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Localization schemes: A framework for proving

mixing bounds for Markov chains

Yuansi Chen* and Ronen Eldan†

Abstract

Two recent and seemingly-unrelated techniques for proving mixing bounds for Markov

chains are: (i) the framework of Spectral Independence, introduced by Anari, Liu and Oveis

Gharan, and its numerous extensions, which have given rise to several breakthroughs in the

analysis of mixing times of discrete Markov chains and (ii) the Stochastic Localization tech-

nique which has proven useful in establishing mixing and expansion bounds for both log-

concave measures and for measures on the discrete hypercube. In this paper, we introduce

a framework which connects ideas from both techniques. Our framework unifies, simplifies

and extends those two techniques. In its center is the concept of a “localization scheme”

which, to every probability measure on some space Ω, assigns a martingale of probability

measures which “localize” in space as time evolves. As it turns out, to every such scheme

corresponds a Markov chain, and many chains of interest appear naturally in this frame-

work. This viewpoint provides tools for deriving mixing bounds for the dynamics through

the analysis of the corresponding localization process. Generalizations of concepts of Spec-

tral Independence and Entropic Independence naturally arise from our definitions, and in

particular we recover the main theorems in the spectral and entropic independence frame-

works via simple martingale arguments (completely bypassing the need to use the theory of

high-dimensional expanders). We demonstrate the strength of our proposed machinery by

giving short and (arguably) simpler proofs to many mixing bounds in the recent literature.

In particular, we: (i) Give the first O(n log n) bound for mixing time of the hardcore-model

(of arbitrary degree) in the tree-uniqueness regime, under Glauber dynamics, (ii) Give the

first optimal mixing bounds for Ising models in the uniqueness regime under any external

fields, (iii) Prove a KL-divergence decay bound for log-concave sampling via the Restricted

Gaussian Oracle, which achieves optimal mixing under any exp (n)-warm start, (iv) Prove

a logarithmic-Sobolev inequality for near-critical Ferromagnetic Ising models, recovering

in a simple way a variant of a recent result by Bauerschmidt and Dagallier.

*Duke University.
†Microsoft Reseach. This work was partially supported by a European Research Council Grant no. 803084.

and by NSF grant no. DMS-1926686.
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1 Introduction

Suppose that we would like to sample from a measure ν on some set Ω. For the sake of dis-

cussion, suppose that either Ω = {−1, 1}n is the Boolean hypercube or Ω = Rn. A common

algorithm is to find a Markov chain whose stationary distribution is ν and which exhibits good

mixing bounds.

In the case Ω = {−1, 1}n, a very useful Markov chain associated to a measure ν is the

Glauber dynamics, defined as follows: Given x ∈ {−1, 1}n, the transition kernel from x, Px→ ·,
is the law which describes the point Y picked according to following random procedure: Pick

uniformly a coordinate i ∈ [n] and then take Y according to the law ν conditioned on the event

{Yj = xj , ∀j ∈ [n] \ {i}}.

For a Markov chain (Xt)t in a state space Ω which has a unique stationary measure ν,

a mixing bound typically asserts that for every ε > 0 there is a time t(ε) such that for all

measurable A ⊂ Ω and all t > t(ε), one has |P(Xt ∈ A)− ν(A)| ≤ ε. See [LP17] for an

extensive account of this subject.

In recent years, there appeared two seemingly-unrelated new techniques which were used

to establish mixing bounds through functional inequalities:

• The work [ALOG20] put forth the notion of Spectral independence and developed a

framework which relies on those notions in order to establish mixing bounds for measures

on the set of subsets of [n]. This framework relies on the theory of high-dimensional ex-

panders. Some follow-up works which extended this technique are [AJK+21b, CLV21,

AJK+21a, CFYZ21b, FGYZ21, BCC+22, Liu21, AASV21].

• The stochastic localization technique, introduced by the second author in [Eld13], is the

central ingredient used in the proofs of several functional inequalities, both in the contin-

uous setting where Ω = Rn and ν is a logarithmically-concave measure and in the setting

of the discrete hypercube. Most notably, the technique gives the state-of-the-art bounds,

due to the first author ([Che21]), for the so-called Kannan-Lovász-Simonovits conjecture

([KLS95a]) and Bourgain’s slicing problem (see [KM21]). Some follow-up works based

on this technique are [Eld20, ES22, Kla18, LV17, Che21].

In this work, we both unify and expand these two techniques towards a new framework

which can be used to establish mixing bounds in various settings, showing that the same prin-

ciples govern in a wide variety scenarios.

One of the main principles underlying both techniques is that concentration bounds on a

measure can be deduced from bounds on the covariance structure of a certain family of measures

which are transformations of the original measure: In the spectral independence framework, a
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sufficient condition for a spectral gap is the boundedness of the influence matrices of restrictions

of the measure (the influence matrix has a simple correspondence with the covariance matrix),

and in the stochastic localization framework a spectral gap is implied by the boundedness of the

covariance matrix along a certain stochastic process which is associated with the measure.

This work shows that with the correct point of view, those two reductions follow from the

exact same argument. By approaching the notions of spectral and entropic independence from

this point of view, we will be able to:

(i) Generalize the theory, giving rise to a natural family of Markov chains together with a

toolbox of ingredients that can be used to prove mixing bounds for those chains.

(ii) Simplify the proofs in the foundations of the framework of spectral and entropic indepen-

dence, and in particular completely bypass the need to use the theory of high-dimensional

expanders.

(iii) Provide a self-contained and (arguably) simpler proofs for many of the expansions of the

spectral/entropic independence machinery, and in particular reprove in a more general

context several main theorems which appear in [ALOG20, CLV21, AJK+21b, AJK+21a,

CFYZ21b, CFYZ21a, STL20, LST21].

Summary of applications

To demonstrate the strength of our machinery, we apply it in several settings:

• We derive the optimal mixing rate for Glauber dynamics on the hardcore model of any

degree in the tree-uniqueness regime, showing that it mixes in time O(n logn). A similar

mixing rate was obtained in [AJK+21a] for a different Markov chain which was tailored

for the hardcore model. Additionally, our framework (arguably) allows us to significantly

simplify the argument.

• We give the first optimal mixing bounds for graphical Ising models in the uniqueness

regime under any external fields, improving the results in [CFYZ21a] in the sense that

there is no dependence of the bound on the external field. In this case as well, the proof

is significantly simpler.

• Provide a very simple proof of a KL-divergence decay bound for log-concave sampling

via the so-called Restricted-Gaussian-Oracle introduced in [STL20]. Our bound works

under any exp(n)-warm start, resolving an issue raised in [LST21].

• Give a self-contained and simpler proof of mixing for the Glauber dynamics for Ising

models whose interaction matrix has operator norm bounded by 1, which in particular

gives optimal mixing for Glauber dynamics on the Sherrington-Kirkpatrick model in high

enough temperature, recovering the result derived from [EKZ21, AJK+21a].

• We recover, in a simple way, a variant of a recent result by Bauerschmidt and Dagal-

lier [BD22], proving a logarithmic-Sobolev inequality for Ferromagnetic Ising models in

terms of the model’s susceptibility.
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Concurrent work

Shortly before submitting this manuscript, we were informed by Chen, Feng, Yin and Zhang of a

manuscript in preparation [CFYZ22] which independently proves parts of the results regarding

antiferromagnetic Ising models that we prove here, and in particular gives the same mixing

bound for the hardcore model, using a different proof technique.

Mixing via functional inequalities

Consider a reversible transition operator P = Px→y with stationary measure ν on a state space

Ω. Its spectral gap is defined as the quantity

gap(P ) := inf
ϕ:Ω→R

∫

Ω×Ω
(ϕ(x)− ϕ(y))2dPx(y)dν(x)

2Varν [ϕ]
.

Next, define

Entν [f ] =

∫

f(x) log f(x)dν(x)−
∫

f(x)dν(x) log

(
∫

f(x)dν(x)

)

.

We define the modified log-Sobolev Inequality (MLSI) coefficient as

ρLS(P ) := 1− sup
f :Ω→[0,∞)

Entν [Pf ]

Entν [f ]
.

Remark 1. The above definition is only valid if the Markov transition kernel P is reversible (or

self adjoint). If it is not reversible, Pf needs to be replaced by
dP ∗(fν)

dν
. In this work we only

discuss the reversible case, so we stick to the simpler notation.

It is standard to deduce mixing bounds for the associated Markov chain from the above

quantities. Given an initial distribution µ which is absolutely continuous with respect to ν,

consider the total-variation mixing time

tmix(P, ε;µ) = min
{

t > 0;
∣

∣P t[µ](A)− ν(A)
∣

∣ ≤ ε, ∀A ⊂ Ω
}

Moreover, define

tmix(P, ε) = max
x∈Ω

tmix(P, ε, δx).

The following fact is standard (see e.g. [LP17, Theorem 12.4] and [CLV21, Fact 3.5]).

Fact 2. Suppose that for all x ∈ Ω one has ν({x}) ≥ η. Then,

tmix(P, ε) ≤ Cgap(P )−1 (log(1/η) + log(1/ε)) , and

tmix(P, ε) ≤ CρLS(P )
−1 (log log(1/η) + log(1/ε)) .

The main aim of our machinery is to provide tools which give lower bounds for the spectral

gap and modified log-Sobolev coefficient for a family of Markov chains that arise naturally in

our framework.
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1.1 Review of the framework and ideas

We now give a brief overview of the framework constructed in the next sections.

• The key definitions in the framework are a localization process and a localization scheme.

A localization process is a stochastic process (νt)t≥0 where each νt is a probability mea-

sure on some space Ω, having the property that for every subset A ⊂ Ω, the stochastic

process t→ νt(A) is a martingale which satisfies limt→∞ νt(A) ∈ {0, 1}. A localization

scheme is a mapping which, to every probability measure ν on Ω, assigns a localization

process (νt)t with ν0 = ν. Thus, a localization scheme can be thought of as a way to

interpolate between a given measure ν and a (random) Dirac measure, via a martingale

on the space of measures.

• Given a localization process (νt)t and a time τ > 0, there is a reversible Markov chain on

ν, whose stationary measure is ν = ν0, which is naturally associated to the localization

process. This Markov chain is defined by the formula

Px→y = E

[

ντ (x)ντ (y)

ν(x)

]

.

It turns out that many Markov chains arise via naturally defined localization schemes.

In particular, the Glauber dynamics on ({−1, 1}n, ν) can be derived from what we call

the coordinate-by-coordinate localization scheme. This scheme is defined by taking

(k1, ..., kn) to be a uniformly random permutation of [n], taking X ∼ ν and setting νt to

be the law ofX conditioned onXk1 , . . . , Xkt . Some other chains that arise via this frame-

work (using other localization schemes) are the hit-and-run walk, the up-down walk, the

Restricted-Gaussian dynamics and the field dynamics.

• Next, we will see that there is a simple way to analyze the spectral gap and MLSI coef-

ficient of the Markov chain associated to a localization scheme: In order to give a bound

on the spectral gap, one needs to give a lower bound to the quantity E

[

Varντ [ϕ]
Varν [ϕ]

]

for an

arbitrary test function ϕ : Ω → R. Similarly, for MLSI, one needs to lower bound the

quantity E

[

Entντ [f ]
Entν [f ]

]

for f : Ω → [0,∞). Intuitively speaking, the measure-valued pro-

cess νt “zooms in” on smaller and smaller portions of Ω, and we want to establish that

there is still some variance (or entropy) left all the way up to time τ , while the measure

ντ is already focused on a small portion of the space.

• In light of the above intuition, it makes sense to analyze the time differentials of the

stochastic processes t → log(Varνt[ϕ]) and t → log(Entνt [f ]) (which can be in either

continuous or discrete time, depending on the localization scheme). Roughly speaking,

we want to obtain lower bounds for their drifts. By integrating those bounds with respect

to time, we could then obtain bounds on the spectral gap and MLSI. When a measure

ν satisfies the lower bound
dVarνt [ϕ]

Varνt [ϕ]
≥ −αdt + martingale, we say that it satisfies α-

approximate conservation of variance bound, and similarly when
dEntνt [f ]

Entνt [f ]
≥ −αdt +

martingale, we say that it satisfies α-approximate conservation of entropy.

• It turns out that there is an efficient way to obtain approximate conservation of variance

and entropy bounds for a family of localization schemes which we call linear-tilt lo-

calizations. Roughly speaking, these are schemes where
νt+h

νt
is a linear function up to
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o(h). We will see that many localization schemes of interest, including the coordinate-

by-coordinate scheme and the stochastic localization scheme of [Eld13] can be described

this way.

µ0

µ1

P

P

µk

µk+1

P k−1 ν

µk,t

νt

localization

Entν(f) ≈ E[Entνt(f)]

Entν(Pf) ≥ E[Entνt(Pf)]

MLSI of νt

(a) (b)

approximate conservation of entropy

supermartingale

?

Figure 1: (a). Probability measures encountered during the iterates of a Markov chain P with

target distribution ν and initial distributionµ0. We wish to establish the entropy decay (or MLSI)

for each iteration of the Markov chain. (b). Probability measures generated via a localization

scheme. If a stochastic scheme is used, the red box indicates that one may generate multiple

random instances of (νt, µk,t) starting from (ν, µk). The localization scheme is designed such

that it is easier to establish the entropy decay for the new measures on (b). With f = µk

ν
, the

entropy decay properties of the measures on (b) can be related to those on (a) thanks to the

martingale properties of the localization.

• For linear-tilt localization scheme, we see that a simple argument which uses the Cauchy-

Schwartz inequality shows that approximate variance conservation is related to the pro-

cess of covariance matrices t → Cov(νt). For the case of coordinate-by-coordinate

localization this argument recovers the spectral independence framework of Anari, Liu

and Oveis Gharan in a very simple way that completely bypasses the need to use high-

dimensional expanders.

• Approximate conservation of entropy turns out to follow from a natural condition that we

call entropic stability, which roughly says that the center of mass of the measure cannot

move too much under perturbations with small relative entropy. This can be thought of as

a weak form of transportation-entropy inequalities. In the context of the coordinate-

by-coordinate localization we will see that it amounts to a very simple property of the

logarithmic Laplace transform which is very similar to fractional log-concavity. This

would give us a way to recover a variant of the entropic-independence framework intro-

duced in [AJK+21b].

• Another ingredient in our framework will be the concept of annealing via a localization

7



scheme. Given two localization schemes on the same space, we can “concatenate” them

by running one scheme up to some time t and then running the other on the measure

νt produced by the first scheme. What we will see is that we can produce spectral gap

and MLSI bounds, with respect to the dynamics associated with the second localization

scheme, by showing that the first localization scheme does not contract the variance /

entropy and “anneals” the measure in a way that it outputs a measure to which we can

ensure mixing for the second scheme. Such annealing procedure will be useful in many

of the applications.

In Figure 1, we summarize the conceptual diagram used to analyze the MLSI coefficient of

a Markov chain via a localization scheme.

1.2 Related techniques

Local-to-global theorems and high-dimensional expanders

The framework of spectral independence was originally based on local-spectral-expansion in-

equalities in high-dimensional expanders, which was defined and derived in works of Alev,

Dinur, Kaufmann, Lau, Mass and Oppenheim ([AL20, Opp18, KO20, DK17, KM17]). These

inequalities allow us to compare between the spectral gap of the ℓ-down-up-walk and that of

the ℓ + 1-up-down-walk on spectral expanders. This principle was first used towards estab-

lishing bounds on the spectral gap by Anari, Liu, Oveis Gharan and Vinzant [ALGV19]. Our

framework could be thought as an alternative way to prove “local-to-global” theorems.

Pathwise analysis

Our technique can be seen as a manifestation of the pathwise analysis method (see [Eld22]).

This method is closely-related to the so-called semigroup technique where, in order to prove

an inequality regarding a measure, one considers an evolution of the measure via a semigroup

(usually the heat semigroup) which provides an interpolation between the measure in hand and

a simpler one, and the analysis amounts to showing inequalities regarding the evolution (e.g.,

monotonicity of certain quantities). Pathwise-analysis considers a random evolution rather than

a deterministic one which allows arguments to be carried out path-by-path rather than on an

average sense.

The logarithmic Laplace transform

The logarithmic Laplace transform is central to our framework: Upper bounds on either itself or

its Hessian turn out to be naturally related to functional inequalities of the underlying measure,

and it is also used associate between inequalities regarding the center of mass and the covariance

structure and relative entropies. In the context of measures on the discrete cube, it was suggested

that the log-Laplace transform performs a natural role in concentration inequalities in a paper

by Shamir and the second author [ES22]. In the context of log-concave measures on Rn the

log-Laplace transform was long known to perform a central role in concentration inequalities,

see [Kla06, KM12, EK11].

Related techniques in Markov chains

Our technique is also related to Markov chain decomposition techniques ([MR02, JSTV04])

where the analysis of mixing times of a Markov chain is carried out by splitting the chain into

8



simple-to-analyze components via restriction and projection-like operations. Another common

technique in Markov chains is coupling, of paths. The coupling technique is also based on

path-by-path analysis but otherwise is very different in spirit from our technique, which does

not consider paths of the random walk but rather of the measure-evolution process.

Localization techniques

The idea of proving concentration inequalities by considering a certain scheme which con-

verts the measures into simpler ones by localizing on space goes back to Gromov and Milman

[GM87] and Kannan, Lovász and Simonivits ([KLS95b, KLS95a]). In these works, a measure

is effectively decomposed into one-dimensional components called “needles”. More recently,

needle-decompositions of measures were also used in Riemannian geometry [Kla17, Mil21].

Summary of notation

• ρLS(·) - Modified log-Sobolev (MLSI) coefficient.

• gap(·) - Spectral gap.

• Entν [f ] :=
∫

f(x) log f(x)dν(x)−
∫

fdν log
(∫

fdν
)

.

• DKL(µ||ν) :=
∫

log dµ
dν
(x)dµ(x).

• For a matrix A ∈ Mn×n, ‖A‖OP - operator norm; ρ(A) - spectral norm.

• For a measure ν on Rn:

– b(ν) :=
∫

xdν(x) - The center of mass.

– Cov(ν) =
∫

(x− b(ν))⊗2dν(x) - The covariance matrix.

– Cor(ν) := diag(Cov(ν))−1/2Cov(ν)diag(Cov(ν))−1/2, where diag(·) is the diago-

nal matrix obtained by setting all the off-diagonal entries to 0, called the correlation

matrix.

– Ψ(ν) := Cov(ν)diag(Cov(ν))−1 the influence matrix.

