved: fix i ∈ CH and note that∏
σ∈Aut(H)

∏
U∈Ui

∏
w∈DG(U)

t(KL
mi,1

,Ww)(xσ(U))
1/|Aut(H)|

=
∏

σ∈Aut(H)

∏
U∈Ui

∏
w∈DG(σ(U))

t(KL
mi,1

,Ww)(xU)
1/|Aut(H)|.

Since for each U ∈ Ui, we have Aut(H) · U = Ui, it follows that for any given (U,w) ∈
Ui × Vi, the factor t(KL

mi,1
,Ww(xU))

1/|Aut(H)| appears exactly |Aut(H)|/|Ui| times: exactly
when σ(U) = NG(w), so we deduce∏

σ∈Aut(H)

∏
U∈Ui

∏
w∈DG(U)

t(KL
mi,1

,Ww)(xσ(U))
1/|Aut(H)| =

∏
U∈Ui

∏
w∈Vi

t(KL
mi,1

,Ww)(xU)
1/|Ui|. (8)

On the other hand, by Hölder’s Inequality, for each U ∈ Ui, we have

∏
w∈Vi

t(KL
mi,1

,Ww)(xU)
1/|Ui| =

∏
w∈Vi

(∫
Y

∏
u∈U

W (xu, y) · gw(y) dν(y)

)1/|Ui|

≥

(∫
Y

∏
u∈U

W (xu, y) ·
∏
w∈Vi

gw(y)
1/di(G) dν(y)

)di(G)/|Ui|

= t(KL
mi,1

, Ŵi)(xU)
di(G)/|Ui|,

(9)

where Ŵi(x, y)
def
= W (x, y) · ĝi(y)1/mi .

Putting (6), (7), (8) and (9) together, we get

t(G; f, g;W ) ≥
∫
XV1(G)

∏
v1,v2∈V1(G)

fv1(xv2)
1/v1(G)

∏
i∈CH

∏
U∈Ui

t(KL
mi,1

, Ŵi)(xU)
di(G)/|Ui| dµ(x)

=

∫
XV1(G)

∏
i∈CH

∏
U∈Ui

t(KL
mi,1

,W ′
i )(xU)

di(G)/|Ui| dµ(x)

=

∫
XV1(G)

∏
i∈CH

∏
U∈Ui

t(KL
mi,1

,W ′
i )(xU)

pi·di(H)/|Ui| dµ(x)

= t(H p⃗,W ′),

where W ′
i (x, y)

def
= Ŵi(x, y) ·

∏
v∈V1(G) fv(x)

1/e(G), the first equality follows since for each

i ∈ CH , each v ∈ V1(G) belongs to exactly |Ui| ·mi/v1(G) sets U ∈ Ui (as H is left-vertex-
transitive and v1(H) = v1(G)) and we have∑

i∈CH

mi · di(G) = e(G),
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and the second equality follows since pi = di(G)/di(H) ≥ 1. Since H p⃗ is color-Sidorenko by
Lemma 6.6, we conclude that

t(G; f, g;W ) ≥ t(H p⃗,W ′) ≥ t(ρH p⃗ ,W ′)e(H
p⃗).

Note now that

ei(H
p⃗) = pi ·mi · di(H) = mi · di(G),

e(H p⃗) =
∑
i∈CH

mi · di(G) = e(G).

This means that

t(ρH p⃗ ,W ′) =

∫
X×Y

∏
v∈V1(G)

fv(x)
1/e(G)

∏
i∈CH

ĝi(y)
di(G)/e(G) ·W (x, y) d(µ⊗ ν)(x, y)

=

∫
X×Y

∏
v∈V1(G)

fv(x)
1/e(G)

∏
i∈CH

∏
w∈Vi

gw(y)
1/e(G) ·W (x, y) d(µ⊗ ν)(x, y)

= t

ρ; ∏
v∈V1(G)

f 1/e(G)
v ,

∏
w∈V2(G)

g1/e(G)
w ;W

 .

Therefore G is a strong Sidorenko bigraph.

We will now show how the general case reduces to the previous case. More specifically,
we will show that if G satisfies the hypotheses of the theorem for a general H, then it also
satisfies the same hypotheses for some H ′ satisfying |rH′(DH′(U))| ≤ 1 for every U ⊆ V1(H

′).
Given a general H let C ⊆ CH be a minimal set of colors such that if U ⊆ V1(H) satisfies

dH(U) ≥ 1, then there exists w ∈ DH(U) with rH(w) ∈ C. Let then H ′ be the colored
bigraph obtained from HC by removing all of its isolated vertices. Note that only vertices
in V2(H) can be removed in this procedure, so V1(H

′) = V1(H) = V1(G). It is also clear
that H ′ is right-uniform and by Remark 2.10, it follows that HC is left-weakly Hölder, which
implies that H ′ is also left-weakly Hölder.

