Park City Experimental Mathematics Lab

Two (Unrelated) Problems: H-Intersecting Graphs and Polyominoes

Gary Hu, Paul Hamrick, Richard Chen

Park City Mathematics Institute

Summer 2025

Our Two Problems

- Graph theory: maximum size of H-intersecting families of graphs on n vertices, where H is a bipartite graph
- Polyomino: asymptotic bounds for the behavior of the maximal number of bisections of a polyomino

H-intersecting graph families

Definition (*H*-intersecting graph family)

Given a graph H and arbitrary n, a family of graphs \mathcal{G} living in K_n is H-intersecting if any two graphs $G_1, G_2 \in \mathcal{G}$ have intersection with H as a subgraph.

We can trivially bound $|\mathcal{G}|$ below, for $n \geq v(H)$, by $2^{\binom{n}{2}-e(H)}$: fix a copy of H and take all graphs G in which all edges of that copy of H are included. We can also bound it above by $\frac{1}{2}2^{\binom{n}{2}}$ when H is nonempty, as we cannot include any graph with its complement.

Can we improve this bound?

Improving the bound on |G|

These bounds have been tightened in the following simple cases.

Conjecture (Conjecture of Simonovits-Sós)

If \mathcal{G} is a K_3 -intersecting family, then $|\mathcal{G}| \leq \frac{1}{8}2^{\binom{n}{2}}$.

Theorem (Ellis-Filmer-Friedgut 2010)

If H is a graph with chromatic number at least three, then $|\mathcal{G}| \leq \frac{1}{8}2^{\binom{n}{2}}$.

Theorem (Berger-Zhao 2023)

Any K_4 -intersecting family \mathcal{G} has size at most $\frac{1}{64}2^{\binom{n}{2}}$.

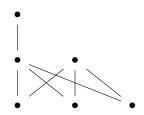
Another Simonovits-Sós conjecture

Simonovits and Sós additionally conjectured:

Conjecture (Second conjecture of Simonovits-Sós)

If \mathcal{G} is a P_3 -intersecting family, then $|\mathcal{G}| \leq \frac{1}{8}2^{\binom{n}{2}}$.

Christofides provided the following construction for a counterexample, improving the bound to $\frac{17}{128}2^{\binom{n}{2}}$:



Main problems

Problem (Stronger bounds for the P_3 case?)

Can we improve on Christofides' bound?

Problem (More general)

For other bipartite graphs, can we similarly improve on the trivial $2^{\binom{n}{2}-e(H)}$ bound?

What did we find?

Unfortunately, we did not make much progress in the P_3 case: it is a computationally hard problem.

Theorem (Trivial)

A graph has a $|\mathcal{G}|$ bound at most as big as its subgraph.

Theorem (Improvement on multipartite bound in special case)

Let k be a positive integer greater than 1. For $s_1, \ldots, s_{k-1} \in \mathbb{N}_{>0}$ and $s_1 + \cdots + s_{k-1} = m$. For $t \geq 2^m$, we can improve on the trivial bound. Let $H = K_{S_1,...,S_{k-1},t}$ and N = |E(H)|. Then for $n \ge m + t + 2$, there exists an H-intersecting family of size at least

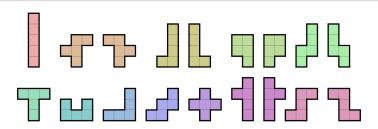
$$\frac{(t+2)(2^m-1)+1}{2^{|E(K_{s_1,\ldots,s_{k-1},t+2})|}}2^{\binom{n}{2}}>\frac{1}{2^N}2^{\binom{n}{2}}.$$

Introduction: The Problem

Definition (Polyomino)

A k-polyomino is a connected set of k unit squares in \mathbb{R}^2 (adjacency along edges).

- Equivalence up to translation and rotation.
- Holes are permitted.



Balanced Bisections

Definition (Balanced Bisection)

A partition of a 2k-polyomino P into two sets, A and B, such that:

Both A and B are k-polyominoes.

We denote the number of distinct bisections of P by d(P).

Problem (The Extremal Question)

Let $Poly_{2k}$ be the set of all 2k-polyominoes. We define the maximal number of bisections as

$$c_k := \max_{P \in Poly_{2k}} d(P).$$

• **Goal:** Determine the asymptotic behavior of c_k as $k \to \infty$.

Main Results

Theorem

The constant c_k exhibits exponential growth, $c_k \approx \beta^k \cdot k^{\gamma} \cdot (1 + o(1))$, and constrain the base of the exponent β to the interval

$$1.845 \lesssim \beta \leq 4$$
.

Conjecture

$$\beta < \mu \approx 2.662$$
.

• The rate of growth of self-avoiding walks on \mathbb{Z}^2 is μ , aka be the connective constant of the square lattice

Minimal Perimeter is "Best"

Conjecture

For any $k \ge 1$, if a 2k-polyomino P satisfies $d(P) = c_k$, then P must have a minimal perimeter among all polyominoes of size 2k.

- "Compactifying" flips
- How to deal with rectangles with an extra square?

Upper Bound

Conjecture

The quantity c_k is bounded above by

$$c_k \leq \beta^k$$

for a constant β that is strictly less than μ .