– Tvν where v ∈ Rn is defined as
dTvν(x)
dν(x)

:= e〈v,x〉dν(x)∫
e〈v,z〉dν(z)

(exponential tilt of a mea-

sure).

– (e1, . . . , en) is the standard basis of Rn.

– Sn−1 is the unit sphere in Rn.

• For a measure ν on {−1, 1}n,

– For u ∈ {−1, 0, 1}n define Su :=
{

x ∈ {−1, 1}n; xiui ≥ 0, ∀i ∈ [n]
}

.

– Ruν is the normalized restriction of ν to Su (pinning of ν according to u).

– For A ⊂ [n], RAν = R1A
ν (by abuse of notation, pinning of coordinates in A to

+1).

– PGD(ν) is the transition kernel for the Glauber-dynamics on ν.

9
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2 Localization schemes and their associated dynamics

In this section, first we introduce the central object in our framework: a localization scheme.

Second we discuss the dynamics associated with a localization scheme. Finally, we present

several examples of localization schemes.

We fix a set Ω equipped with a σ-algebra Σ. For simplicity the reader may assume that

either Ω is Rn equipped the σ-algebra of Lebesgue measurable sets, or Ω is {−1, 1}n equipped

with the discrete σ-algebra. Denote by M(Ω) the space of probability measures on Ω.

Definition 3. A localization process on Ω is a measure-valued stochastic process (νt)t≥0 which

satisfies the following properties:

(P1) Almost surely, νt is a probability measure on Ω for all t.

(P2) For every measurable A ⊂ Ω, the process t→ νt(A) is a martingale.

(P3) For any measurable A ⊂ Ω, the process νt(A) almost surely converges to either 0 or 1 as

t→ ∞.

Remark 4. In the following, we deal with both continuous-time localization processes (namely

the time parameter t lives in [0,∞)) and discrete-time localization processes (with the discrete

time parameter t = 0, 1, 2, ...). In order to keep the notation simple, we always assume that t is

real-valued, but in the latter case we simply assume that the process is constant in intervals of

the form [k, k + 1) for k ∈ Z.

Definition 5. A localization scheme on Ω is a mapping that assigns to each probability measure

ν ∈ M(Ω) a localization process (νt)t≥0 which satisfies ν0 = ν.

If L is a localization scheme and (νt)t≥0 = L(ν), then we say that (νt)t≥0 is the localization

process associated with ν via the localization scheme L.

2.1 Simple examples of localization schemes

To better understand the definition of localization schemes, we give a few simple examples.

2.1.1 Example 1: Coordinate-by-coordinate localization

Let ν be a probability measure on {−1, 1}n. Define a process ν1, ..., νn in the following way:

Let (k1, ..., kn) be a random variable drawn from the uniform distribution over all permutations

of [n]. Let X be a random point sampled from ν, independent of (k1, ..., kn). For t ≥ 0, define

νt to be the law of X conditioned on Xk1, ..., Xki for i = min(⌊t⌋, n).
Note that, by definition, the sequence (νt)t≥0 is a martingale, the measures νt are probability

measures and almost surely νt is a Dirac measure for all t ≥ n. Thus, (νt)t is a localization pro-

cess. The coordinate-by-coordinate localization scheme is the scheme that assigns the process

(νt)t≥0 to the measure ν.

10



2.1.2 Example 2: Random-subspace localization

Let ν be a probability measure on Rn and let (u1, ..., un) be a random orthogonal basis in Rn,

distributed according to the Haar measure on the orthogonal group O(n). Sample Z a random

point from ν independently of (u1, ..., un). For all t ≥ 0, let νt be the law of Z conditioned on

〈Z, u1〉, . . . , 〈Z, ui〉 for i = min(⌊t⌋, n). Then νt is a Doob martingale of probability measures

and νn is a Dirac point measure supported on Z. Thus, (νt)t≥0 is a localization process.

2.1.3 Example 3: Halfspace-bisection localization

Let ν be an absolutely continuous probability measure on Rn. Let θ1, θ2, . . . be a sequence of

independent points generated from the Haar measure on Sn−1 and let ǫ1, ǫ2, . . . be a sequence of

independent ±1 Bernoulli random variables. Set ν0 = ν and for all i ∈ Z, define νi inductively

as follows. Set

ti = min {s ∈ R; νi−1({x; x · θi ≤ s}) = 1/2} ,
define Hi = {x ∈ Rn; (x · θi − ti)ǫi ≥ 0}. For all measurable A ⊂ Rn, set νi(A) :=
2νi−1(A ∩ H), the normalized restriction of νi−1 to H . In words, νi is generated by choosing

a uniformly random direction in the sphere and picking one of the two half-spaces that bisect

νi−1 into two parts of equal mass in that direction. Define νt = νmin(⌊t⌋,n). It is not hard to check

that this process is a martingale and thus (P1) and (P2) are satisfied. It can be shown that (P3) is

also satisfies, and so the process (νt)t is a localization process, but we omit the proof since this

process is only given for the sake of the example and is not used in the rest of the paper.

2.1.4 Example 4: Gaussian channel localization

Consider the case Ω = Rn. Let ν be a probability measure on Ω. We construct the process

(νt)t as follows. Let X ∼ ν and let Bt be a standard Brownian motion on Rn independent of

X . Define νt to be the law of X conditioned on tX + Bt. This process clearly satisfies (P1)

and (P2). Under mild conditions we have that tX+Bt

t
= X + Bt

t
converges to X and that (νt)t

is a localization process. More details about the Gaussian channel localization are provided in

section 2.4.

2.1.5 Example 5: Subset simplicial-complex localization

Let k be an integer less than or equal to n. Let Ω be the set of all subsets of size of k of [n], and let

ν be a probability measure on Ω. We construct a sequence of measures as follows: Let X ∼ ν
and let j1, ...jk be a random permutation of [k], independent of X . Write X = {x1, .., xk},

where x1 < · · · < xk. For i ∈ {1, . . . , k}, define νi to be the law of X conditioned on

Xj1, . . . , Xji. Define νt = ν⌊t⌋∧k.

2.2 Dynamics associated with a localization scheme

Given a localization scheme, there is a natural way to introduce a sampling algorithm associated

with it. Specifically, starting from a localization process associated with ν with a localization

scheme, we can define a Markov chain whose stationary measure is ν.

Definition 6. (Markov chain associated with a localization process) Let (νt)t be a localiza-

tion process on Ω and let τ > 0. The dynamics associated with νt and τ is the Markov chain

11



whose transition kernel is defined by the formula

Px→A = E

[

ντ (x)ντ (A)

ν(x)

]

, ∀x ∈ Ω, A ⊂ Ω. (1)

Remark 7. The above definition only makes sense under the condition that νt is almost surely

absolutely-continuous with respect to ν, in which case the quantity
νt(x)
ν(x)

is well-defined for

ν-almost every x. Below, we will see how to remedy this issue if this is not the case.

Fact 8. The operator defined in (1) is the transition kernel of a reversible Markov chain whose

stationary measure is ν.

Proof. By property (P2) of Definition 3, we have E[ντ ] = ν, which implies that for ν-almost

every x ∈ Ω,

E

[

ντ (x)ντ (Ω)

ν(x)

]

= E

[

ντ (x)

ν(x)

]

= 1,

so that Px→· is indeed a probability measure. It is evident from the definition that for all A,B ⊂
Ω,

∫

A

Px→Bdν(x) =

∫

A

E

[

dντ (x)

dν(x)
ντ (B)

]

dν(x)

= E [ντ (A)ντ (B)] =

∫

B

Py→Adν(y),

hence the Markov chain is reversible and has stationary measure ν.

Remark 9. Instead of taking the time τ to be deterministic, we can take it to be a stopping time.

It is not hard to verify that we still get a reversible Markov chain.

Another interpretation of the Markov chain associated to localization process is the follow-

ing: consider a random variable (X, Y ) ∈ Ω× Ω defined by

P(X ∈ A, Y ∈ B) = E [ντ (A)ντ (B)] . (2)

Define a transition kernel by the formula

Px→A = P(Y ∈ A |X = x).

If νt is absolutely continuous with respect to ν, the conditioning is well-defined for ν-almost

every x. If that is the case, it is not hard to check that the above transition kernel coincides with

the one in definition 6.

Definition 6 introduces a Markov chain with a localization process and a parameter τ . Con-

sequently, every localization scheme gives rise to a sampling algorithm.

Definition 10. (Sampling algorithm associated to a localization scheme). Given a localiza-

tion scheme L on a space Ω and given τ > 0, we define P (L,τ) as the mapping from M(Ω) to

the space of Markov kernels on Ω where P (L,τ)(ν) is given by equation (1).
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Example 1: The coordinate-by-coordinate scheme and Glauber dynamics

Let us show that the dynamics associated with the coordinate-by-coordinate localization scheme

from subsection 2.1.1, with the choice τ = n− 1, is the Glauber dynamics, defined as follows.

Definition 11. (Glauber dynamics) For a measure ν on {−1, 1}n, the Glauber dynamics is the

Markov chain whose transition kernel PGD(ν) is

PGD
x→y(ν) =

1

n

ν(y)

ν(x) + ν(y)
1{‖x−y‖1=1} + p1{x=y},

with p = 1
n

∑n
i=1

ν(x)
ν(x)+ν(x⊕ei)

and x ⊕ ei denotes the vector of {−1, 1}n obtaining by flipping

the i-th coordinate of x.

Consider the dynamics obtained from the formula (1) with τ = n− 1. First, for y = x⊕ ei,

we have

E

[

ντ (x)ντ (y)

ν(x)

]

=
1

n

∑

j∈[n]
E

[

νn−1(x)νn−1(y)

ν(x)

∣

∣

∣

∣

kn = j

]

=
P(supp(νn−1) = {x, y})

n
E

[

νn−1(x)νn−1(y)

ν(x)

∣

∣

∣

∣

kn = i, supp(νn−1) = {x, y}
]

=
ν(x) + ν(y)

nν(x)

ν(x)

ν(x) + ν(y)

ν(y)

ν(x) + ν(y)

=
1

n

ν(y)

ν(x) + ν(y)
.

Second, if ‖x − y‖1 > 1 then PGD
x→y(ν) = 0, which establishes the fact that the Markov chain

associated with the coordinate-by-coordinate process is Glauber dynamics.

Remark 12. We can also consider the Markov chain obtained by choosing τ = n− ℓ, for some

ℓ > 1. The transition kernel of this Markov chain can be described as follows: Given that the

current state is some x ∈ {−1, 1}n, the next state will be generated by first choosing a subset

of coordinates A ⊂ [n] with |A| = ℓ uniformly at random, and then choosing a point according

to the restriction of ν to the subcube defined by {y; yi = xi, ∀i ∈ [n] \ A}. We refer to this

Markov chain as the ℓ-Glauber-dynamics.

Example 2: The subspace localization scheme and the hit-and-run walk

Fix a measure ν on Rn and let (νt)t be the subspace-localization process defined in Subsection

2.1.2. Define τ = n− 1. Let (X, Y ) obey equation (2). Given x ∈ Ω, consider the expression

Px→A = P[Y ∈ A|X = x]

= Eu1,...,un−1,Z [P(Y ∈ A|X = x, u1, ..., un−1, Z)].

Note that, by definition, conditioned on u1, .., un−1, Z we have that X, Y have the law of the

restriction of ν to {x; 〈x − Z, ui〉 = 0, ∀i ∈ [n − 1]}. Therefore, we can understand the
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conditioning on X = x as conditioning on the event Ex = {〈Z − x, ui〉 = 0, ∀i ∈ [n− 1]}. In

other words

Px→A = Eu1,...,un [P (Z ∈ A|〈Z − x, ui〉 = 0, ∀i ∈ [n− 1])]

= Eun

[

P
(

Z ∈ A|Proju⊥
n
(Z − x) = 0

)]

.

In words, given the point x, to generate the next point in the Markov chain, we first generate

the direction un uniformly from the Haar measure on the unit sphere and then generate a point

from the restriction of ν to the fiber Proju⊥
n
x + Span(un). This Markov chain is known as the

hit-and-run walk (see e.g, [Lov99]).

Other examples of Markov chains

• In Subsection 2.4.3, we show that the Gaussian-channel localization gives rise to the

sampling algorithm introduced in [STL20], where each step is a restricted Gaussian

oracle step.

• The dynamics associated to the subset simplicial-complex localization in Subsection 2.1.5

with time τ = k − ℓ leads to the ℓ-down-up walk (see [ALOG20]).

• A continuous analogue of the coordinate-by-coordinate localization scheme gives rise to

the coordinate hit-and-run algorithm (see [NS22]).

• The dynamics associated with the negative-fields localization constructed in Subsection

2.4.4 is the field dynamics introduced in [CFYZ21b].

2.3 Doob localization schemes

In this subsection, we describe a class of localization schemes which generalizes several exam-

ples we have seen so far. Given a set Ω equipped with a σ-algebra Σ, we say that a filtration

(Ft)t≥0 of Ω is precise if σ
(
⋃

t≥0 Ft

)

= Σ. Let FΩ be the space of probability measures over

the set of precise filtrations on Ω.

Given a distribution m ∈ FΩ, we can introduce a localization scheme using the filtration

generated fromm. For any measure ν on Ω, we construct a localization process (νt)t as follows:

Let Y be a ν-distributed random variable and let Ft be a precise filtration generated from m
independently of Y . νt is defined as follows

νt(A) = E [P(Y ∈ A|Ft)] , ∀A ⊂ Ω measurable .

It is evident that νt satisfies (P1) and (P2). Since Ft is precise we also have that νt satisfies (P3).

We call localization schemes constructed this way Doob localization schemes.

We can verify that coordinate-by-coordinate scheme and the random-subspace localization

schemes are Doob localization schemes. For the coordinate-by-coordinate localization scheme,

it suffices to take (Ft)t≥0 to be σ-algebra generated by the maps x 7→ xi for i ∈ k1, . . . , k⌊t⌋.
For the random-subspace localization scheme, we take (Ft)t≥0 to be σ-algebra generated by the

maps x 7→ 〈x, ui〉 for i ∈ k1, . . . , k⌊t⌋.
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2.4 Linear-tilt-localizations

In this subsection, we describe a family of localization schemes which arise from a process

known in the literature under the name stochastic localization. To avoid confusion and to

make it possible to include new localization schemes to this family, we refer to this family as

linear-tilt localizations. The general idea behind these schemes is that, in order to obtain the

measure νt+dt from the measure νt, one multiplies the density by a random linear function. Our

definitions in this section make sense whenever Ω can be naturally embedded in a linear space.

However, we will mainly focus our attention on the cases Ω = Rn and Ω = {−1, 1}n ⊂ Rn.

Given a measure ν on Ω, denote the center of mass of ν as b(ν) :=
∫

Ω
xν(dx).

2.4.1 An alternative viewpoint on the coordinate-by-coordinate localization

We begin with an alternative description of the coordinate-by-coordinate localization scheme

described in Subsection 2.1.1, which serves as our first example for a linear-tilt localization.

Fix a measure ν on Ω = {−1, 1}n. Let (k1, ..., kn) be a uniform permutation of [n] and

let U1, . . . , Un be an i.i.d. sequence of independent random variables drawn from the uniform

distribution on [−1, 1].
Define ν0 = ν. For i = 0, 1, . . . , n define

νi+1(x) = νi(x)
(

1 + 〈x− b(νi), Zi〉
)

(3)

where Zi is defined by

Zi = eki ×
{

1
1+b(νi)ki

if b(νi)ki ≥ Ui,
−1

1−b(νi)ki
if b(νi)ki ≤ Ui.

(4)

and where e1, . . . , en is the standard basis of Rn . Finally, to extend the process beyond times

1, . . . , n, take νt = ν⌊t⌋∧n.

To see that this is indeed a localization process, first observe that to obtain νt+1, we multiply

νt by a linear function which is equal to 1 at its center of mass, meaning that νt(Ω) = νt+1(Ω).
It is easy to check that E[Zt] = 0, which verifies (P2). Finally, a direct calculation shows that

νi+1 is in fact a pinning of the ki-th coordinate of νi. Indeed, if xki = − sign(Ui −b(νi)ki) then

〈x− b(νi), Zi〉 = −1 in which case the right-hand side of (3) vanishes.

It follows from the above that the definition in this subsection is equivalent to the one given

in subsection 2.1.1. This point of view can be used as a motivation for the family of localization

schemes considered in this section: Note that it is not evident at all from this definition that the

described scheme is a Doob localization scheme. However, in this case (νt)t can be thought of

as a Markov chain on the space of measures, where the transition corresponds to multiplication

by linear functions with random slopes whose conditional expectation is 0. In this example, the

slopes are chosen in the unique way so that it will cause the measure νt+1 to be a restriction of

νt to a subcube.

2.4.2 Stochastic localization driven by a Brownian motion

Next we describe the stochastic localization process initially constructed in [Eld13]. Let ν be

a probability measure on Rn, and let Bt be a standard Brownian motion in Rn adapted to a

filtration Ft. Let (Ct)t be an Ft-measurable process which takes values in the space of n × n
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positive-definite matrices. We define a process (νt)t via the change of measure dνt
dν
(x) = Ft(x),

where the functions Ft(x) solve the following system of stochastic differential equations:

F0(x) = 1, dFt(x) = Ft(x)〈x− b(νt), CtdBt〉, ∀x ∈ R
n. (5)

The above is an infinite system of differential equations (one for each x ∈ R
n), but it turns out

that a slightly different point of view allows us to view it as a finite system. The uniqueness

and existence of the solution of the system of stochastic differential equations are established in

[Eld13, EMZ20]. The following fact gives a sufficient condition for the process to be a local-

ization process. It was proved in [Eld13, EMZ20], but we provide a sketch for completeness.

Fact 13. If, for every unit vector θ ∈ S
n−1, one has

∫∞
0

|Ctθ|2dt = ∞ almost surely, then the

process (νt)t is a localization process.

Proof. A direct calculation shows that

dνt(R
n) =

∫

Rn

dFt(x)ν(dx)

=

∫

Rn

〈x− b(νt), CtdBt〉Ft(x)ν(dx)

=

〈
∫

xdνt − b(νt), CtdBt

〉

= 0.

Moreover, by Ito’s formula

d logFt(x) = 〈x− b(νt), CtdBt〉 −
1

2
|Ct(x− b(νt))|2 dt

which shows that Ft(x) is non-negative almost surely for all x, t. The above establishes (P1).

The martingale property (P2) follows directly from (5). Property (P3) follows from a calcu-

lation carried out using Ito’s formula which shows that dCov(νt) = −Cov(νt)C
2
tCov(νt)dt +

martingale , see [Eld20, Section 2].