Note further that if σ ∈ Aut(H), then σ|V (H′) ∈ Aut(H ′), which in particular implies
that H ′ is color-edge transitive.

Conversely, we claim that every element of Aut(H ′) is of the form σ|V (H′) for some
σ ∈ Aut(H). Indeed, to extend σ ∈ Aut(H ′) to an automorphism of H, we note that
Claim 6.7 implies that for each i ∈ CH and each U1, U2 ∈ Ui, there exists a bijection θiU1,U2

between DH(U1) ∩ r−1
H (i) and DH(U2) ∩ r−1

H (i), so defining

σ(w)
def
= θiNH(w),σ(NH(w))(w)

for every w ∈ V2(H) \ V2(H ′) with rH(w) = i gives an extension of σ to an automorphism of
H.
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In particular, this means that the orbits of the actions of Aut(H) and Aut(H ′) on V1(H) =
V1(H

′) are the same.
We claim that for every U ⊆ V1(H

′), we have |rH′(DH′(U))| ≤ 1. Suppose not and let
U0 ⊆ V1(H

′) be such that DH′(U0) ∩ r−1
H′ (i1) ∩ r−1

H′ (i2) is non-empty for some i1 ̸= i2. Note
that we must necessarily have i1, i2 ∈ C, which along with Claim 6.7 implies that for every
U ⊆ V1(H

′), we have

DH(U) ∩ r−1
H (i1) ̸= ∅ ⇐⇒ DH(U) ∩ r−1

H (i2) ̸= ∅. (10)

Let us now show that C \ {i2} contradicts the minimality of C. From the choice of C, we
know that if U ⊆ V1(H) is such that dH(U) ≥ 1, then there exists w ∈ DH(U) with w ∈ C,
but from (10), we conclude that there exists w′ ∈ DH(U) with w

′ ∈ C \ {i2}, thus C \ {i2}
also satisfies the same property defining C, contradicting its minimality. This concludes the
proof of the claim. Thus, the previous case of the theorem can be applied to H ′.

It remains to show that the hypotheses (i) and (ii) of the theorem for G and H imply
that the same hypotheses hold for G and H ′. But indeed, from the definition of H ′ and since
the orbits of the actions of Aut(H) and Aut(H ′) on V1(H) = V1(H

′) = V1(G) are the same,
we get

dH(U) ≥ dH′(U), dH(U) = 0 ⇐⇒ dH′(U) = 0

for every U ⊆ V1(H), so the hypotheses (i) and (ii) of the theorem for G and H imply that
the same hypotheses hold for G and H ′. ■

7 Conclusion and open problems

In this paper, we have shown how left-sided analogues of the concepts of reflection bigraphs
and cut-percolating bigraphs can be used to obtain induced-Sidorenko bigraphs. We also
showed that the left-sided version of the weakly Hölder property, along with color-edge
transitivity and right-uniformity, also follow from left-reflection and can be used along with
a standard symmetrization technique to obtain the strong Sidorenko property.

In the proof of Theorem 3.2, we exploited heavily the fact that weak domination (hence
also the induced-Sidorenko property) only uses target bigraphons that are biregular. On
the other hand, Szegedy [Sze15b] showed that there is no loss in generality in studying
Sidorenko’s Conjecture only when the target bigraphs are both edge-vertex-transitive, so it
is natural to ask what advantages this stronger assumption can yield.

As mentioned in the introduction, it was shown in [DGH+18] that the weak norming
property can be equivalently restated as an extremal property called step Sidorenko property,
which was studied in [KMPW19] and implicitly in [Lov12, §14.2]. Since both the induced-
Sidorenko property and the left-weak Hölder-property are weaker analogues of the weak
norming property, it is natural to ask if there are similar characterizations of them in terms
of an extremal property.
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In [CL17, Conjectures 6.1 and 6.2], Conlon–Lee conjectured that a bigraph is weakly
norming if and only if it is edge-transitive under its cut-involution group. A similar but dif-
ferent conjecture is that a bigraph is cut-percolating if and only if it is edge-transitive under
the group generated by cut-involutions coming from folds (see Remark 2.3). Analogously, one
can conjecture that a bigraph is left-cut-percolating if and only if it is left-vertex-transitive
under the group generated by cut-involutions coming from folds. Since there is a mismatch
between the fact that the left-cut-percolation property is defined for bigraphs and left-weakly
Hölder property is defined for colored bigraphs, we believe that a decent analogous conjecture
relating the two might require some hypotheses how the coloring relates to folds (cf. Theo-
rem 3.3).

A Reflective tree decompositions

This section contains the definition of reflective tree decompositions (and the definition of
2-cores required by it) and the associated result from [CR21].

Definition A.1 (2-cores). For a connected bigraph G, the 2-core of G is the maximal con-
nected subgraph C2(G) in which all vertices have degree at least 2. Alternatively, C2(G) can
be obtained from G by progressively removing, in an arbitrary order, vertices of degree less
than 2 until no such vertices remain.