Via bridges:

$$c_k \leq \sum_{L=O(\sqrt{k})}^{L_{\sf max}(k)} O(\sqrt{k}) (\mu)^L.$$

Unfortunately...

$$\lim_{k\to\infty}\frac{L_{\max}(k)}{k}=2.$$

Percolation Theory

Conjecture

The number of bridges $b_L(A)$ of length L enclosing area A is approximately

$$b_L(A) \sim (\mu)^L exp\left(-L \cdot I\left(\frac{A}{L}\right)\right)$$

where I is a convex, non-negative rate function.

Theorem

If this conjecture is true, our upper bound conjecture is true.

Lower Bound

Theorem

The maximal number of bisections c_k satisfies the asymptotic lower bound:

$$c_k \geq \alpha^k$$
 where $\alpha \approx 1.845$.

$4 \times n$ Case

2

3

1 The number of such bisections, $N_4(n)$, is given by

$$N_4(n) = \sum_{c=0}^{\lfloor n/3\rfloor} 2^c \binom{n-2c}{c} \sum_{a=0}^{\lfloor (n-3c)/2\rfloor} \binom{n-3c}{2a} \binom{2a}{a}.$$

$$N_4(n) \approx \frac{\sqrt{3} \cdot 3^n}{\sqrt{4\pi n}} \sum_{c=0}^{\lfloor n/3 \rfloor} \frac{1}{\sqrt{1-3c/n}} \binom{n-2c}{c} \left(\frac{2}{27}\right)^c.$$

$$\sqrt{e^{1.14346}} \approx 1.7714$$

Tool #1: Local Limit Theorem

Theorem (Local Limit Theorem)

Let X_1, \ldots, X_N be i.i.d. integer-valued random variables with mean $\mathbb{E}[X_i] = \nu$ and variance $Var(X_i) = \sigma^2 < \infty$. Let $Z_N = \sum_{i=1}^N X_i$. Then the probability that Z_N takes a value m is given asymptotically for $N \to \infty$ by:

$$P(Z_N=m)\sim rac{1}{\sqrt{2\pi N\sigma^2}}\exp\left(-rac{(m-N
u)^2}{2N\sigma^2}
ight).$$

Lemma

For large N,

$$S(N) \sim \frac{3^N}{\sqrt{\frac{4\pi}{3}N}}.$$

Tool #2: Saddle-Point Methods

Theorem

The saddle-point approximation states that the sum $S_n(X_m)$ has the asymptotic behavior $S_n(X_m) \sim (C_m)^n$, where $C_m = \exp(g(\gamma_0))$ and $g(\gamma_0)$ is the value of the logarithmic exponent at the saddle point γ_0 .

Leads to a cubic:

$$162\gamma^3 - 162\gamma^2 + 45\gamma - 2 = 0.$$

- Unique real root in (0, 1/3) at $\gamma_0 \approx 0.0545051$.
- Back substitute to get $\sqrt{e^{1.14346}} \approx 1.7714$

Step 1: The Setup

We tile the central $(m-2) \times n$ strip with:

- **1** Simple Blocks: $B_s = m 1$ configurations of width 1.
- **Complex Blocks:** $q_c(m)$ configurations of width 2, being tilings of an $(m-2) \times 2$ rectangle by two identical polyominoes.

Step 2: An Upper Bound

Theorem

Within the block-tiling model, the number of bisections, $N_m(n)$, is given by

$$N_m(n)=(m-1)^n\sum_{c=0}^{\lfloor n/2\rfloor}\binom{n-c}{c}X_m^c,$$

where $X_m = q_c(m)/(m-1)^2$, $B_s = m-1$ is the number of simple block configurations, and $q_c(m)$ is the number of complex block configurations.

Step 3: Saddle Point Equations

Theorem

The dominant contribution to the sum $S_n(X_m)$ comes from terms where the fraction of complex blocks, $\gamma = c/n$, satisfies the saddle-point equation:

$$(1/X_m+4)\gamma^2-(1/X_m+4)\gamma+1=0.$$

Step 4: Conclusion

Theorem

The asymptotic growth of $N_m(n)$ as a function of k = mn/2 is of the form $(\alpha_m)^k$, where the base α_m is given by

$$\alpha_m = ((m-1) \cdot C_m)^{2/m},$$

and $C_m = \exp(g(\gamma_0))$ is the asymptotic correction factor derived from the saddle-point analysis.

Results

Rectangle Shape (m)	Resulting Bound (α_m)
4	1.7714
5	1.8170
6	1.8445
7	1.7688

Thank you!

Theorem (Problem 1)

Let k be a positive integer greater than 1. For $s_1,\ldots,s_{k-1}\in\mathbb{N}_{>0}$ and $s_1+\cdots+s_{k-1}=m$. For $t\geq 2^m$, we can improve on the trivial bound. Let $H=K_{s_1,\ldots,s_{k-1},t}$ and N=|E(H)|. Then for $n\geq m+t+2$, there exists an H-intersecting family of size at least

$$\frac{(t+2)(2^m-1)+1}{2^{|E(K_{s_1,\ldots,s_{k-1},t+2})|}}2^{\binom{n}{2}}>\frac{1}{2^N}2^{\binom{n}{2}}.$$

Conjecture (Problem 2)

1.845
$$\lesssim \beta < \mu \approx$$
 2.662.