A very useful property of the stochastic localization process is the following.

Fact 14. For every t ≥ 0, we have almost surely that νt attains the form,

νt(dx)

ν(dx)
= exp

(

Zt −
1

2
〈Σtx, x〉 + 〈yt, x〉

)

, (6)

where Σt =
∫ t

0
C2

sds, yt =
∫ t

0
(CsdBs + C2

sb(νs)ds) and Zt is a normalizing constant to ensure

νt is a probability measure.

This process turns out to be useful in proving concentration inequalities in both the contin-

uous setting of log-concave measures and the discrete setting, see [Che21, Eld13, Eld20, ES22,

LV17, EKZ21].
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2.4.3 Stochastic localization and sampling via a restricted Gaussian oracle

With the specific choice Ct = In, the stochastic localization scheme gives rise, via equation

(1), to a natural reversible Markov chain associated with a measure on Rn, which happens to

coincide with the restricted Gaussian dynamics given in [STL20, LST21].

For a measure ν on Rn, y ∈ Rn and η > 0, define the measure Sy,ην by

Sy,ην(dx) :=
ν(dx) exp

(

− 1
2η
|x− y|2

)

∫

Rn exp
(

− 1
2η
|z − y|2

)

ν(dz)

Definition 15. (The restricted Gaussian dynamics) For a measure ν on Rn and η > 0, the

restricted Gaussian dynamics for ν with parameter η is the Markov chain defined by

PRGDη(ν)x→A = Ey∼N (x,ηIn) [Sy,ην(A)] .

The next proposition is based on an alternative point of view on stochastic localization which

was suggested by El Alaoui and Montanari [AM21].

Proposition 16. The dynamics associated to the stochastic localization process with Ct ≡ In

and time τ is the restricted Gaussian dynamics of ν with η = 1/τ .

Proof. It follows from equation (6) that νt = Syt,1/tν, where yt = Bt +
∫ t

0
b(νs)ds. Define

X = limt→∞
1
t
yt. It is shown in [Eld20, Section 2] that b(νt) almost-surely converges and that

limt→∞ b(νt) has the law ν. Therefore,

X = lim
t→∞

Bt

t
+

1

t

∫ t

0

b(νs)ds = lim
t→∞

b(νt) ∼ ν.

An application of [AM21, Theorem 2] tells us that (X, yt) have the same joint law as (X, tX +√
tΓ) where Γ ∼ N (0, In) is independent of X . Therefore, if we generate the measure νt

according to the process and then generate X ′ according to νt, then the joint law of (X ′, νt) is

the same as that of (X ′,SX+Γ/
√
t,1/tν). In light of equation (2), this completes the proof.

The last proposition also shows that the stochastic localization process with the choice Ct =
In is identical to the Gaussian channel localization from Subsection 2.1.4.

2.4.4 The Negative-Fields localization

In this subsection, we introduce a localization scheme which is only relevant for the setting

Ω = {−1, 1}n. Roughly speaking, the Negative-Fields localization process associated to a

measure ν on {−1, 1}n is the unique process (νt)t where νt is almost surely an exponential tilt

of the measure by some deterministic external field v(t), and a random pinning of the measure.

Before we move on to the construction of the process, let us introduce some notation. For a

measure ν on {−1, 1}n and for v ∈ Rn define

Tvν(x) =
e〈x,v〉ν(x)
∫

e〈y,v〉dν(y)
,

the measure obtained by applying external field v to ν (or the exponential tilt).

17



For u ∈ {−1, 0, 1} we define the u-pinning Ruν to be the restriction of u to the subcube

Su := {x ∈ {−1, 1}n; xiui ≥ 0, ∀i ∈ [n]}
By slight abuse of notation, for A ⊂ [n] define RAν(x) = R1A

ν(x), namely the measure ν
where the coordinates in A are pinned to +1.

We first give a slightly informal account of the construction. Given an initial measure ν
on Ω, the negative-fields localization process is the unique martingale of probability measures,

(νt)t, which has the form

νt = T−t~1RAtν, ∀t > 0,

where ~1 = (1, ..., 1) and (At)t is an almost-surely increasing process of subsets of [n].
A different point of view on the process is to express it as a linear-tilt localization by noting

that both the operation of applying an infinitesimal external field and that of pinning amount to

linear tilts. Hence, we suppose that for all t ≥ 0

νt+h(x) = νt(x) (1 + 〈x− b(νt), Z(t+ h)− Z(t)〉) + o(h), ∀h > 0, (7)

where

Zi(t) = −t + 1 {i ∈ At+h \ At}
1 + b(νt)i

and the process (At)t of increasing sets is uniquely defined by the equation

P(i ∈ At+h \ At |At) = 1{i/∈At}
(

1 + b(νt)i
)

h+ o(h), ∀h > 0.

The two last equations render that

E[Z(t + h)|At] = Z(t) + o(h), ∀t ≥ 0, h > 0

which, as we will see, implies that the process is a martingale.

Remark 17. Roughly speaking, the measure νt evolves by applying increasingly stronger neg-

ative external fields to all sites, and occasionally pinning sites to the value +1 in a way that

balances the effect of the external fields resulting in a martingale. The dynamics associated

with this localization is called the field dynamics, and was introduced in [CFYZ21b]. Below,

will not study the field dynamics itself, but we will be able to apply this localization to obtain

the same results in a way that bypass the dynamics.

The next proposition gives a rigorous account of the above and establishes the existence of

a slightly generalized version of the process.

Proposition 18. Let ν be a probability measure on {−1, 1}n and let v : [0,∞) → Rn be a

differentiable curve satisfying v(0) = 0. There exists a (unique) stochastic process (u(t))t with

ut ∈ {−1, 0, 1}n, such that the process (νt)t defined by νt := Ru(t)Tv(t)ν is a martingale. This

process is uniquely defined by

E
(

u(t+h)i −u(t)i
∣

∣u(t)
)

= −1{u(t)i=0}
(

1− sign(v′i(t))b(νt)i
)

v′i(t)h+ o(h), ∀t ≥ 0, i ∈ [n].

Moreover, we have for all t ≥ 0 and x ∈ {−1, 1}n,

νt+h(x) = νt(x)



1 +
∑

i∈[n]
(xi − b(νt)i)

(

hv′i(t) +
u(t+ h)i − u(t)i

1− sign(v′i(t))b(νs)i

)



+ o(h). (8)

If, in addition, limt→∞ |vi(t)| = ∞ for all i ∈ [n], then the above process is a localization

process.

The proof of this proposition is postponed to Appendix A.

18



2.4.5 General linear-tilt localizations

Let us now consider a natural family of localization processes which generalizes the two pre-

vious examples. Let νt be a localization process on Ω ⊂ Rn (in general we can consider any

linear space). Suppose that for every t ≥ 0 and h > 0 we can write

dνt+h

dν
(x) = 1 + 〈x− b(νt), Zt,h〉+ ox(h), (9)

such that E[Zt,h|νt] = 0. In other words, the measure νt+h is generated from νt via multiplica-

tion by a linear function whose slope is a conditionally-centered random variable. Note that the

linear functions is equal to 1 at the center of mass of νt, which has to be the case given that νt
remains a probability measure.

It is not hard to see that the family of localization processes which obey equation (9) contains

the coordinate-by-coordinate localization, the stochastic localization and the negative-fields lo-

calization.

2.5 Spectral gap and modified log-Sobolev inequalities

Consider a localization process (νt)t obtained from ν via some localization scheme L, and let

τ > 0. Let P = P (L,τ)(ν) be the Markov chain obtained by formula (1). The following result

establishes functional inequalities regarding the transition kernel P through the analysis of the

corresponding localization process.

Proposition 19. If the transition kernel P is the one associated to the localization process (νt)t
via equation (1), then

gap(P ) = inf
ϕ:Ω→R

E [Varντ [ϕ]]

Varν [ϕ]
, and (10)

ρLS(P ) ≥ inf
f :Ω→[0,∞)

E [Entντ [f ]]

Entν [f ]
. (11)

Proof. For a test function ϕ : Ω → R, we have

∫

Ω

ϕ(x)

(
∫

Ω

ϕ(y)dPx(y)

)

dν(x) =

∫

Ω

ϕ(x)

(

E

[

ντ (x)
(∫

Ω
ϕ(y)dντ(y)

)

ν(x)

])

dν(x)

= E

[
∫

Ω

ϕ(x)dντ (x)

(
∫

Ω

ϕ(y)dντ(y)

)]

= E

[

(
∫

Ω

ϕ(x)dντ (x)

)2
]

.

Consequently,

∫

Ω×Ω
(ϕ(x)− ϕ(y))2dPx(y)dν(x)

2Varν [ϕ]
=

∫

Ω
ϕ(x)2dν(x)− E

[

(∫

Ω
ϕ(x)dντ (x)

)2
]

Varν [ϕ]

=
E

[

∫

Ω
ϕ(x)2dντ (x)−

(∫

Ω
ϕ(x)dντ (x)

)2
]

Varν [ϕ]

=
E [Varντ [ϕ]]

Varν [ϕ]
.
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Taking the infimum over all ϕ, we obtain (10). For the MLSI, observe that by Jensen’s inequality

we have for all x ∈ Ω and all f : Ω → R+,

E

[

ντ (x)

ν(x)

∫

Ω

f(y)dντ(y)

]

logE

[

ντ (x)

ν(x)

∫

Ω

f(y)dντ(y)

]

≤ E

[

ντ (x)

ν(x)

(
∫

Ω

f(y)dντ(y) log

(
∫

Ω

f(y)dντ(y)

))]

,

where we used the fact that E
[

ντ (x)
ν(x)

]

= 1. We therefore have

∫

Ω

(Pf)(x) log((Pf)(x))dν(x)

=

∫

Ω

E

[

ντ (x)

ν(x)

∫

Ω

f(y)dντ(y)

]

logE

[

ντ (x)

ν(x)

∫

Ω

f(y)dντ(y)

]

dν(x)

≤
∫

Ω

E

[

ντ (x)

ν(x)

(
∫

Ω

f(y)dντ(y) log

(
∫

Ω

f(y)dντ(y)

))]

dν(x)

= E

[(
∫

Ω

ντ (dx)

)
∫

Ω

f(y)dντ(y) log

(
∫

Ω

f(y)dντ(y)

)]

= E

[
∫

Ω

f(y)dντ(y) log

(
∫

Ω

f(y)dντ(y)

)]

.

Therefore,

E [Entνt [f ]]

Entν [f ]
=

E
[∫

Ω
f(x) log f(x)dντ (x)

]

− E
[∫

Ω
f(y)dντ(y) log

(∫

Ω
f(y)dντ(y)

)]

Entν [f ]

≤
∫

Ω
f(x) log f(x)dν(x)

Entν [f ]
−
∫

Ω
(Pf)(x) log(Pf)(x)dν(x)

Entν [f ]

= 1− Entν [Pf ]

Entν [f ]
.

Equation (11) follows by taking infimum over all f : Ω → R+.

3 Approximate conservation of variance and entropy

In this section we describe the main tools used to prove mixing bounds for the dynamics as-

sociated with a localization scheme. We introduce the notions of approximate conservation

of variance and entropy which, in the context of the coordinate-by-coordinate localization are

related in a simple way to spectral independence and entropic independence. In the context

of stochastic localization, the concept of variance decay has been applied in order to prove a

spectral gap for log-concave measures.

Here, we will see that the same underlying principle is relevant to both techniques, and the

difference is in the localization scheme being considered: In both proof techniques, one of the

main insights has to do with a connection between the rate of variance decay and the covariance

structure of a certain class of measures. Thus our framework captures the relation between

covariance structures and variance / entropy decay in both settings using the same derivation.
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Definition 20. (Approximate Conservation of Variance, discrete time). We say that a local-

ization process (νi)i satisfies (κ1, κ2, ...)-variance conservation up to time t, if for every test

function ϕ : Ω → R one has

E[Varνi [ϕ] | νi−1] ≥ (1− κi)Varνi−1
[ϕ], ∀1 ≤ i ≤ t.

The motivation behind this definition is given by the fact that

E[Varνt [ϕ]]

Varν [ϕ]
= E

[

t
∏

i=1

Varνi[ϕ]

Varνi−1
[ϕ]

]

= E

[

t
∏

i=1

E

[

Varνi [ϕ]

Varνi−1
[ϕ]

∣

∣

∣

∣

νi−1

]

]

≥
t
∏

i=1

(1− κi).

In light of (10), we immediately obtain the following simple theorem which relates between

variance conservation and the spectral gap of the dynamics associated with the localization

process.

Proposition 21. If the localization process (νt)t satisfies (κ1, . . . , κt)-approximate variance

conservation then the dynamics given equation (1) with τ = t has a spectral gap bounded

below by
∏t

i=1(1− κi).

3.1 Approximate conservation of variance for linear-tilt localizations and

spectral independence

In this section we will present very simple derivation, which gives a powerful tool for proving

approximate variance conservation bounds for linear-tilt localization schemes. A special case of

this derivation will recover (in a very simple way) the main theorem in the spectral independence

framework of [ALOG20].

Suppose that Ω ⊂ Rn. Suppose that (νt)t is a localization process on Ω whose evolution is

given by the equation

νt+1(x) = νt(x) (1 + 〈x− b(νt), Zt〉) , ∀x ∈ Ω, (12)

where Zt is a random vector satisfying E[Zt|νt] = 0.

Our first objective is to calculate the variance decay of a test function along this process.

Claim 22. For a test function ϕ : Ω → R, we have

E
[

Varνt+1[ϕ]
∣

∣ νt
]

− Varνt [ϕ] = −〈vt, Ctvt〉. (13)

where

vt :=

∫

Ω

(x− b(νt))ϕ(x)νt(dx) and Ct := Cov(Zt|νt).
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Proof. Fix ϕ : Ω → R. We calculate

E
[

Varνt+1[ϕ]
∣

∣ νt
]

= E

[
∫

Ω

ϕ(x)2νt+1(dx)

∣

∣

∣

∣

νt

]

− E

[

(
∫

Ω

ϕ(x)νt+1(dx)

)2
∣

∣

∣

∣

∣

νt

]

(i)
= Eνt [ϕ

2]− E

[

(
∫

Ω

(1 + 〈x− b(νt), Zt〉)ϕ(x)νt(dx)
)2
∣

∣

∣

∣

∣

νt

]

(ii)
= Eνt [ϕ

2]− Eνt [ϕ]
2 − E

[

(
∫

Ω

〈x− b(νt), Zt〉ϕ(x)νt(dx)
)2
∣

∣

∣

∣

∣

νt

]

= Varνt[ϕ]−Var

[〈∫

Ω

(x− b(νt))ϕ(x)νt(dx), Zt

〉∣

∣

∣

∣

νt

]

where (i) uses (P2) and (ii) uses the fact that E[Zt|νt] = 0. By definition of Ct and vt, the

right-hand side is equal to Varνt [ϕ]− 〈vt, Ctvt〉, which completes the proof.

In order to establish an approximate variance conservation bound, we need to give an upper

bound on the expression 〈vt, Ctvt〉. We now arrive at what is perhaps the heart of the argument.

We use the Cauchy-Schwartz inequality, obtaining

〈vt, Ctvt〉 =
∣

∣

∣

∣

∫

Ω

C
1/2
t (x− b(νt))ϕ(x)νt(dx)

∣

∣

∣

∣

2

= sup
|θ|=1

(
∫

Ω

〈C1/2
t (x− b(νt)), θ〉ϕ(x)νt(dx)

)2

≤ sup
|θ|=1

∫

Ω

〈C1/2
t (x− b(νt)), θ〉2νt(dx)Varνt [ϕ]

= ‖C1/2
t Cov(νt)C

1/2
t ‖OPVarνt [ϕ]. (14)

Combining with (13) yields that

E
[

Varνt+1[ϕ]
∣

∣ νt
]

Varνt [ϕ]
≥ 1− ‖C1/2

t Cov(νt)C
1/2
t ‖OP. (15)

The derivation above is one of the key insights in the framework presented here: A simple

application of the Cauchy Schwartz inequality gives rise to the role of the covariance structure

in variance conservation.

Let us now examine how to apply (15) to the case of the coordinate-by-coordinate localiza-

tion. A simple calculation, using the definition (4) gives that

(n− t) Cov[Zt|νt]i,i =
1

(1 + b(νt)i)2
1 + b(νt)i

2
+

1

(1− b(νt)i)2
1− b(νt)i

2

=
1

1− b(νt)2i
= (Cov(νt)i,i)

−1,

where the last equality is a consequence of the fact that
∫

Ω
x2i νt(dx) = 1. Denoting Dt to be the

diagonal matrix whose entries coincide with the diagonal entries of Cov(νt), we finally have

‖C1/2
t Cov(νt)C

1/2
t ‖OP =

1

(n− t)
‖D−1/2

t Cov(νt)D
−1/2
t ‖OP.
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Define for a measure ν̃ on {−1, 1}n,

Cor(ν̃) := diag(Cov(ν̃))−1/2Cov(ν̃)diag(Cov(ν̃))−1/2, (16)

where diag(·) is the diagonal matrix obtained by setting all the off-diagonal entries to 0. So

Cor(ν̃) is just the matrix of correlations between different coordinates of ν̃. We will also

consider the closely-related influence matrix of the measure, defined as

Ψ(ν)i,j := EX∼ν [Xi|Xj = 1]− EX∼ν [Xi|Xj = −1]. (17)

The following fact relates the correlation matrix and the influence matrix. Its proof is postponed

to Appendix A.

Fact 23. We have Ψ(ν) = Cov(ν) diag(Cov(ν))−1 and

‖Cor(ν)‖OP = ρ(Ψ(ν)) ≤ ‖Ψ(ν)‖OP. (18)

In light of the above fact, Equation (15) becomes

E
[

Varνt+1[ϕ]
∣

∣ νt
]

Varνt [ϕ]
≥ 1− 1

n− t
ρ(Ψ(νt)).

For u ∈ {−1, 0, 1}n define the u-pinning of a measure, Ruν̃ to be the restriction of ν̃ to the

sub-cube Su, where

Su :=
{

x ∈ {−1, 1}n; xiui ≥ 0, ∀i ∈ [n]
}

. (19)

Observe that under the coordinate-by-coordinate localization, νt is of the form Ruν for some

u = u(t). The condition that ‖Ψ(Ruνt)‖OP is bounded uniformly in u is called spectral

independence. Plugging the above into (15) and applying Proposition 21 recovers the main

theorem in the spectral independence framework [ALOG20]:

Theorem 24. (A reformulation of [ALOG20, Theorem 1.3]) Suppose that ν is a measure on

{−1, 1}n such that for all u ∈ {−1, 0, 1}n,

ρ(Ψ(Ruν)) ≤ η|u|1.