For a flag F = (G, θ) with G connected, the 2-core of F is the flag of the form F ′ = (G′, θ),
where G′ is the maximal subgraph in which all vertices that are not in im(θ) have degree
at least two; this can of course be obtained by progressively removing vertices of degree less
than 2 that are not in im(θ) until no such vertices remain.

Remark A.2. Since in the definition of weak domination the target bigraphons are biregular,
it follows that G weakly dominates H if and only if C2(G) weakly dominates C2(H).

Definition A.3 (Reflective tree decompositions). Given a connected non-trivial bigraph G,
a reflective tree decomposition of G is a tree T such that

i. We have V (T ) ⊆ 2V (G) and V (G) =
⋃
U∈V (T ) U .

ii. For every (v, w) ∈ E(G), there exists U ∈ V (T ) with v, w ∈ U .

iii. For every U1, U2 ∈ V (T ) and every U3 ∈ V (T ) in the unique path from U1, U2 ∈ V (T )
and every U3 ∈ V (T ) in the unique path from U1 to U2 in T , we have U1 ∩ U2 ⊆ U3.

iv. For every {U1, U2} ∈ E(T ), we have C2(FU1U2)
∼= C2(FU2U1), where FUiUj

def
= (G|Ui

, U1∩
U2) (we assume that each vertex of U1∩U2 receives the same label in FU1U2 as in FU2U1).

Condition (iv) above implies that C2(G|U1)
∼= C2(G|U2) for every U1, U2 ∈ V (T ); this

common 2-core bigraph is called the core of the decomposition.
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Theorem A.4 ([CR21, Theorem 3.5]). If T is a reflective tree decomposition of a non-trivial
connected bigraph G whose core H weakly dominates G|U1∩U2 for every {U1, U2} ∈ E(T ),
then G weakly dominates H.

In particular, if H is a Sidorenko bigraph, then G is also a Sidorenko bigraph.

In the theorem above, by Remark A.2, we have that H weakly dominates G|U1∩U2 if and
only if H weakly dominates C2(G|U1∩U2) and since the latter is a induced subgraph of H, we
get the following corollary when H is an induced-Sidorenko bigraph.

Corollary A.5 ([CR21]). If G is a non-trivial connected bigraph with a reflective tree de-
composition with an induced-Sidorenko core H, then G weakly dominates H and G is a
Sidorenko bigraph.

B Strong Sidorenko bigraphs

In [Sid91, §2], Sidorenko defined the class F as the class of bigraphs G such that∫
XV1(G)×Y V2(G)

∏
v∈V1(G)

fv(xv) ·
∏

w∈V2(G)

gw(yw) ·
∏

(v,w)∈E(G)

W (xv, yw) d(µ⊗ ν)(x, y)

·
(∫

X

F (x) dµ(x)

)e(G)−v1(G)

·
(∫

Y

G(y) dν(y)

)e(G)−v2(G)

≥

∫
X×Y

F (x)e(G)−v1(G) ·G(x)e(G)−v2(G) ·
∏

v∈V1(G)

fv(x) ·
∏

w∈V2(G)

gw(y)

1/e(G)

W (x, y) d(µ⊗ ν)


e(G)

(11)

for all finite measure spaces (X,µ) and (Y, ν) and all bounded measurable functions F, fv : X →
R+ (v ∈ V1(G)), G, gw : Y → R+ (w ∈ V2(G)) and W : X ×Y → R+. In fact, Sidorenko also
required e(G) ≥ max{v1(G), v2(G)} but this condition follows from (11) (see Remark 2.2).

It is obvious that any bigraph G in the class F is a strong Sidorenko bigraph in the sense
of Definition 2.1 by restricting to probability spaces and setting F and G to be identically 1.

For the other direction, supposeG is a strong Sidorenko bigraph andX,µ, Y, ν, F, fv, G, gw,W
are as in (11). Replacing all functions h by h+ϵ and using the Dominated Convergence The-
orem letting ϵ → 0, it is sufficient to show the case when all functions are strictly positive.
Define then the probability measures µ′ and ν ′ by

dµ′(x)
def
=
F (x)

M
dµ(x), dν ′(y)

def
=
G(x)

N
dν(y),

where M
def
=
∫
X
F dµ and N

def
=
∫
Y
G dν and let

f ′
v

def
=
fv
F
, g′w

def
=
gw
G
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so that interpreting W as a bigraphon over (X,µ′) and (Y, ν ′), the left-hand side of (11) is
written as

t(G; f ′, g′;W ) · (M ·N)e(G)

and the right-hand side of the same equation is written ast
ρ; ∏

v∈V1(G)

(f ′
v)

1/e(G),
∏

w∈V2(G)

(g′w)
1/e(G);W

 ·M ·N

e(G)

and thus (11) follows from the fact that G is a strong Sidorenko bigraph.
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