Then the spectral gap of the k-Glauber dynamics on ν is at least
∏n−k−1

i=0 (1− ηi
n−i

).

Remark 25. There are some delicate differences between the above theorem and [ALOG20,

Theorem 1.3]. In the latter, η̃i is taken to be the operator norm of the matrix Ψ(Riν)− In rather

than that of the matrix Ψ(ν). Precisely, their result states that spectral gap is bounded from

below by the expression 1
n

∏n−k−1
i=0 (1 − η̃i

n−i−1
) where η̃i = ηi − 1. So the extra factor 1/n is

traded for the fact that ηi can be replaced by η̃i = ηi − 1.

In our proof, we completely bypassed the need to use the notion of high-dimensional ex-

panders or the up-down walk. The inequalities relating different levels of the up-down walk

were replaced by a simple application of the Cauchy-Schwartz inequality.
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3.1.1 The case of stochastic localization; bounds for the spectral gap of log-concave mea-

sures

The same derivation (almost verbatim) as above gives a similar bound for the variance decay

of the stochastic localization process (5). Here we briefly outline the argument which can be

found in [Eld].

Let νt be the stochastic localization process associated to a measure ν on Rn, via equation

(5) with some driving matrix Ct. Fix a test function ϕ : Rn → R. The continuous analogue of

(13) takes the form

dVarνt [ϕ] = −
∣

∣

∣

∣

∫

C
1/2
t (x− b(νt))ϕ(x)dνt(x)

∣

∣

∣

∣

dt+ martingale.

Equation (14) (or, in other words, an application of Cauchy Schwartz) gives

∣

∣

∣

∣

∫

C
1/2
t (x− b(νt))ϕ(x)dνt(x)

∣

∣

∣

∣

≤ ‖C1/2
t Cov(νt)C

1/2
t ‖OPVarνt [ϕ]

which implies that

dVarνt [ϕ] ≥ −‖C1/2
t Cov(νt)C

1/2
t ‖OPVarνt[ϕ]dt+ martingale

By integration, we get the variance decay bound

E[Varνt[ϕ]]

Varν [ϕ]
≥ E

[

e
∫ t
0
‖C1/2

s Cov(νs)C
1/2
s ‖OPds

]−1

(20)

Therefore, upper bounds on the process t → ‖Cov(νt)‖OP correspond to approximate conser-

vation of variance bounds.

A classical inequality by Brascamp and Lieb allows us to relate the Dirichlet form Eν [|∇ϕ|2]
to E[Varνt[ϕ]]. Namely, due to (6) we have that the measure νt is αt-strongly log-concave with

αt being the smallest eigenvalue of Σt =
∫ t

0
C2

sds, which implies that

E[Varνt [ϕ]] ≤
1

αt
Eν [|∇ϕ|2].

Combining this with (20) gives a way to obtain lower bounds for the spectral gap of a measure

ν on Rn via the analysis of the process t → ‖Cov(νt)‖OP. This is one of the main ideas

underlying the stochastic localization technique, which in particular led to the near-solution,

due to the first author ([Che21]), of the Kannan-Lovász-Simonovits conjecture ([KLS95a]) and

Bourgain’s slicing problem.

3.2 Approximate conservation of entropy

It turns out that there are also natural sufficient conditions regarding the conservation of the en-

tropy along a localization process. These conditions are closely related to the notion of entropic

independence put forth in [AJK+21b].

Definition 26. (Entropy conservation, discrete time). We say that a localization process (νi)i
satisfies (κ1, κ2, ...)-entropy conservation up to time t, if for every test function f : Ω → R+

one has

E[Entνi[f ] | νi−1] ≥ (1− κi)Entνi−1
[f ], ∀1 ≤ i ≤ t.
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A telescopic-product argument, completely analogous to the one in the proof of Proposition

21, together with equation (11), yields the following.

Proposition 27. If the localization process (νt)t satisfies a (κ1, . . . , κt)-entropy conservation

then the dynamics given equation (1) with τ = t has a MLSI coefficient bounded below by
∏t

i=1(1− κi).

Remark 28. We refer the reader to [AJK+21b, Section 1.1] for some examples where this bound

can be applied. Usually, however, the expression
∏t

i=1(1−κi) will give optimal bounds. Below

we will see better ways to extracting the power of approximate conservation of entropy.

3.2.1 Entropic stability

Next, we discuss the case Ω ⊂ Rn (relevant in particular to Ω = Rn and Ω = {−1, 1}n). We

introduce a notion which turns out to be very useful in controlling the decay of entropy along

linear-tilt localizations.

For a measure ν on Rn and v ∈ Rn, define the exponential tilt Tvν by

dTvν(x)

dν(x)
:=

e〈v,x〉
∫

e〈v,z〉dν(z)
.

A central definition in our framework is the following.

Definition 29. (Entropic stability). For ν on Ω ⊂ Rn, a function ψ : Rn×Rn → R+ and α > 0,

we say that ν is α-entropically stable with respect to ψ if

ψ(b(Tvν),b(ν)) ≤ αDKL(Tvν||ν), ∀v ∈ R
n.

In order for the definition to make sense, ψ(x, y) needs to vanish when x = y. For the sake

of intuition, we may think of the case ψ(x, y) = |x− y|2. Roughly speaking, entropic stability

amounts to the fact that the center of mass does not move much when tilting the measure in

terms of the relative entropy of the tilt.

What follows is a very useful observation, based the principle of maximum entropy. This

observation is essentially due to [AJK+21b], where it was used in the context of entropic inde-

pendence, which can be understood as a specific case of entropic stability.

Fact 30. For every measure ν on Ω and every function g : Rn → R, one has

inf
µ

DKL(µ||ν)
g(b(µ))

= inf
v∈Rn

DKL(Tvν||ν)
g(b(Tvν))

. (21)

Proof. By the maximum entropy principle, the minimum over measures µ of the relative en-

tropy DKL(µ||ν) under the linear constraint b(µ) = b0 is attained for a measure such that
dµ
dν

∝ exp(L(·)) for some linear function L : Rn → R, or in other words the optimal µ is of the

form Tvν for some v ∈ Rn.

An immediate corollary is the following,

Lemma 31. Suppose that a measure ν is α-entropically stable with respect to ψ. Then, for

every measure µ which is absolutely continuous with respect to ν, we have

ψ(b(µ),b(ν)) ≤ αDKL(µ||ν).
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Remark 32. In view of the last lemma, we see that the notion of entropic stability is closely

related to transportation-entropy bounds introduced by Talagrand (see [GL10] for a survey).

While entropic stability refers to the fact that the center of mass does not move under change

of measure with small relative entropy, a transportation-entropy inequality alludes to the trans-

portation distance being small under such change of measure. Thus, in a sense entropic stability

bounds are a weaker version of transportation-entropy bounds.

One last ingredient which will be useful to us is the following formula which can be obtained

via the logarithmic Laplace transform.

Lemma 33. ([BE19, Lemma 1]). Let ν be a measure on Rn such that Cov(ν) is invertible.

Denote byK ⊂ Rn the interior of the convex hull of the support of ν. Then there exists a unique

function v : K → R
n such that

b(Tv(x)ν) = x, ∀x ∈ K.

Moreover, denoting g(x) := DKL(Tv(x)ν||ν), we have

∇g(b(ν)) = 0, ∇2g(x) = Cov(Tv(x)ν)
−1, ∀x ∈ K. (22)

Finally, if Lν(θ) := log
∫

e〈x,θ〉dν(x) is the Logarithmic Laplace transform of ν, then we have

that

g(x) = sup
θ∈Rn

〈x, θ〉 − Lν(θ)

hence g is the Legendre dual of Lν .

Remark 34. The role of the logarithmic Laplace transform in concentration inequalities on the

discrete hypercube was suggested in [ES22]. The boundedness of its hessian is closely related to

the notion of fractional log-concavity of the characteristic polynomial, introduced in [AASV21].

3.2.2 The case of the coordinate-by-coordinate localization: Entropic independence

As a warm-up, in this section we essentially recover the results of [AJK+21b], deriving a natural

criterion for approximate conservation of entropy for Ω = {−1, 1}n with the coordinate-by-

coordinate localization process. The proof here boils down to ideas which are quite similar to

the ones that appear in [AJK+21b], with two crucial differences which will (arguably) make

our argument cleaner: 1. We directly analyze measures on the hypercube rather than measures

on
(

n
k

)

. 2. The notion of fractional log-concavity is replaced by a definition which involves the

logarithmic Laplace transform of the measure, which seems to arise naturally in this context,

and due to which the proof involves much simpler formulas.

For x, y ∈ [−1, 1]n, define

H(x, y) =

n
∑

i=1

1|yi|<1

(

1 + xi
2

log

(

1 + xi
1 + yi

)

+
1− xi

2
log

(

1− xi
1− yi

))

, (23)

It turns out that in the context of the coordinate-by-coordinate scheme, the key will be to con-

sider α-entropic stability with respect to the function ψ(x, y) = H(x, y). With this choice,

entropic stability is essentially the same is entropic independence introduced in [AJK+21b],

and the following proposition shows that it implies approximate conservation of entropy under

the coordinate-by-coordinate localization.
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Proposition 35. Let νt be the coordinate-by-coordinate localization process for some measure

ν on {−1, 1}n. For every t, if the measure νt is κ-entropically stable with respect to the function

ψ(x, y) = H(x, y) then we have the approximate conservation of entropy bound

E
[

Entνt+1[f ] |νt
]

≥
(

1− κ

n− t

)

Entνt [f ],

for all f : Ω → R+ and t ∈ [n− 1]. Consequently, if Ruν is κ-entropically stable with respect

to the same function, for all u ∈ {−1, 0, 1}n, then the ℓ-Glauber dynamics P = PGD,ℓ(ν) has

MLSI coefficient

ρLS (P ) ≥
n−ℓ−1
∏

i=0

(

1− κ

n− i

)

.

Proof. Fix a probability measure ν on Ω and a function f : Ω → R+. Let (νt)t be the

coordinate-by-coordinate localization process of ν. The derivation obtained in Subsection 2.4.1

gives the following: Conditioned on νt, we have

∫

f(x)dνt+1(x)
(3)
=

∫

f(x) (1 + 〈x− b(νt), Z〉) dνt(x)

=

∫

f(x)dνt(x)

(

1 +

〈(
∫

xf(x)dνt(x)
∫

f(x)νt(dx)
− b(νt)

)

, Z

〉)

= νt(f) (1 + 〈V, Z〉) (24)

where

V :=

∫

xf(x)νt(dx)
∫

f(x)νt(dx)
− b(νt)

and

Z = ekt+1 ×







1
1+b(νt)kt+1

with probability
1+b(νt)kt+1

2
,

−1
1−b(νt)kt+1

with probability
1−b(νt)kt+1

2
.

We have

E [(1 + 〈V, Z〉) log(1 + 〈V, Z〉)|νt] =
1

n− t

∑

i∈[n]\{k1,...,kt}
q(t; i)

where

q(t; i) = E [(1 + 〈V, Z〉) log(1 + 〈V, Z〉)|νt, kt+1 = i] .

Now, writing dµt

dνt
(x) = f(x)∫

f(z)dνt(z)
, we have V = b(µt)− b(νt) and

q(t; i) =
1 + b(νt)i

2

(

1 +
Vi

1 + b(νt)i

)

log

(

1 +
Vi

1 + b(νt)i

)

+
1− b(νt)i

2

(

1− Vi
1− b(νt)i

)

log

(

1− Vi
1− b(νt)i

)

=
1 + b(µt)i

2
log

(

1 + b(µt)i
1 + b(νt)i

)

+
1− b(µt)i

2
log

(

1− b(µt)i
1− b(νt)i

)

.

Combining the last three displays, we have

E [(1 + 〈V, Z〉) log(1 + 〈V, Z〉)|νt] =
1

n− t
H(b(µt),b(νt)). (25)
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We finally get

E[Entνt+1[f ]
∣

∣ νt] = Entνt [f ]−
1

n− t
νt(f)H(b(µt),b(νt)).

The assumption that νt is κ-entropically stable with respect to h, combined with Lemma 31,

amounts to

H(b(µt),b(νt)) ≤ κDKL(µ||ν) =
κ

νt(f)
Entνt [f ].

Combining the last two displays gives

E
[

Entνt+1[f ]
∣

∣ νt
]

≥ Entνt [f ]−
κ

n− t
Entνt [f ],

By definition of approximate entropy conservation, this completes the proof of the first part.

The second part follows immediately by the use of Proposition 27.

In the paper [AJK+21b], the authors show that entropic independence is naturally related

to the log-concavity of a power of the characteristic polynomial, referred to as fractional log-

concavity. Next, we show that a somewhat analogous, very simple derivation, gives that entropic

stability with respect to the function h is implied by the fact that exponential tilts of the measure

have a bounded correlation matrix. The proof of the next lemma is found in Appendix A

Lemma 36. Suppose that a measure ν on {−1, 1}n satisfies

‖Cor(Tvν)‖OP ≤ α, ∀v ∈ R
n (26)

where Cor(·) is defined in (16). In this case, ν is α-entropically stable with respect to ψ(x, y) =
H(x, y).

Remark 37. Fact 23 shows that α-spectral independence is equivalent to the fact that Cov(ν) �
(α+1) diag(Cov(ν)). Therefore, the condition given in the lemma can be thought of as spectral

independence for all tilts.

Remark 38. The condition (26) is the exact condition given in [ES22], where it is shown that it

implies nontrivial concentration of Lipchitz functions.

3.2.3 Entropic decay for stochastic localization

Let ν be a measure on Rn and consider the stochastic localization process (νt)t defined by (5).

Fix a non-zero, measurable function f : Ω → R+. For every t > 0, define a probability measure

µt by the equation
dµt

dνt
(x) =

f(x)
∫

f(x)νt(dx)
.

Consider the martingale

Mt := νt(f) =

∫

f(x)Ft(x)ν(dx).

Using equation (5), we can calculate

dMt =

∫

f(x)Ft(x)〈x− b(νt), CtdBt〉ν(dx)

=Mt

〈

Ct(b(µt)− b(νt)), dBt

〉

.
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Using Itô’s formula, we have

d(Mt logMt) =
d[M ]t
2Mt

+ martingale

=
1

2
Mt|Ct(b(µt)− b(νt))|2dt + martingale.

We finally obtain

dEntνt [f ] = d

∫

f(x) log f(x)νt(dx)− d(Mt logMt)

= −1

2
νt(f) |Ct (b(µt)− b(νt))|2 dt+ martingale. (27)

We arrive at the following,

Proposition 39. For a fixed T > 0, suppose that, almost surely for all t ∈ [0, T ] that νt is

αt-entropically stable with respect to the function ψ(x, y) = 1
2
|Ct(x − y)|2. Then we have the

approximate entropic conservation bound

E [EntνT [f ]] ≥ e−
∫ T
0 αtdtEntν [f ]. (28)

Proof. The entropic stability assumption combined with Lemma 31 and equation (27) yields

that

dEntνt [f ] ≥ −αtEntνt [f ]dt+ martingale, ∀t ∈ [0, T ].

Consequently, by applying Ito’s formula, we have that the process t → e
∫ t
0 αsdsEntνt [f ] is a

submartingale. Therefore,

E

[

e
∫ T
0 αtdtEntνT [f ]

]

≥ Entν [f ],

which completes the proof.

The following lemma is useful for establishing entropic stability with respect to quadratic

functions.

Lemma 40. Let ν be a measure on Rn and C,A be positive-definite matrices. Suppose that for

every v ∈ Rn one has

Cov(Tvν) � A, (29)

Then ν is α-entropically stable with respect to the function ψ(x, y) = 1
2
|C(x − y)|2, for α =

‖CAC‖OP.

Proof. Define v(x), g(x) := DKL(Tv(x)ν||ν) and K as in Lemma 33. We have,

∇2g(x)
(22)
= Cov(Tv(x)ν)

−1
(29)

� A−1, ∀x ∈ K,

and ∇g(b(ν)) = 0. Define h(x) = 1
2
|C(x − b(ν))|2. Then ∇h(b(ν)) = 0 and, for all x,

∇2h(x) = C2. Therefore, for all x ∈ K, we have

‖CAC‖OP∇2g(x) � ‖CAC‖OPA
−1 � C2 = ∇2h(x).

Since g(b(ν)) = h(b(ν)) = 0 and ∇g(b(ν)) = ∇h(b(ν)) = 0, g and h coincide up to first

order Taylor expansion around b(ν). It follows that ‖CAC‖OPg(x) ≥ h(x). Together with

Fact 30, we complete the proof.
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3.2.4 Entropic decay for the negative-fields localization

It turns out that the entropy decay for the negative-fields localization is also governed by the

function H(x, y) in equation (23).

Proposition 41. Consider a localization process νt obtained via the negative-fields localization

scheme (with the choice v(t) = −t~1). Let f : {−1, 1}n → R and let µt be the measure obtained

via the formula
dµt(x)
dνt(x)

= f(x). Suppose that νt is α-entropically stable with respect to the

function H(x, y) defined in equation (23), then we have the approximate entropy conservation

bound

E[Entνt+h
[f ]|νt] ≥ Entνt[f ](1− 4hα) + o(h), ∀t, h ≥ 0.

The proof of the above proposition is just a calculation, in the same spirit as the derivation of

entropic decay for the coordinate-by-coordinate process and stochastic localization. The proof

is found in Appendix A.

3.3 Entropic stability via spectral independence

Lemma 36 and Lemma 40 both rely on the logarithmic Laplace transform to show that entropic-

stability can be deduced from bounds on the covariance matrix of different tilts of the measure.

On the other hand, the weaker notion of spectral independence only requires a corresponding

bound on the covariance matrix itself, and in order to get a spectral gap via the spectral inde-

pendence framework, we need a bound on the influence matrix for all pinnings rather than all

tilts (see remark 37).

It turns out that requiring all pinnings of a measure ν to be spectrally-independent is suffi-

cient for entropic stability with respect to a quadratic function. Recall the definition of Ψ(ν)
from equation (16) and recall that for all u ∈ {−1, 0, 1}n, Ruν is defined to be the restriction

of ν to the subcube Su (defined in (19)).

Theorem 42. Let ν be a probability measure on {−1, 1}n and let α ≥ 1. Suppose that

‖Cor(Ruν)‖OP ≤ α, ∀u ∈ {−1, 0, 1}n . (30)

Then ν is 8α-entropically stable with respect to ψ(x, y) = 1
2
|x− y|2.

Furthermore, if for some constants K ≥ 1, C ≥ 1, for every i ∈ [n] and for every u, w ∈
{−1, 0, 1}n with supp(u) ∩ supp(w) = ∅ with ui = wi = 0, we have

1 + bi(RwRuν)

1− bi(RwRuν)
≤ K

1 + bi(Ruν)

1− bi(Ruν)
, and (31)

1− bi(Ruν) ≥
1

C
, (32)

then ν is 768αK3C-entropically stable with respect to the function H(x, y) as defined in equa-

tion (23).

The proof is found in Section 6.

Recall the ℓ-Glauber dynamics (see remark 12 above), which is associated to the coordinate-

by-coordinate localization scheme with stopping time τ = n − ℓ. Denote its transition kernel

by P ℓ−GD(ν).
The above theorem will allow us to recover the extension of the spectral independence

framework due to Chen, Liu and Vigoda ([CLV21]), and show that spectral independence for
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all pinnings implies an MLSI for the ℓ-Glauber dynamics with ℓ = Ω(n). This is true under

the extra condition that the marginals of the measure are bounded away from −1 and 1 under

pinnings:

Definition 43. (bounded marginals). We say that a measure ν on Rn has b-marginally bounded

if for all i ∈ [n] and all u ∈ {−1, 0, 1}n with ui = 0, we have

|b(Ruν)i| ≤ 1− b.

The following theorem essentially recovers the framework of [CLV21].

Theorem 44. Let ν be a probability measure on {−1, 1}n and let α ≥ 1. Suppose that

ρ(Ψ(Ruν)) ≤ α, ∀u ∈ {−1, 0, 1}n. (33)

Moreover, suppose that ν is b-marginally bounded. Then for every ε ∈
(

8a
bn
, 1
2

)

,

ρLS(P
ℓ−GD)(ν) ≥ εCα/b.

where ℓ = ⌈εn⌉ and C > 0 is a universal constant.

Remark 45. This result also holds under a weaker condition than having bounded-marginals,

namely it is enough that the measure has (1/b)-tame marginals, see definition 59 below.

In [CLV21], a clever argument is used to show that when the model has bounded degrees

(see [CLV21] for a precise definition) and ε is a small enough constant (as a function of the

maximum degree), then mixing of the ℓ-Glauber dynamics for ℓ = εn implies mixing of the

1-Glauber dynamics. In fact, it is even easier to show that in the case of bounded degrees,

one may sample directly by using the ℓ-Glauber dynamics, as the single step has complexity

bounded by no(1).

Proof of Theorem 44. The bounded marginals assumption implies that the condition (31) holds

true for any pinning of the measure ν with K = 2/b. Using Theorem 42, we have that for every

u ∈ {−1, 0, 1}n, Ruν is (48α/b)-entropically stable with respect to H(x, y) defined in (23).

An application of Proposition 35 gives that the ℓ-Glauber dynamics has MLSI

ρLS(P
ℓ−GD)(ν) ≥

n−ℓ−1
∏

i=0

(

1− 48αb−1

n− i

)

= exp





⌈(1−ε)n⌉
∑

i=0

log

(

1− 100αb−1

n− i

)





(i)

≥ exp



−
⌈(1−ε)n⌉
∑

i=0

200αb−1

n− i



 ≥ εCa/b,

where (i) uses the assumption that ε > 8a
bn

and the fact that log(1 − x) ≥ −2x for x > −1/2.

This completes the proof.
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4 Annealing via a localization scheme

A powerful tool in our framework will be to conceptually concatenate two localization schemes,

running one localization scheme up to some time t and then running a second scheme where νt
is used as the initial condition. As we will see, in many cases this tool will allow us to use the

first stage as an annealing procedure which tames the measure in a way that provides a good

starting point for the second stage.

Consider two localization schemes Li,Lf on a space Ω. Let ν be a measure on Ω and con-

sider localization the process
(

ν
(i)
t

)

t
obtained from applying Li to ν. Let a be a stopping time

adapted to the filtration of this process. Now, conditional on ν
(i)
a , let

(

ν
(f)
t

)

t
be a localiza-

tion process obtained from applying Lf to ν
(i)
a . We may obtain a localization process (νt)t by

defining

νt :=

{

ν
(i)
t t ≤ a

ν
(f)
t−τ t ≥ a.

We denote the localization scheme mapping ν to (νt)t by concat(Li,Lf , a).
The advantage of concatenating two localization schemes is demonstrated by the following

theorem.

Theorem 46. (Annealing - variance). Let Li,Lf be two localization schemes on Ω such that

the latter is a Doob localization scheme. Let ν be a probability measure to which we assign a

localization process (νt)t from concat(Li,Lf , a) for a stopping time a. Fix τ > 0 and let P =
P (Lf ,τ)(νa) be the (random) transition kernel associated to νa via (Lf , T ) using (1). Suppose

that,

1. We have the approximate variance conservation bound

E [Varνa [ϕ]]

Varν [ϕ]
≥ ε, ∀ϕ : Ω → R.

2. Almost-surely, we have

gap(P (νa)) ≥ δ.

Under these two assumptions, we have that the Markov chain associated to ν via Lf has spectral

gap at least εδ.

In the above theorem, the localization scheme Li is thought of as an annealing procedure

which takes a (potentially not well-behaved) measure ν, and outputs a measure νa which is

well-behaved in the sense of assumption 2. Assumption 1 tells us that we did not lose much

of the variance throughout the annealing process. The proof relies on the fact that the Dirichlet

form associated by a Doob localization is a supermartingale - this fact was crucially used in

[EKZ21] in the context of stochastic localization.

Next, we have a completely analogous theorem for the entropy.

Theorem 47. (Annealing - entropy). Let Li,Lf be two localization schemes on Ω such that

the latter is a Doob localization scheme. Let ν be a probability measure to which we assign a

localization process (νt)t from concat(Li,Lf , a) for a stopping time a. Fix τ > 0 and let P =
P (Lf ,τ)(νa) be the (random) transition kernel associated to νa via (Lf , T ) using (1). Suppose

that,
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1. We have the entropy conservation inequality

E [Entνa [f ]]

Entν [f ]
≥ ε, ∀f : Ω → R+.

2. Almost-surely, one has

ρLS(P (νa)) ≥ δ. (34)

Under these two assumptions, we have that the Markov chain associated to ν via Lf has an

MLSI coefficient of at least εδ.

Let P (t) = P (Lf ,τ)(νt). Our main step towards proving the two theorems is the following.

Proposition 48. For every ϕ : Ω → R and f : Ω → R+, the processes

t→
∫

Ω×Ω

ϕ(x)ϕ(y)dP (t)
x (y)dν

(i)
t (x)

and

t→
∫

Ω

P (t)f(x) logP (t)f(x)dν
(i)
t (x)

are submartingales.

The proof of Proposition 48 is deferred to Appendix A.1. Let us see how theorems 46 and

47 follow from this proposition.

Proof of Theorem 46. We write

1

2

∫

Ω

∫

Ω

(ϕ(x)− ϕ(y))2 dP (0)
x (y)dν(x)

=

∫

Ω

ϕ(x)2dν(x)−
∫

Ω

∫

Ω

ϕ(x)ϕ(y)dP (0)
x (y)dν(x)

(i)

≥ E

[
∫

Ω

ϕ(x)2dν(i)a (x)−
∫

Ω

∫

Ω

ϕ(x)ϕ(y)dP (a)
x (y)dν(x)

]

= E

[

1

2

∫

Ω

∫

Ω

(ϕ(x)− ϕ(y))2 dP (a)
x (y)dν(i)a (x)

]

(ii)

≥ δE
[

Var
ν
(i)
a

[ϕ]
]

(iii)

≥ δεVarν [ϕ],

where (i) uses Proposition 48 and the optional stopping theorem, (ii) uses the second assumption

of the theorem and (iii) uses the first assumption of the theorem.

Proof of Theorem 47. We have,

Entν [f ]− Entν [P
(0)f ] =

∫

Ω

f(x) log f(x)dν(x)−
∫

Ω

P (0)f(x) logP (0)f(x)dν(x)

(i)

≥ E

[∫

Ω

f(x) log f(x)dν(i)a (x)−
∫

Ω

P (a)f(x) logP (a)f(x)dν(i)a (x)

]

= E

[

Ent
ν
(i)
a

[f ]− Ent
ν
(i)
a

[P (a)f ]
]

(ii)

≥ δE
[

Ent
ν
(i)
a

[f ]
]

(iii)

≥ δεEntν [f ],
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where (i) uses Proposition 48 and the optional stopping theorem, (ii) uses the second assumption

of the theorem and (iii) uses the first assumption of the theorem.

5 Applications

In this section we provide several applications to demonstrate ways to obtain mixing time results

via our framework.

5.1 Glauber dynamics for Ising models

As a first example, we will prove a general theorem that provides a sufficient condition for

MLSI, which as a special case recovers two results: the first one was shown in [EKZ21,

AJK+21b] and establishes mixing time for Ising models whose interaction matrix has an oper-

ator norm bounded by a constant and in particular is relevant to the Sherrington-Kirkpatrick

model in high-enough temperatures. The second one concerns Ising models in the uniqueness

regime and improves upon the main theorem of [CFYZ21a].

Both applications will rely on the following result, which is obtained through a simple com-

bination of several ingredients of our framework.

Theorem 49. Let ν be a measure on {−1, 1}n and let J be a positive-definite n×n matrix. For

any 0 ≤ λ ≤ 1 and every v ∈ Rn, consider the probability measure µλ,v defined by

dµλ,v

dν
(x) ∝ exp (−λ〈x, Jx〉 + 〈v, x〉) . (35)

Suppose that, for some α : [0, 1] → R+,

‖Cov(µλ,v)‖OP ≤ α(λ), ∀λ ∈ [0, 1], v ∈ R
n, (36)

and that for some ε > 0,

ρLS(P
GD(µ1,v)) ≥ ε, ∀v ∈ R

n, (37)

where PGD(·) denotes the transition kernel of the Glauber dynamics. Then,

ρLS(P
GD(ν)) ≥ ε exp

(

−2‖J‖OP

∫ 1

0

α(λ)dλ

)

.

This theorem is particularly useful for measures with quadratic potentials, or Ising models.

For an n× n matrix J and a vector v ∈ Rn, consider the probability measure defined by

νJ,v({x}) ∝ exp (〈x, Jx〉+ 〈x, v〉) , (38)

referred to as the Ising measure with interaction matrix J and external field v.

If we apply the above theorem to the measure ν = νJ,v (and with J taken to be the interaction

matrix), we have that the measure µ1,v defined in (35) is just a product measure, so that condition

(37) is trivially satisfied with ε = 1
n

. In order to successfully apply the theorem, it therefore

remains to verify condition (36). We will show how to do so in two different settings.
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Proof of Theorem 49. Consider the localization process (νt)t corresponding to ν obtained via

the stochastic localization (5), with the choice Ct = (2J)1/2, up to time t = 1. Consider the

transition kernel PGD(ν1), hence, the random transition kernel associated to the measure ν1 via

the Glauber dynamics. We apply Theorem 47 in order to obtain a lower bound on ρLS(P
GD(ν)).

According to equation (6), νt has the form

νt(x) ∝ exp (−t〈x, Jx〉 + 〈yt, x〉) ν(x)
for some stochastic process yt, meaning that νt = µt,yt . Since in particular, ν1 = µ1,y1 , the

assumption (37) then amounts to the fact that ρLS(P
GD(ν1)) ≥ ε, which fulfills the second

condition of Theorem 47.

Next, the assumption (36) tells us that

‖Cov(νt)‖OP ≤ α(t), ∀t ∈ [0, 1].

By applying Lemma 40 with the choice A = α(t)In and C = (2J)1/2, we conclude that νt
is α-entropically stable with respect to ψ(x, y) = 1

2

∣

∣(2J)1/2(x− y)
∣

∣

2
with α = 2‖J‖OPα(t).

Invoking Proposition 39 gives the approximate-entropy-conservation bound

E [Entν1 [f ]] ≥ e−2‖J‖OP

∫ 1
0 α(t)dtEntν [f ].

Therefore, condition 1 of Theorem 47 is satisfied with α = e−2‖J‖OP

∫ 1
0 α(t)dt, and we conclude

that ρLS(P ) ≥ εe−2‖J‖OP

∫ 1
0
α(t)dt. This completes the proof.

5.1.1 Mixing under a spectral condition on the interaction matrix

It turns out that if the interaction matrix has operator norm bounded by a certain constant, then

the covariance matrix of the model is also bounded. The following lemma is based on the

decomposition obtained by Bauerschmidt and Bodineau [BB19]. For completeness, we include

a proof in Appendix B.

Lemma 50. Let J be a positive-definite matrix with ‖J‖OP <
1
2

and let v ∈ Rn. One has

‖Cov(νJ,v)‖OP ≤ 1

1− 2‖J‖OP

.

Combining the lemma with Theorem 49, we obtain

Corollary 51. Let J be a positive-definite matrix with ‖J‖OP <
1
2

and let v ∈ Rn. The Glauber

dynamics for ν = νJ,v mixes in time O(n logn).

Proof. An application of Lemma 50 gives

‖Cov(µλ,v)‖OP � 1

1− 2(1− λ)‖J‖OP
,

so the assumption (36) holds with α(λ) equal to the right-hand side. Assumption (37) holds

with δ = 1/n since µ1,v is a product measure. The conclusion of the Theorem 49 tells us that

ρLS(P
GD(νJ,v)) ≥

1

n
exp

(

−
∫ 1

0

2

1/‖J‖OP − 2(1− λ)
dλ

)

=
1

n
(1− 2‖J‖OP).

The proof is complete via fact 2.
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Remark 52. The above corollary implies an optimal mixing bound for Glauber dynamics on the

Sherrington-Kirkpatrick model up to inverse temperature β = 1/4 (see [EKZ21] for a detailed

discussion on the Sherrington-Kirkpatrick model). Very recently, El Alaoui, Montanari and

Sellke [AMS22] gave a polynomial time sampling algorithm which is valid all the way to the

critical temperature β = 1/2. The idea behind their algorithm is to simulate the stochastic

localization process. To do so, one needs to estimate the center of mass of tilted measures

which, in turn, is done using approximate message passing.

5.1.2 Near-critical ferromagnetic Ising models

Next, we show how to recover a variant of the result which appears in the very recent paper of

Bauerschmidt and Dagallier [BD22]. Consider a measure of the form (38) which is ferromag-

netic in the sense that Ji,j ≥ 0 for all i 6= j. For every λ ∈ (0, 1) define

χ(λ) := ‖Cov(νλJ,0)‖OP

In the ferromagnetic case, following theorem, due to Ding, Song and Sun, is very helpful to-

wards verifying assumption (36) in Theorem 49.

Theorem 53. ([DSS22]) For any interaction matrix J which is ferromagnetic (hence Ji,j ≥ 0
for all i 6= j), for all i 6= j and for all v ∈ Rn, we have

Cov(νJ,v)i,j ≤ Cov(νJ,0)i,j.

By the above combined with the Perron-Frobenius theorem, it follows that

‖Cov(νλJ,v)‖OP ≤ χ(λ), ∀v ∈ R
n.

Therefore, invoking Theorem 49 with µλ,v = ν(1−λ)J,v immediately yields the following.

Corollary 54. For any ferromagnetic interaction matrix J which is positive definite, we have

ρLS(P
GD(νJ,v) ≥

1

n
exp

(

−2‖J‖OP

∫ 1

0

χ(λ)dλ

)

.

As noted in [BD22], the positive definiteness can always be imposed by adding a diagonal

matrix without changing the corresponding Ising model.

5.1.3 Graphical Ising model in the uniqueness regime

For a graph G = (V,E) with V = [n] and β ∈ R, the corresponding Ising model is defined as

νG,β(x) ∝ exp



〈x, v〉+ β
∑

(i,j)∈E
1{xi=xj}



 . (39)

We say that the measure νG,β satisfies the tree-uniqueness condition if

exp(|β|) < ∆(G)− δ

∆(G)− 2 + δ
, (40)

for δ ∈ (0, 1), where ∆(G) ≥ 3 is the maximum degree of the graph. The following result was

proven in [CLV21] (see also [CFYZ21a, Lemma 8.3]).
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Theorem 55. (Spectral independence for the Ising model). Let ν = νG,β be an Ising model

defined as in (39) which satisfies the tree-uniqueness condition (40). Then for any external field

v ∈ Rn,

ρ(Ψ(Tvν)) ≤
2

δ
.

Given a graph G = (V,E), define a matrix J = JG by

Ji,j =
1

2

(

1{(i,j)∈E)} + 1{i=j}degG(i)
)

.

It is straightforward to check that

∑

(i,j)∈E
1{xi=xj} = 〈x, JGx〉,

and that JG is positive-definite.

Corollary 56. Any graphical Ising model ν of the form (39) which satisfies (40), one has

ρLS(P
GD(ν)) ≥ exp(−8/δ)

n
.

Consequently, the mixing time for Glauber dynamics is O(n logn).

Proof. First, we deal with the case β > 0. Apply Theorem 49 with the choice J = βJG.

Observe that for all λ ∈ [0, 1], the measure µλ,v defined in (35) is of the form (39), with a

smaller value of β, and therefore µλ,v is also in the uniqueness regime. An application of

Theorem 55 ensures that ρ(Ψ(µλ,v)) ≤ 2
δ
. By Fact 23 we have

‖Cov(µλ,v)‖OP ≤ ‖Cor(µλ,v)‖OP ≤ 2

δ
,

so (36) holds with α(λ) = 2/δ. Moreover, since µ1,v is a product measure, condition (37) holds

with ε = 1/n. Therefore, we can conclude by Theorem 49 that

ρLS(P
GD(ν)) ≥ 1

n
exp

(

−4
β‖JG‖OP

δ

)

≥ 1

n
e−8/δ.

The last step follows because JG = In − 1
2
Lsym where Lsym is the symmetrically normalized

Laplacian which has eigenvalues between 0 and 2; and β < log
(

∆(G)−δ
∆(G)−2+δ

)

≤ 2.

Second, the case β = 0 is trivial because it becomes a product measure. Finally, for the case

β < 0, we observe that

− |β| 〈x, JGx〉 = |β| (〈x, (In − JG)x〉 − 〈x, x〉) == |β| (〈x, (In − JG)x〉 − n) .

In − JG is positive-definite and has operator norm bounded by 1. Using the same argument as

the case β > 0 but with JG replaced by In − JG, we obtain the same MLSI lower bound.
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5.2 Sampling from strongly log-concave measures via a Restricted Gaus-

sian Oracle

Let ν be a log-concave measure on Rn, hence, a measure of the form

ν(dx)

dx
= exp(−V (x)), V : Rn → R convex.

We assume that it is uniformly (or strongly) log-concave, namely that

∇2V (x) � µIn, ∀x ∈ R
n. (41)

Let (νt)t be the process attained from ν via the stochastic localization scheme (5) with the

choice Ct ≡ In. According to equation (6), νt has the form

dνt
dx

∝ exp

(

−Ṽ (x)− t

2
|x|2
)

(42)

where Ṽ (x) is convex (it is an exponential tilt of V (x)). The following well-known bound goes

back to Brascamp and Lieb.

Theorem 57. If ρ is a measure on Rn of the form
ρ(dx)
dx

∝ exp(−U(x)) that satisfies the uniform

convexity condition

∇2U(x) � αIn, ∀x ∈ R
n,

then ‖Cov(ρ)‖OP ≤ 1
α

.

Equations (41) and (42) imply that νt has the form
dνt(x)
dx

= exp(−U(x)) with

∇2U(x) � (µ+ t)In, ∀x ∈ R
n.

Therefore, the above theorem gives

‖Cov(Tvνt)‖OP ≤ 1

µ+ t
, ∀v ∈ R

n. (43)

An application of Lemma 40 gives that νt is α-entropically-stable with respect to ψ(x, y) =
1
2
|x − y|2, with α = 1

µ+t
. Proposition 39 now gives the approximate conservation of entropy

bound

E [EntνT [f ]] ≥ Entν [f ] exp

(

−
∫ T

0

1

µ+ t
dt

)

=
µ

µ+ T
Entν [f ],

for an arbitrary f : Rn → R+ such that
∫

fdν > 0. Using equation (11), this gives

ρLS(P
RGDη(ν)) ≥ µ

µ+ 1/η
,

where PRGDη(ν) is the transition kernel of the restricted Gaussian dynamics (Definition 15

above). We have proved:

Theorem 58. If ν is a µ-strongly log-concave measure on Rn, then the associated restricted

Gaussian dynamics with parameter η satisfies ρLS(P
RGDη(ν)) ≥ µ

µ+1/η
.

The above theorem not only recovers Theorem 1.1 in [LST21], but also resolves the open

problem discussed in section 1.4 of the same paper: it provides a proof to show that the Re-

stricted Gaussian Dynamics mixes in ηµ log(n) steps when started from any O(exp(n))-warm

start in the case η < 1/µ. As defined in [LST21], an initial measure ρ is a β-warm start with re-

spect to ν if dρ
dν
(x) ≤ β everywhere. The applications of the above theorem includes improving

dependency of condition number dependency of Markov chains for log-concave sampling and

introducing new sampling algorithms for composite log-concave distributions and log-concave

finite sums, which has been extensively discussed in [LST21].
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5.3 A spectral-independence based condition for fast mixing and applica-

tions to sampling from the hardcore model

In this section we present the main application of the negative-fields localization, giving a suf-

ficient condition for fast mixing. In particular, it provides an optimal mixing time bound for

sampling the hardcore model via Glauber dynamics.

Recall that, for u ∈ {−1, 0, 1}, we define the u-pinning Ruν to be the restriction of u to the

subcube Su := {x ∈ {−1, 1}n; xiui ≥ 0, ∀i ∈ [n]} and that Tvν is the v-exponential tilt of ν.

The following definition relates the marginals of the pinned distribution to those of the

original distribution and lower bounds the marginals in a one-sided fashion.

Definition 59. For K > 1, a measure ν on {−1, 1}n has K-tame marginals if for every i ∈ [n]
and for every u, w ∈ {−1, 0, 1}n with supp(u) ∩ supp(w) = ∅ with ui = wi = 0, we have

1 + bi(RwRuν)

1− bi(RwRuν)
≤ K

1 + bi(Ruν)

1− bi(Ruν)
, and (44)

1− bi(Ruν) ≥
1

K
. (45)

Our main aim is to establish the following sufficient condition for a MLSI: Given a measure

ν on {−1, 1}n, if a MLSI can be established for a perturbed measured obtained after applying

an external field v, and if the correlation matrix has bounded operator norm for any external

field λv, λ ∈ [0, 1] and under all pinnings, then the original measure satisfies a MLSI.

Theorem 60. Let s > 0. Let ν be a measure on {−1, 1}n such that for any λ ∈ [0, s], T−λ~1ν has

K-tame marginals. Define ~1 := (1, ..., 1). Suppose that for any λ ∈ [0, s] and u ∈ {−1, 0, 1}n,

we have
∥

∥Cor(RuT−λ~1ν)
∥

∥

OP
≤ η. (46)

Moreover, assume that for all u ∈ {−1, 0, 1}n,

ρLS(P
GD(RuT−s~1ν)) ≥ δ. (47)

Then we have

ρLS(P
GD(ν)) ≥ δe−cK4η,

for a universal constant c > 0.

Remark 61. In the above theorem we considered the “path” of tilts {−λ~1;λ ∈ [0, s]}. The

same proof works for the more general case that we consider Tv(λ)ν for an arbitrary curve

v : [0, 1] → Rn. The special case v(λ) = −λ~1 is sufficient for the applications that we know

of, which is why we chose to stick to it for the sake of simplicity.

Proof of Theorem 60. The main proof strategy is to use the negative-fields-localization (con-

structed in Section 2.4.4) as an annealing scheme for the measure. Namely, we apply Proposi-

tion 18 with the choice v(t) = −t~1 to obtain a localization process (νt)t. We concatenate this

process to the coordinate-by-coordinate localization scheme at time s and apply theorem 47,

which gives us a MLSI bound for the Glauber dynamics PGD(ν).
According to Proposition 18, for every t > 0 there exists u(t) ∈ {−1, 0, 1}n such that

νt = T−t~1Ru(t)ν.

Therefore, condition 2 of theorem 47 follows immediately from equation (47).
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It remains to show that condition 1 of Theorem 47 is satisfied, which boils down to the

approximate entropy conservation bound

E[Entνs[f ]] ≥ e−64K2esηEntν [f ], (48)

for an arbitrary function f : {−1, 1}n → R+.

Fix t ∈ [0, s]. We aim to apply Theorem 42 to the measure νt, which should be understood

as a measure on the sub-cube Su(t) = {x ∈ {−1, 1}n; xiu(t)i ≥ 0, ∀i ∈ [n]}. To check that

condition (30) is fulfilled, let ũ ∈ {−1, 0, 1}n be such that ũiu(t)i = 0 for all i ∈ [n] (which

amounts to all valid pinning for a function on Su(t)), then

‖Cor(Rũνt)‖OP =
∥

∥Cor(RũRu(t)T−t~1ν)
∥

∥

OP

=
∥

∥Cor(Rũ+u(t)T−t~1ν)
∥

∥

OP

(46)

≤ η.

Define Ft = {i ∈ [n]; ui(t) = 0}, the set of coordinates which have not been pinned yet. In

order to verify condition (31) and (32) for νt, we use the fact that νt is obtained by pinning

T−t~1ν which has K-tame martingales. First, for all i ∈ Ft and all u(t) ⊥ ũ ∈ {−1, 0, 1}n with

ũi = 0, 1 − bi(Rũνt) = 1 − bi(RũRu(t)T−t~1ν) ≥ 1
K

, which verifies condition (32) for νt.
Second, using the K-tame marginals of T−t~1ν, we obtain

1 + bi(RwRũνt)

1− bi(RwRũνt)
=

1 + bi(RwRũRu(t)T−t~1ν)

1− bi(RwRũRu(t)T−t~1ν)

≤ K
1 + bi(Rwνt)

1− bi(Rwνt)
,

which verifies condition (31) for νt. Apply Theorem 42 to νt, we obtain that νt is cK4η-

entropically stable with respect to the function H(x, y), where c is a universal constant. We

can finally use Proposition 41 which gives that for t, h > 0,

E[Entνt+h
[f ]|u(t)] ≥ Entνt [f ](1− cK4ηh) + o(h).

By integrating this inequality, we finally get

E[Entνs[f ]] ≥ Entν [f ] exp
(

−cK4η
)

.

Both conditions of Theorem 47 are satisfied, and we conclude the proof.

5.3.1 Application to an optimal mixing bound for Glauber dynamics in the hardcore

model

Given a graph G = (V,E), we define the set of all independent assignments as

IG :=
{

x ∈ {−1, 1}V : xi + xj ≤ 1, ∀(i, j) ∈ E
}

.

If we associate a point x ∈ {−1, 1}V the set A(x) = {v ∈ V ; xv = 1}, thenA(IG) is the family

of independent sets in G.

For λ ∈ (0,∞) let ρλ be the product probability measure on {−1, 1}V defined by

ρλ({x}) =
∏

v∈V

1{xv=−1} + λ1{xv=1}
1 + λ

.
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The hardcore model on G with fugacity λ is a probability measure on {−1, 1}V defined by

νG,λ({x}) :=
ρλ({x})1{x∈IG}

ρλ(IG)
.

A hardcore model with fugacity λ is called δ-unique if λ ≤ (1 − δ)λ∆, where the critical

fugacity is

λ∆ =
(∆− 1)∆−1

(∆− 2)∆
, (49)

and where ∆ is the maximal degree of G.

Our goal is to prove the following theorem, which asserts that the Glauber dynamics mixes

in time O(n logn) in the uniqueness regime.

Theorem 62. Given a graph G = (V,E). |V | = n and λ > 0, let ν = νG,λ be the hardcore

model on G with fugacity λ. Suppose that ν is δ-unique for some δ > 0. Let µ0 be an arbitrary

initial distribution supported on IG. Then there exists a universal constant c > 0, such that

tmix(P
GD(ν), ε;µ0) ≤ exp

(c

δ

)

(n log(n) + 3n log(1/ε)) .

Proving mixing bounds for the hardcore model has been one of the central applications of

the spectral and entropic independence frameworks. This model has inspired the first paper

which put forth the notion of spectral independence as well as many of the following works.

Let us summarize the progress made so far.

• Anari, Liu and Oveis Gharan were the first to introduce the notion of spectral indepen-

dence in [ALOG20], and proved an nexp(O(1/δ)) mixing time.

• Chen, Liu and Vigoda [CLV21] proved tight bounds on spectral independence, gave an

improved nO(1/δ) mixing time.

• Chen, Liu and Vigoda [CLV20] extended the framework towards MLSI bounds and

proved that ∆O(∆2/δ)n log(n), which in particular gives an optimal bound for constant

∆.

• Jain, Pham and Vuong [AJK+21a] proved a mixing time of ∆O(1/δ)n2.

• Chen, Feng, Yin and Zhang [CFYZ21b], in Theorem 1.3, obtained an optimal bound for

the relaxation time, which implies a mixing time of C(δ)n2 log(∆).

• Anari et al. [AJK+21a, Theorem 1], showed that a variant of Glauber dynamics called the

balanced Glauber dynamics gives an Oδ(n log(n)) mixing time.

Our result, Theorem 62 is the first to give an optimal mixing bound for the (usual) Glauber

dynamics.

The proof combines many of ingredients developed in our framework, together with the idea

of using a certain “restricted” type of entropy decay.
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5.3.2 Properties of the hardcore distribution

In this subsection, we collect four properties of the hardcore distribution: spectral independence

for all negative tilts and all pinnings, marginal upper and lower bounds, the fact that exponen-

tially tilt hardcore model remains a hardcore model and MLSI coefficient for hardcore model

with small fugacity. Throughout this section we fix graph G = (V,E) with maximum degree

∆, a fugacity λ ∈ (0,∞) and define ν = νG,λ to be the corresponding hardcore model. Without

loss of generality, we identify V with [n] for simplicity.

The first lemma establishes spectral independence of all negative tilts and all pinnings of

the hardcore distribution, and was proved in Lemma 8.4 of [CFYZ21b] extending the analyses

in [CLV20].

Lemma 63. Consider the hardcore model ν = νG,λ with ∆ = ∆(G) ≥ 3. Furthermore,

suppose that ν is δ-unique on G. Then for all u ∈ {−1, 0, 1}n and for every vector v ∈
(−∞, 0]V , we have

‖Cor(TvRuν)‖OP ≤ 144

δ
.

The next lemma gives bounds for the marginals of the hardcore distribution. It was essen-

tially proven in [AJK+21a, Proposition 50], but we provide a proof in Appendix C for com-

pleteness.

Lemma 64. Let ν = νG,λ with ∆(G) ≥ 3. Then for any v ∈ V , for any u ∈ {−1, 0, 1}n which

sets all neighbors of v to 0 (i.e., satisfying ua = 0, ∀a ∈ Nv), we have

λ

1 + λ

(

1

1 + λ

)|Nv |
≤ Pσ∼ν (σv = +1 | σiui ≥ 0, ∀i ∈ [n]) ≤ λ

1 + λ
.

Moreover, if the model is δ-unique, namely λ ≤ (1− δ)λ∆, then

λ

1 + λ
e−3e2 ≤ Pσ∼ν (σv = +1 | σiui ≥ 0, ∀i ∈ [n]) ≤ λ

1 + λ
.

Recall that ~1 = (1, . . . , 1). The next lemma shows that the exponentially tilted hardcore

model remains a hardcore model.

Lemma 65. For every G and λ, we have for all t > 0,

T−t~1νG,λ = νG,e−2tλ. (50)

In other words, the exponential tilt T−t~1ν corresponds to a hardcore model, on the same graph,

with fugacity e−2tλ.

Proof of Lemma 65. It is clear from the definition of the hardcore model.

The final lemma states that if the fugacity of the model is small enough, then one has a

bound on the MLSI coefficient. This lemma was proved in [EHMT17, Corollary 4.7] (see also

[AJK+21a, Proposition 51]).

Lemma 66. Let ν be a hardcore model on G of maximum degree at most ∆ with fugacity

λ ≤ 1
2∆

. ∆ ≥ 3. Then one has ρLS(P
GD(ν)) ≥ 1

4n
.
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Proof. Combine [AJK+21a, Proposition 51] and [CLV21, Fact 3.5].

Proof of Theorem 62. We simply verify that all the conditions of Theorem 60 hold. Lemma 63

verifies condition (46) with η = 144
δ

. Next, note that, since ∆ > 3,

e−2tλ ≤ e−2t (∆− 1)∆−1

(∆− 2)∆
=

e−2t

∆− 2

(

1 +
1

∆− 2

)∆−1

≤ 9e1−2t

∆
.

According to Lemma 65, the condition of Lemma 66 is verified for T−2~1ν, which gives that

ρLS(P
GD(T−2~1ν)) ≥ 1

4n
so that (47) holds true with s = 2 and δ = 1/(4n). Lemma 64 and

Lemma 65 together ensure that

1− bi(T−t~1ν) ≥
2

1 + e−2tλ
≥ 2

1 + 4
.

Finally, Lemma 64 ensures that T−t~1ν has K-tame martingales with K = e30, for any t ∈ [0, s].
Finally, we invoke Theorem 60 to obtain ρLS(P

GD(ν) ≥ exp
(

− c
δ

)

1
4n

where c is a universal

constant. Using Fact 2, this completes the proof.

6 Entropic stability via spectral independence

In this section, we prove Theorem 42, which shows that entropic stability is implied by spectral

independence for all pinnings. A priori, the formulation of this theorem has nothing to do with

the negative-fields localization, however the main argument of its proof relies on a coupling

argument based on the negative-fields localization.

For convenience, we repeat the formulation of Theorem 42 in the following theorem.

Theorem 67. Let ν be a probability measure on {−1, 1}n and let α ≥ 1. Suppose that

‖Cor(Ruν)‖OP ≤ α, ∀u ∈ {−1, 0, 1}n . (51)

Then ν is 8α-entropically stable with respect to ψ(x, y) = 1
2
|x− y|2.

Furthermore, if for some constants K ≥ 1, C ≥ 1, for every i ∈ [n] and for every u, w ∈
{−1, 0, 1}n with supp(u) ∩ supp(w) = ∅ with ui = wi = 0, we have

1 + bi(RwRuν)

1− bi(RwRuν)
≤ K

1 + bi(Ruν)

1− bi(Ruν)
, and (52)

1− bi(Ruν) ≥
1

C
, (53)

then ν is 768αK3C-entropically stable with respect to the function H(x, y) as defined in equa-

tion (23).

The proof of the theorem consists of the following two main lemmas.

Lemma 68. Suppose that ν satisfies the assumption (51). Then for all v ∈ Rn,

|b(Tvν)− b(ν)|2 ≤ 16α2|v|2.

If, furthermore, condition (52) and (53) hold then for all v ∈ Rn,

〈v,b(Tvν)− b(ν)〉 ≤ 4α
∑

i∈[n]
K3C (1 + bi(ν)) v

2
i exp(4|vi|).
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Lemma 69. Let ν be a measure on Rn. Suppose that

|b(Tv′ν)− b(ν)|2 ≤ ε2|v′|2, ∀v′ ∈ R
n, (54)

then

|b(Tvν)− b(ν)|2 ≤ εDKL(Tvν||ν), ∀v ∈ R
n.

Furthermore, suppose that for some constant C ≥ 1, we have

〈v,b(Tvν)− b(ν)〉 ≤
∑

i∈[n]
εiv

2
i exp(4|vi|), ∀v ∈ R

n, (55)

where 2 ≤ εi ≤ C (1 + bi(ν)) for all i ∈ [n]. Then,

H(bi(Tvν),bi(ν)) ≤ 192C · DKL(Tvν||ν), ∀v ∈ R
n.

Plugging the two lemmas together immediately establishes Theorem 67. Before we move

on to the proofs of Lemmas 68 and 69, we need three more technical intermediate lemmas

whose proofs are found in Appendix A.

Lemma 70. Let ν be a probability measure on {−1, 1}n. If s ∈ {−1, 1} and ei is a vector of

the standard basis, then we have

b (Rseiν)− b(ν) = (1 + sb(ν)i)
−1Cov(ν)sei. (56)

Lemma 71. Define H(x, y) = 1+x
2

log
(

1+x
1+y

)

+ 1−x
2

log
(

1−x
1−y

)

and Φ(x) = (1 + x) log(1 +

x)− x. Then we have

1

2
H(x, y) ≤ (1 + y)Φ

(

x− y

1 + y

)

≤ 2H(x, y), (57)

for all y ∈ (−1, 1) and x ∈ [−1, 1]. Moreover, for all ε ≥ 1,

1

4ε
H(x, y) ≤ ε(1 + y)Φ

(

x− y

ε(1 + y)

)

. (58)

Finally, we also have

Φ(|s|) ≥ 1

3
Φ(s), ∀|s| ≤ 1. (59)

Lemma 72. Let ρ be a measure on {−1, 1}n which satisfies, for all i ∈ [n] and for all u ∈
{−1, 0, 1}n such that ui = 0,

1 + bi(Ruρ) ≤ δ, (60)

Then for all v ∈ Rn and all u ∈ {−1, 0, 1}n with ui = 0, we have

1 + bi(TvRuρ) ≤ δ exp (max {0, 2vi}) ≤ δ exp(2|vi|). (61)

Moreover, if for all i ∈ [n] and for all u ∈ {−1, 0, 1}n such that ui = 0,

δ′ ≤ 1 + bi(Ruρ)

1− bi(Ruρ)
≤ δ′′, (62)

Then for all v ∈ R
n and all u ∈ {−1, 0, 1}n with ui = 0, we have

δ′ exp (min {0, 2vi}) ≤
1 + bi(TvRuρ)

1− bi(TvRuρ)
≤ δ′′ exp (max {0, 2vi}) . (63)
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Proof of lemma 68. Define µ = Tvν. Consider the localization process (µt)t obtained via the

negative-fields localization starting from µ. More specifically, we invoke Proposition 18 with

the choice v(t) = −tv, to obtain a process (u(t))t of pinnings, u(t) ∈ {−1, 0, 1}n, such that the

process defined by

µt = Ru(t)Tv(t)µ = Ru(t)T(1−t)vν

is a martingale. Moreover, we have

P[u(t+ h)i 6= u(t)i|u(t)] = h(1 + sib(µs)i)|vi|+ o(h), (64)

where si := sign(vi).
We couple this process with a process (νt)t defined by

νt = Ru(t)ν.

We remark that νt is not a martingale. By definition of νt and µt, it is evident that ν1 = µ1

almost surely. Since µt is a martingale, we have

b(µ) = E[b(µ1)] = E[b(ν1)]. (65)

Define Ft = {i ∈ [n]; u(t)i = 0}, the set of coordinates which have not been pinned yet. Note

that P
(

‖u(t+ h)− u(t)‖1 ≥ 2
∣

∣u(t)
)

= o(h). Therefore, we have

E[b(νt+h)− b(νt)|u(t)] = E[b(Ru(t+h)ν)− b(Ru(t)ν)|u(t)]
=
∑

i∈Ft

(

b(Ru(t)+sieiν)− b(Ru(t)ν)
)

P(u(t+ h)i 6= u(t)i) + o(h)

(64)
=
∑

i∈Ft

(

b(Ru(t)+sieiν)− b(Ru(t)ν)
)

|vi|h(1 + sib(µt)i) + o(h)

(56)
= h

∑

i∈Ft

Cov(νt)siei
1 + sib(µt)i
1 + sib(νt)i

|vi|+ o(h).

Note that if i /∈ Ft, then b(µt)ib(νt)i = 1 and we can denote by convention that 0
0
= 1. Since

(1 + sib(νt)i)
−1 = (Cov(νt)i,i)

−1(1− sib(νt)i), we finally get

E[b(νt+h)− b(νt)|u(t)] = hΨ(νt)PtQtv + o(h),

where S = diag(Sgn(v)), Pt = In − Sdiag(b(νt)) and Qt = In + Sdiag(b(µt)). Integrating

with respect to time gives

b(µ)− b(ν)
(65)
= Eb(ν1)− b(ν0) =

∫ 1

0

E [Ψ(νt)PtQtv] dt. (66)

Since νt is a pinning of ν, the assumption (51) implies that ‖Cor(νt)‖OP ≤ α. The triangle

inequality then gives

|b(µ)− b(ν)| ≤ α

∫ 1

0

E|(In − Sdiag(b(νt))) (In + Sdiag(b(µt))) v|dt. (67)

Since |(In − Sdiag(b(νt))) (In + Sdiag(b(µt))) v| ≤ 4|v|, this proves the first part of the

lemma.
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For the second part of the lemma, we write

〈v,b(µ)− b(ν)〉 (66)
=

∫ 1

0

E [〈v,Ψ(νt)PtQtv〉] dt.

Define Et = diag(Cov(νt)). We have

(Et)ii = 1− bi(νt)
2

= (1− bi(νt))(1 + bi(νt)) ≤ 2(1 + bi(νt)). (68)

Recall that by definition Ψ(νt) = Cov(νt)E
−1
t and Cor(νt) = E

−1/2
t Cov(νt)E

−1/2
t . We have

〈v,Ψ(νt)PtQtv〉 =
〈

E
1/2
t v,Cor(νt)E

−1/2
t PtQtv

〉

≤ ‖Cor(νt)‖OP ·
∣

∣

∣
E

1/2
t v

∣

∣

∣
·
∣

∣

∣
E

−1/2
t PtQtv

∣

∣

∣
. (69)

The following diagonal matrix is entry-wise bounded.

(E
−1/2
t PtQt)ii =

(1− sibi(νt)) (1 + sibi(µt))

(1− b2
i (νt))

1/2

≤ 2K exp (2 |vi|)
√

1 + bi(νt)

1− bi(νt)

≤ 2K3/2C1/2 exp (2 |vi|) (1 + bi(ν))
1/2 .

The last step follows because: if i /∈ Ft, meaning that i-th coordinate has been pinned, by the

convention on 0
0
, (E

−1/2
t PtQt)ii ≤ 1; if si = −1, then we bound (1 + sibi(µt)) from above by

2; otherwise, applying Lemma 72 to νt together with condition (52), we obtain

1 + b(µt)i = 1 + bi(T(1−t)vνt) ≤ 2K
1 + bi(νt)

1− bi(νt)
exp (2 |vi|) .

Plugging the above bound together with (68) back to (69), we obtain

〈v,Ψ(νt)PtQtv〉

≤ ‖Cor(νt)‖OP

√

∑

i

2(1 + bi(νt))v2i

√

∑

i

4K3C exp(4 |vi|) (1 + bi(ν)) v2i

≤ ‖Cor(νt)‖OP

(

∑

i

4K3C exp(4 |vi|) (1 + bi(ν)) v
2
i

)

where the last step follows from condition (52). Hence,

〈v,b(µ)− b(ν)〉 ≤ 4α
∑

i∈[n]
K3C (1 + bi(ν)) v

2
i exp(4|vi|),

which completes the proof.
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Proof of lemma 69. Define f(v) := log
∫

{−1,1}n exp(〈v, x〉)dν(x) for v ∈ Rn, the logarithmic

Laplace transform of ν. Define for x ∈ R
n

g(x) = max
v∈Rn

〈v, x〉 − f(v),

its Legendre dual. According to Lemma 33, we have DKL(Tvν||ν) = g(∇f(v)) and that

b(Tvν) = ∇f(v). With this notation, the assumption (54) amounts to

|∇f(v′)−∇f(0)|2 ≤ ε2|v′|2, ∀v′ ∈ R
n, (70)

and the conclusion becomes

g(∇f(v)) ≥ 1

2ε
|∇f(v)−∇f(0)|2 , ∀v ∈ R

n. (71)

Define h(v) = f(v)− 〈∇f(0), v〉. Equation (70) implies

h(v) =

∫ 1

0

〈∇h(tv), v〉dt ≤ |v|
∫ 1

0

|∇h(tv)|dt ≤ |v|
∫ 1

0

εt|v|dt = 1

2
ε|v|2.

Since the Legendre transform is order-reversing, we have

sup
v∈Rn

〈x, v〉 − h(v) ≥ 1

2ε
|x|2, ∀x ∈ R

n

which yields (71) by taking x = ∇f(v) − ∇f(0) and completes the proof for the first part of

the lemma.

For the second part, note that the assumption (55) amounts to

〈v,∇f(v)−∇f(0)〉 ≤
∑

i∈[n]
εiv

2
i exp(4|vi|), ∀v ∈ R

n.

Define h(v) = f(v)− 〈∇f(0), v〉, then

〈v,∇h(v)〉 ≤
∑

i∈[n]
εiv

2
i exp(4|vi|), ∀v ∈ R

n.

We can upper bound h as follows

h(v) = h(0) +

∫ 1

0

〈v,∇h(tv)〉 dt

≤
∫ 1

0

∑

i∈[n]
εiv

2
i t exp(4t|vi|)dt

=
∑

i∈[n]

1

16
εi [exp(4|vi|)(4|vi| − 1) + 1]

≤ 1

16

∑

i∈[n]
εi [exp(8|vi|)− 8|vi| − 1]

≤ 1

16

∑

i∈[n]
εi [exp(16|vi|)− 16|vi| − 1]
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The Legendre transform of the function s 7→ ε
16
(exp(|16s|)− |16s| − 1) is the function t 7→

ε
16

[(

1 + |t|
ε

)

log
(

1 + |t|
ε

)

− |t|
ε

]

. Since the Legendre transform is order-reversing, we get

h∗(x) ≥
∑

i∈[n]

εi
16

((

1 +
|xi|
εi

)

log

(

1 +
|xi|
εi

)

− |xi|
εi

)

.

Let y = ∇f(0). Taking ε = εi
1+yi

≥ 1 in equation (58) of Lemma 71, we obtain

1 + yi
4εi

H(xi + yi, yi)
(58)

≤ εiΦ

(

xi
εi

)

(59)

≤ 3εiΦ

( |xi|
εi

)

.

Finally, using the assumption εi ≤ C (1 + bi(ν)) and taking x = ∇f(v)−∇f(0), we get

∑

i∈[n]
H(xi + yi, yi) ≤ 192C · h∗(x) = 192C · g(x+ y) = 192C · DKL(Tvν||ν).

This completes the proof.
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[Lov99] László Lovász. Hit-and-run mixes fast. Mathematical Programming, 86(3, Ser.

A):443–461, 1999.

[LP17] David A. Levin and Yuval Peres. Markov chains and mixing times. American

Mathematical Society, Providence, RI, 2017. Second edition, with contributions

by Elizabeth L. Wilmer, with a chapter on “Coupling from the past” by James G.

Propp and David B. Wilson.

[LST21] Yin Tat Lee, Ruoqi Shen, and Kevin Tian. Structured logconcave sampling with a

restricted Gaussian oracle. In Conference on Learning Theory, pages 2993–3050.

PMLR, 2021.

[LV17] Yin Tat Lee and Santosh Srinivas Vempala. Eldan’s stochastic localization and

the KLS hyperplane conjecture: An improved lower bound for expansion. In 2017

IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages

998–1007. IEEE, 2017.

[Mil21] Emanuel Milman. The quasi curvature-dimension condition with applications to

sub-Riemannian manifolds. Comm. Pure Appl. Math., 74(12):2628–2674, 2021.

51



[MR02] Neal Madras and Dana Randall. Markov chain decomposition for convergence rate

analysis. The Annals of Applied Probability, 12(2):581 – 606, 2002.

[NS22] Hariharan Narayanan and Piyush Srivastava. On the mixing time of coordinate

hit-and-run. Combinatorics, Probability and Computing, 31(2):320–332, 2022.

[Opp18] Izhar Oppenheim. Local spectral expansion approach to high dimensional ex-

panders Part I: descent of spectral gaps. Discrete & Computational Geometry,

59(2):293–330, 2018.

[STL20] Ruoqi Shen, Kevin Tian, and Yin Tat Lee. Composite logconcave sampling with a

restricted Gaussian oracle. arXiv preprint arXiv:2006.05976, 2020.

A Appendix A: Loose ends

Proof of Lemma 36. Let K and v(x) be defined as in Lemma 33. Define z = b(ν). A direct

calculation shows that

H(z, z) = 0, ∇xH(x, z)|x=z = 0.

Moreover, we have

DKL(Tv(z)ν||ν) = 0, ∇xDKL(Tv(x)ν||ν) = 0|x=z = 0.

Therefore, if we establish that

∇2
xH(x, z) � α∇2

xDKL(Tv(x)ν||ν), ∀x ∈ K (72)

Then it will follow that H(x, z) ≤ αDKL(Tv(x)ν||ν) which will complete the proof. A direct

calculation yields
∂2

∂x2i
H(x, z) =

1

1− x2i
.

Since ν is supported on {−1, 1}n, we have
∫

x⊗2dν(x) = In, which implies that

diag(Cov(Tv(x)ν)) = In − x⊗2.

A combination of the last two displays gives

∇2
xH(x, z) = diag(Cov(Tv(x)ν))

−1.

Moreover, Formula (22) gives

∇2
xDKL(Tv(x)ν||ν) = Cov(Tv(x)ν)

−1. (73)

Combining the last two displays with the assumptionCor(Tv(x)) � αIn implies (72). The proof

is complete.

Proof of Fact 23. Let X ∼ ν. We have

2Cov(ν)i,j = E[Xi|Xj = 1](1 + E[Xj ])− E[Xi|Xj = −1](1− E[Xj ])− 2E[Xi]E[Xj ]

= (E[Xi|Xj = 1]− E[Xi|Xj = −1]) + E[Xj ]
(

E[Xi|Xj = 1] + E[Xi|Xj = −1]

−E[Xi|Xj = 1](1 + E[Xj ])− E[Xi|Xj = −1](1− E[Xj])
)

= (E[Xi|Xj = 1]− E[Xi|Xj = −1])(1− E[Xj ]
2),

52



which readily implies that Ψ(ν) = Cov(ν)D−1 where D := diag(Cov(ν)). To see that the

operator norm is that same as that of Cor(ν) = D−1/2Cov(ν)D−1/2, let v be an eigenvector of

Cor(ν) with eigenvalue λ, write u = D1/2v, then

λv = D−1/2Cov(ν)D−1/2v ⇔ λD−1/2u = D−1/2Cov(ν)D−1u⇔ λu = Cov(ν)D−1u

which implies that ρ(Ψ(ν)) = ρ(Cor(ν)). Since Cor(ν) is symmetric, we have ρ(Cor(ν)) =
‖Cor(ν)‖OP. This completes the proof.

A.1 Supermartingality of the Dirichlet form: Proof of Proposition 48

Recall that we assume that Lf is a Doob localization. Let P be the transition kernel of the

Markov chain given by (Lf , t, µ), then there exists a random variable X ∼ µ and a σ-algebra Σ
on X such that

∫

Ω×Ω

ϕ(x)ϕ(y)dPx(y)dµ(x) = E

[∫

Ω×Ω

ϕ(x)ϕ(y)µt(dx)µt(dy)

]

= EΣ

[

EX

[

E[ϕ(X)|Σ]2
]]

.

Moreover,

∫

Ω×Ω

Pf(x) logPf(x)dµ(x) = EΣ [EX [E[f(X)|Σ] logE[f(X)|Σ]]]− Eν [f ] logEν [f ].

Fix a measure ρ on Ω and suppose that µ is absolutely continuous with respect to ρ, hence

we may write dµ
dρ
(x) = h(x).

Lemma 73. Fix a measure ρ on Ω and ϕ : Ω → R and a σ-algebra Σ on Ω. For all x ∈ Ω
there exist linear functionals Fx, Gx : L1(Ω, ρ) → R such that the following holds: For every

h : Ω → R+ satisfying
∫

Ω
hdρ = 1,

[

EX

[

E[ϕ(X)|Σ]2
]]

=

∫

Ω

Fx(h)
2

Gx(h)
dρ(x).

Analogously, for every non-negative f : Ω → R, there exist families of linear functionals Fx, Gx

such that

[EX [E[f(X)|Σ] logE[f(X)|Σ]]] =
∫

Ω

Fx(h) log (Fx(h)/Gx(h))

where X ∼ µ and dµ
dρ

= h.

Proof. The lemma follows from a standard disintegration theorem. For the sake of demystifying

the proof, let us first consider the case that Σ is a finite partition of Ω into sets Ω1, ...,Ωk. Let

A(x) be the unique set Ωi such that x ∈ Ωi. Then we have

E[ϕ(X)|Σ] =
∫

A(X)
ϕ(x)dµ(x)

µ(A(X))
.
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Therefore,

EX∼µ

[

E[ϕ(X)|Σ]2
]

=

k
∑

i=1

µ(Ωi)EX∼µ

[ ∫

A(X)
ϕ(x)dµ(x)

µ(A(X))

∣

∣

∣

∣

∣

X ∈ Ωi

]2

=
k
∑

i=1

(

∫

Ωi
ϕ(x)dµ(x)

)2

µ(Ωi)

k
∑

i=1

(

∫

Ωi
ϕ(x)h(x)dρ(x)

)2

∫

Ωi
h(x)ρ(dx)

.

This completes the proof of the first part by choosing

Fx(h) :=
1

ρ(A(x))

∫

A(x)

ϕ(y)h(y)dρ(y) and Gx(h) :=
1

ρ(A(x))

∫

A(x)

h(y)dρ(y).

The proof of the second part is very similar. Define ψ(s) = s log s. We have,

EX∼µ [E[f(X)|Σ] logE[f(X)|Σ]] =
k
∑

i=1

µ(Ωi)ψ

(

EX∼µ

[ ∫

A(X)
f(x)dµ(x)

µ(A(X))

∣

∣

∣

∣

∣

X ∈ Ωi

])

=

k
∑

i=1

ν(Ωi)ψ





(

∫

Ωi
f(x)dµ(x)

)

µ(Ωi)





k
∑

i=1

(

∫

Ωi

f(x)h(x)dρ(x) log

(
∫

Ωi
f(x)h(x)ρ(dx)
∫

Ωi
h(x)dρ(x)

))

,

and the second part is proved by choosing

Fx(h) :=
1

ρ(A(x))

∫

A(x)

f(y)h(y)dρ(y) and Gx(h) :=
1

ρ(A(x))

∫

A(x)

h(y)dρ(y).

To complete the proof, observe that for every linear functional F : L1(Ω, ν) → R, we have

that t→ F (dνt
dν
) is a martingale.

Fact 74. If Mt, Nt are martingales and Nt ≥ 0 almost surely, then
N2

t

Mt
is a submartingale. If

Mt is also positive almost-surely then Nt log
Nt

Mt
is a submartingale.

Proof. The first part follows immediately from the fact that the function (x, y) → x2/y is

convex in the domain {y > 0}. The second part follows from the convexity of (x, y) →
x log(x/y) in the domain {x > 0, y > 0}.
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A.2 Existence and entropic decay of the negative-fields localization pro-

cess

Proof of Proposition 18. For v ∈ Rn and u ∈ {−1, 0, 1}n, define

a(v, u) = b(RuTvν).

Fix t ≥ 0 and suppose that the process u(t) has been constructed up to time t. We will first

show that the process can be extended up to some stopping time τ > t. Define

F (t) := {i ∈ [n]; ut(i) = 0},

understood as the set of coordinates that have not been pinned. For any i ∈ Ft consider a

random variable Ti defined by the formula

P(Ti > s) = exp

(

−
∫ s

t

(1− si(r)ai(v(r), u(t))
)

|v′i(r)|dr
)

,

where si(r) := sign(v′i(r)) (note that the right-hand side is u(t)-measurable), and such that the

Ti’s are independent. Define

τ := min
i∈Ft

Ti and J := argmin
i∈Ft

Ti.

We can now extend the process up to time τ by setting

u(s) =

{

u(t), t ≤ s < τ

u(t)− sJ(τ)eJ , s = τ,

where eJ is the J-th standard basis vector. In words, up to the stopping time τ , we apply

an exponential tilt to the measure according to v(·), and at time τ we pin the j-th coordinate

according to the sign of v′j(τ). We can now define the process for all times by iteratively

extending it until the next stopping time. Since at any such stopping time, one of the coordinates

is pinned, we only need to repeat this iteration at most n times and thus the process is well-

defined for t ∈ [0,∞).
Next, we show that the process is a martingale. First observe that the process is time-

equivariant in the sense that the evolution of (νs)s≥t conditioned on (νr)r∈[0,s] is the same as

the evolution of (ν̃t)t, the process obtained from the starting measure ν̃ = νs and using ṽ(t) =
v(t + s) − v(s) as the driving curve. Indeed, this follows from the memoryless property of

exponential random variables, which implies that for every t > 0 and every i ∈ Ft, we have

that Ti|Ti > s has the same distribution as T̃i.
In order to show that the process is a martingale, we need to show that for every s, t ≥ 0 we

have E[νt+s|νs] = νs and by the above discussion it is enough to consider the case s = 0, and

show that E[νt(x)] = ν(x). We claim that it is yet enough to show that

E[νh(x)] = ν(x) + o(h), ∀h ≥ 0. (74)

Indeed, if this is the case then we can write

E[νt] =

k
∑

i=1

E
[

E
[

νit/k − ν(i−1)t/k|ν(i−1)t/k

]]

≤ ko(1/k),
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for all k ∈ N, which implies that E[νt(x)] = ν(x).
Let us now prove (74). By reflecting both ν and v(·) around coordinate directions, we may

clearly assume without loss of generality that v′i(0) ≥ 0 for all i ∈ [n]. Since for all i we have

P(Ti) ∈ [0, h] = O(h), we can write

νh = Tv(h)

(

1{τ>h}ν + 1{τ∈[0,h]}R− sign(v′j(τ))eJ
ν
)

+ o(h)

= Thv′(0)



1{τ>h}ν +
∑

i∈[n]
1{Ti∈[0,h]}R−ei

ν



 + o(h)

= Thv′(0)



ν +
∑

i∈[n]
1{Ti∈[0,h]} (R−ei

ν − ν)



+ o(h).

Now, note that for all x ∈ {−1, 1}n,

Thv′(0)ν(x) = ν(x)(1 + 〈x− b(ν), hv′(0)〉) + o(h),

and

R−ei
ν(x) = ν(x)

(

1− xi − b(ν)i
1− b(ν)i

)

.

Combining the last three displays gives

E[νh(x)] = ν(x)



1 + 〈x− b(ν), hv′(0)〉 −
∑

i∈[n]
1{Ti∈[0,h]}

xi − b(ν)i
1− b(ν)i



 + o(h)

= ν(x)



1 +
∑

i∈[n]
(xi − b(ν)i)

(

hv′i(0)−
1{Ti∈[0,h]}
1− b(ν)i

)



 + o(h), (75)

at which point we have established the correctness of (8). By definition of the random variables

Ti, we have

P(Ti ∈ [0, h]) = h(1− b(ν)i)v
′
i(0) + o(h),

and therefore

E

[

hv′i(0)−
1{Ti∈[0,h]}
1− b(ν)i

]

= o(h).

Plugging the last display into (75) implies that E[νh(x)] = ν(x) + o(h) which proves (74), so

we have established that the process is a martingale.

Under the extra condition that limt→∞ |vi(t)| = ∞, we just observe that νt converges to a

Dirac measure almost-surely under every pinning process u(t), and therefore the process is a

localization process.

Proof of Proposition 41. Fix a measure ν on {−1, 1}n and let (νt)t be the process obtained via

the negative-fields localization process. Fix t > 0. According to equation (7), we can write

νt+h(x) = νt(x) (1 + 〈x− b(νt), Z〉) + o(h), (76)

where, conditional on νt, the random variable Z has independent coordinates which satisfy

Zi =

{

−h with probability 1− h(1 + b(νt)i)
1

1+b(νt)i
with probability h(1 + b(νt)i).
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Let f : {−1, 1}n → R+ be such that
∫

fdν > 0. We have,

∫

f(x)dνt+h(x) =

∫

f(x)dνt(x)

(

1 +

〈(
∫

xf(x)dνt(x)
∫

xf(x)νt(dx)
− b(νt)

)

, Z

〉)

+ o(h)

= νt(f) (1 + 〈V, Z〉) + o(h),

where

v :=

∫

xf(x)νt(dx)
∫

f(x)νt(dx)
− b(νt) = b(µt)− b(νt)

and where
dµt

dνt
(x) :=

f(x)
∫

f(x)dνt(x)
.

Therefore, we have

E [νt+h(f) log νt+h(f)]− νt(f) log νt(f) = νt(f)E [(1 + 〈Z, v〉) log(1 + 〈Z, v〉)]+ o(h). (77)

For a fixed t, define bi = b(νt)i. We calculate,

E [(1 + 〈Z, v〉) log(1 + 〈Z, v〉)]

= −h
n
∑

i=1

vi + h

n
∑

i=1

(1 + bi)

(

1 +
vi

1 + bi

)

log

(

1 +
vi

1 + bi

)

+ o(h)

= h

n
∑

i=1

(1 + bi)

((

1 +
vi

1 + bi

)

log

(

1 +
vi

1 + bi

)

− vi
1 + bi

)

+ o(h)

(57)

≤ 4hH(b+ v, b) + o(h),

Combining the two last displays yields

E[Entνt+h
[f ]|νt] ≥ Entνt [f ]− 4hνt(f)H(b+ v, b) + o(h)

The assumption that ν is α-entropically stable with respect to H(x, y) together with Lemma 31

give

H(b+ v, b) ≤ αDKL(µt||νt) = α
Entνt [f ]

νt(f)
.

Combining the last two displays completes the proof.

A.3 Proofs of technical lemmas from Section 6

Proof of Lemma 70. For k ∈ [n]. Let Z ∼ ν and define X = Zj and Y = Zi. We have

Cov(ν)ij = E[XY ]− E[X ]E[Y ]

= E[X|Y = 1]P(Y = 1)− E[X|Y = −1]P(Y = −1)− E[X ]E[Y ]

= 2E[X|Y = 1]P(Y = 1)− E[X ]− E[X ]E[Y ]

= (E[X|Y = 1]− E[X ]) (1 + E[Y ]) .

Therefore, we have

b (Rei
ν)j − b(ν)j = E[X|Y = 1]− E[X ] =

Cov(ν)ij
1 + b(ν)i

which proves the lemma for the case s = +1. The proof for s = −1 is similar.
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Proof of Lemma 71. We first deal with equation (57). Fixing y ∈ (−1, 1), we calculate the first

derivatives with respect to x

∂

∂x
H(x, y) =

1

2
log

(

1 + x

1 + y

)

− 1

2
log

(

1− x

1− y

)

∂

∂x
(1 + y)Φ

(

x− y

1 + y

)

= log

(

1 + x

1 + y

)

.

The two functions coincide up to the first order Taylor expansion in x at x = y. Next we look

at the second derivatives

∂2

∂x2
H(x, y) =

1

(1 + x)(1− x)

∂2

∂x2
(1 + y)Φ

(

x− y

1 + y

)

=
1

1 + x
.

Since 1 ≤ 2 1
1−x

, we obtain the inequality on the right-hand side. Similarly, since 1
1−x

≤ 2 when

x ≤ 1/2, we also obtain the inequality on the left-hand side for the case x ≤ 1/2. For x > 1/2,

let

G(x, y) = 2(1 + y)Φ(
x− y

1 + y
)−H(x, y).

Its first derivative is as follows

∂

∂x
G(x, y) =

1

2
log

(

(1 + x)3(1− x)

(1 + y)3(1− y)

)

.

We observe that x 7→ (1 + x)3(1 − x) is monotonically decreasing on [1/2, 1]. Because
∂
∂x
G(0, y) < 0, x 7→ G(x, y) is either decreasing on [1/2, 1] or increasing then decreasing

on [1/2, 1]. So it is sufficient to check that G(1
2
, y) ≥ 0 and G(1, y) ≥ 0 to verify G(x, y) ≥ 0

for x ∈ [1/2, 1]. We verify that

G(1, y) = 3 log

(

2

1 + y

)

− 1 + y ≥ 0,

because ∂
∂y
G(1, y) = −3/(1 + y) + 1 ≤ 0 and G(1, 0) ≥ 0. And we have

G(
1

2
, y) =

5

2
log

(

1

1 + y

)

+ 2y +
9

4
log(3/2)− 1− 1

4
log(1/2) ≥ 0,

because ∂
∂y
G(1

2
, y) = − 5

2(1+y)
+ 2 ≤ 0 and G(1

2
, 0) ≥ 0. This proves (57). To prove (58), we

note that by using (57), it is enough to show that

2Φ(δs) ≥ δ2Φ(s), ∀δ ∈ (0, 1), s ∈ [−1,∞),

and then take s = x−y
(1+y)

≥ −1 and δ = ε−1. To prove the last inequality, let F (s) = 2Φ(δs) −
δ2Φ(s). We have

F ′(s) = 2δΦ′(δs)− δ2Φ′(s) = 2δ log(1 + δs)− δ2 log(1 + s).

F ′′(s) = 2δ2
1

1 + δs
− δ2

1

1 + s
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For s ≥ 0, since F ′(0) = 0 and F ′′(s) ≥ 0, we obtain that F (s) is an increasing function of

s and hence F (s) ≥ F (0) = 0. For s ∈ [−1, 0), since as a function of δ, F ′(s) is decreasing,

we have F ′(s) ≥ 0. We conclude that F (s) is an increasing function of s on [−1, 0). Hence,

F (s) ≥ F (−1) = 2Φ(−δ)− δ2. Since

∂

∂δ
[2Φ(−δ)− δ2] = 2(−δ − log(1− δ)) ≥ 0,

we have F (s) ≥ 2Φ(−δ)− δ2 ≥ 0.

Finally, we deal with equation (59). For s ≥ 0, there is nothing to prove since Φ(·) ≥ 0 on

[−1, 1]. For s ∈ [−1, 0), let J(s) = 3Φ(−s)− Φ(s). It has derivatives

J ′(s) = −3 log(1− s)− log(1 + s)

J ′′(s) =
3

1− s
− 1

1 + s
.

Since J ′′(−1/2) = 0, J ′′(0) > 0 and J ′′(−1) < 0, we have that J ′(s) is minimized at 1/2 and

that it only crosses 0 once on (−1, 0). To check J(s) ≥ 0, it is sufficient to check J(0) ≥ 0 and

J(−1) ≥ 0. We conclude equation (59).

Proof of Lemma 72. Clearly we may assume u = 0 (otherwise we just need to prove the lemma

on for the restriction of ν to Su). Denote v = viei + ṽ where ṽ ⊥ ei. We have

Tvν = TvieiTṽν

Define µ = Tṽν. Note that

bi(µ) = EX∼Tṽν
[

bi(RProj
e
⊥
i
Xν)

]

.

According to equation (60), we have 1 + bi(RProj
e
⊥
i
Xν) ≤ δ. Hence

1 + bi(µ) ≤ δ.

Define f(t) = bi(Tteiµ). If vi < 0 then f(vi) < f(0) and there is nothing to prove. Otherwise,

we have

f(0) ≤ −1 + δ, f ′(t) = 1− f(t)2.

Thus,

(1 + f(t))′ ≤ 2(1 + f(t)).

By Gronwall’s inequality,

1 + f(t) ≤ (1 + f(0)) exp(2t) ≤ δ exp(2t).

Therefore,

1 + bi(Tv(ν)) = 1 + f(vi) ≤ δ exp(2vi).
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For the second part, let g(t) = 1+f(t)
1−f(t)

. Since x 7→ 1+x
1−x

is an increasing function of x ∈ (−1, 1),
we have

δ′ ≤ g(0) ≤ δ′′.

If vi < 0, then f(vi) < f(0) and g(vi) < g(0). Otherwise, we have

g′(t) =
2f ′(t)

(1− f(t))2
= 2g(t).

Integrating the above equation, we obtain

g(t) = g(0) exp(2t) ≤ δ̃ exp(2t).

The lower bound is established similarly.

B Appendix B: Entropic stability for Ising models under a

spectral condition

Proof of Lemma 50. Consider the Ising model whose density is

ν(x) ∝ exp (〈Jx, x〉+ 〈v, x〉)

Since v is arbitrary, it suffices to show that

Cov(ν) � 1

1− 2‖J‖OP
. (78)

Set α > 2‖J‖OP whose value will be chosen later. Let M be a matrix such that M−1 +
α−1

In = (αIn − 2J)−1. By the fact that

N (0,M−1) +N (0, α−1
In)

(d)
= N (0, (αIn − 2J)−1),

we have

exp

(

−1

2
〈(αIn − 2J)x, x〉

)

∝
∫

Rn

e−
1
2
〈y,My〉e−

α
2
|x−y|2dy

∝ e−α|x|2/2
∫

Rn

e−
1
2
〈y,(M+αIn)y〉eα〈x,y〉dy

∝ e−α|x|2/2
∫

Rn

e−
1
2
〈y,(α2(2J)−1)y〉eα〈x,y〉dy.

Since |x| is constant on {−1, 1}n, we get that there is a constant C(J, v) such that

exp (〈(αJx, x〉+ 〈v, x〉) = C(J, v)

∫

Rn

e−
1
2
〈y,(α2(2J)−1)y〉e〈x,v+αy〉dy, ∀x ∈ {−1, 1}n.

It follows that

ν(x) ∝
∫

Rn

e−
1
2
〈y,(α2(2J)−1)y〉e〈x,v+α〉dy

∝
∫

Rn

e−
1
2
〈y,(α2(2J)−1)y〉+log(Z(v+αy))

(

Z(v + yα)−1e〈x,v+αy〉) dy,
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where Z(w) =
∫

{−1,1}n exp(〈x, w〉)dx. Since Z(v + αy)−1e〈x,v+αy〉 is the density of Tv+αyµ
where µ is the uniform measure, we have

ν =

∫

Rn

f(y)Tv+αyµdy,

where

f(y) ∝ exp

(

−1

2
〈y, (α2(2J)−1)y〉+ log(Z(αy))

)

.

Let X be the random vector with density f∫
f

. Then the above formula and the law of total

variance give

Cov(ν) = Cov(E[Tv+αXν]) + E[Cov(Tv+αXµ)]

= Cov(tanh(v + αX)) + E[Cov(Tv+αXµ)]

� α2Cov(X) + In, (79)

where we used the fact that tanh(X) is a contraction.

Since logZ(·) is the logarithmic Laplace transform of the uniform measure, we obtain that

∇2 log(Z(w)) � In. Therefore, defining

U(y) =
1

2
〈y, (α2(2J)−1)y〉 − log(Z(αy)),

we have

∇2U � α2(2J)−1 − α2
In �

(

α2

2‖J‖OP
− α2

)

In.

An application of Theorem 57 gives

1 + ‖α2Cov(X)‖OP ≤ 1 +
2‖J‖OP

1− 2‖J‖OP

=
1

1− 2‖J‖OP

.

Combining with (79) completes the proof.

C Appendix C: The hardcore model

Proof of Lemma 64. Denote E(σ) the event σiui ≥ 0, ∀i ∈ [n]. For the upper bound, we have

Pσ∼ν (σv = +1 | E(σ)) =
∑

σv=+1,σiui≥0,∀i λ
|Iσ|

∑

σv=+1,σiui≥0,∀i λ
|Iσ | +

∑

σv=−1,σiui≥0,∀i λ
|Iσ|

(i)

≤
∑

σv=+1,σiui≥0,∀i λ
|Iσ |

∑

σv=+1,σiui≥0,∀i λ
|Iσ | +

∑

σv=+1,σiui≥0,∀i λ
|Iσ|−1

=
λ

λ+ 1
.

Inequality (i) follows from the observation that any configuration σ with σv = +1 gives a

configuration σ′ with σ′
v = −1 and σ′

w = σw, ∀w ∈ V \ {v}.

For the lower bound, let (u1, . . . , uK) be the elements of Nv, K = |Nv|, we have

Pσ∼ν (σv = +1 | E(σ))
≥ Pσ∼ν (σv = +1 and σuk

= −1, ∀k ∈ [K] | E(σ))
= Pσ∼ν (σuk

= −1, ∀k ∈ [K] | E(σ)) · Pσ∼ν (σv = +1 | σuk
= −1, ∀k ∈ [K],E(σ))
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Conditioned on all neighbors of v being −1, σv can either be −1 or +1. We have

Pσ∼ν (σv = +1 | σuk
= −1, ∀k ∈ [K],E(σ)) =

λ

1 + λ
.

On the other hand, we have

Pσ∼ν (σuk
= −1, ∀k ∈ [K] | E(σ))

=
K
∏

i=1

Pσ∼ν

(

σui
= −1 | σuj

= −1, ∀j ∈ [i− 1],E(σ)
)

=

K
∏

i=1

(

1− Pσ∼ν

(

σui
= +1 | σuj

= −1, ∀j ∈ [i− 1],E(σ)
))

(i)

≥
K
∏

i=1

(

1− λ

1 + λ

)

=

(

1

1 + λ

)|Nv |
.

Inequality (i) follows from the upper bound of the marginal in the first part.

If in addition λ ≤ (1− δ)λ∆, then we have

(

1

1 + λ

)|Nv|
≥
(

1

1 + λ∆

)|Nv |

≥
(

1

1 + λ∆

)∆

(i)

≥
(

1

1 + 3e2/∆

)∆

(ii)

≥ e−3e2 .

Inequality (i) follows from the fact that for ∆ ≥ 3,

λ∆ =
(∆− 1)∆−1

(∆− 2)∆
=

1

∆− 2

(

1 +
1

∆− 2

)∆−1

≤ 1

∆− 2
e

∆−1
∆−2 ≤ 3e2

∆
.

Inequality (ii) follows from log(1 + x) ≤ x, for x ∈ (−1, 1).
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