Canonical Forms in Geometry and Soliton Theory

Chuu-Lian Terng

1Department of Mathematics
University of California, Irvine

Glimpses of Mathematics, Now and Then:
A Celebration of Karen Uhlenbeck 80th Birthday
Institute for Advanced Study
September 16-18, 2022
Photo from Karen’s Abel Prize ceremony 2019
Bozeman and Irvine
Outline of my Talk

Use of canonical forms (slices) of group actions:
- Canonical forms in submanifold geometry
- Invariant solutions for partial differential equations
- Canonical forms and differential invariants for curves in homogeneous spaces
- Soliton equations and Integrable curve flows
I. Canonical Form in Submanifold Geometry

Definition. (Palais 1960)
A Lie group G acts on a manifold M, H a subgroup of G. A submanifold S is an H-slice if

- $G \cdot S = \{ g \cdot p | g \in G, p \in S \}$ is open in M,
- $H \cdot S \subset S$,
- if $g \in G$ and $(g \cdot S) \cap S \neq \emptyset$, then $g \in H$.

Examples

1. $SO(n)$ acts on \mathbb{R}^n by $g \cdot y = gy$, $S = \mathbb{R} \times 0$ is a \mathbb{Z}_2-slice.

2. $SU(n)$ acts on $su(n)$ by Adjoint action, $g \cdot X = gXg^{-1}$. Then \{X | X \in su(n) diagonal\} is an S_n-slice.

3. $SO(n)$ acts on the space of $n \times n$ symmetric matrices by $g \cdot A = gAg^{-1}$, $S = \{ \text{diag}(c_1, \ldots, c_n) | c_i \in \mathbb{R} \}$ is a S_n-slice, where S_n is the permutation group of $\{1, \ldots, n\}$.
Polar Actions

Definition. (Palais-Terng 1985)
An isometric G-action on a Riemannian manifold M is polar if there is a closed submanifold S of M that meets all orbits and meets orthogonally. Such S is called a section.

Theorem (Dadok 1985)

(i) The Adjoint action of a compact Lie group G on its Lie algebra \mathcal{G} is polar and a maximal abelian subalgebra is a W-slice, where $W = N(A)/Z(A)$.

(ii) The slice representation of a symmetric space G/K is polar, a maximal abelian subspace \mathcal{A} in \mathcal{P} is a W-slice, where $W = \frac{N(A)}{Z(A)}$ is the Weyl group associated to G/K and \mathcal{P} is the orthogonal complement of \mathcal{K} in \mathcal{G}.

(iii) Orbit foliations of polar representations are the ones obtained in (i).
• Examples (i) and (iii) are the slice representations of $S^n = \frac{SO(n+1)}{SO(n)}$ and $\frac{U(n)}{O(n)}$ respectively.

• The polar representation on \mathbb{R}^n gives a polar action on S^{n-1}.

Definition. (Terng 1985)

A submanifold M^n of S^{n+k-1} is isoparametric if

1. the normal bundle $\nu(M)$ is flat,
2. principal curvatures along a parallel normal field are constant.

Remarks

• A principal orbit of a polar action on S^n is isoparametric.
• The definition of isoparametric hypersurfaces was given by É Cartan.
Isoparametric Theory

Theorem. (Terng 1985)

Let M^n be isoparametric in S^{n+k}, ξ a parallel normal field, and $M_\xi = \{\exp_p(\xi(p)) | p \in M\}$ a parallel to M. Then

- M_ξ is a smooth submanifold (may have lower dimension),
- $\{M_\xi|\xi \text{ parallel normal field}\}$ is a singular foliation of S^{n+k} and has similar properties as the orbit foliation of a polar action on S^{n+k}.
- Fix $p \in M$, there is a Weyl group W acts on the normal sphere $S_p := \exp_p(\nu_p(M))$ such that $M \cap S_p = W \cdot p$ and S_p meets all parallel submanifolds orthogonally.
- The map from the space of smooth functions on S^{n+k} that are constant on the leaves of the parallel foliation and the space of smooth W-invariant functions on S_p defined by restriction is a bijection. This is analogous to the Chevalley Restriction Theorem for symmetric spaces.
Theorem (Thorbergsson 1991)
If M^n is irreducible isoparametric in S^{n+k} with $k \geq 2$, then the parallel foliation is the orbit foliation of the slice representation of some rank $k + 1$ symmetric space restricted to unit sphere.

Remarks

- There are infinitely many inhomogeneous examples of isoparmetric hypersurfaces in S^{n+1}.
- Many works concerning singular foliations that behave like orbit foliations of polar actions: Terng-Thorbergsson, Heintze-Liu, Lytchak, Radeschi, ... etc.
II. Construction of invariant solutions of PDE

Reduction of Variables
If G acts on M with S as an H-slice, then the construction of G-invariant solutions of a PDE on M often reduces to the construction of H-invariant solutions on the slice S. In particular,

1. if the action is transitive, the reduced equation is algebraic,
2. if principal orbits are of co-dimension 1 then the reduced equation becomes an ODE.

Some Examples

- Schwarzchild (1915): $SO(3)$-invariant solution to the Einstein field equations.
- Hsiang-Lawson (1972) used the isotropy representation of rank two symmetric space to construct S^1-invariant minimal surfaces in spheres.
• Uhlenbeck (1982) showed that the ODE given by S^1 equivariant harmonic map from the 2-sphere to S^{2n} is a completely integrable Hamiltonian system and constructed a complete set of commuting conservation laws.

• Terng-Liu (2009) proved that the mean curvature flow (MCF) starting from an isoparametric submanifold M in S^n flows along parallel submanifolds of M, and collapses in finite time with type II singularity. We also proved in 2020 that these solutions are ancient solution to the MCF.

• Liu-Radeschi (2022) proved that the MCF starts from a principal orbit of a polar action on a symmetric space also collapses in finite time and is an ancient solution.
III. Differential invariants of curves in G/K

Let G act on M transitively, $p_0 \in M$, H subgroup of G_{p_0}, and V an affine subspace of \mathcal{G}. A smooth map $g : \mathbb{R} \to G$ is a (H,V)-moving frame along $\gamma : \mathbb{R} \to M$ if it satisfies

1. $\gamma(t) = g(t) \cdot p_0$,
2. $g^{-1}g_x \in V$,
3. if g_1 also satisfies (1), (2), then there is a constant $c \in H$ such that $g_1 = gc$.

Remark

- $g : \mathbb{R} \to G$ is a (H, V)-moving frame along $\gamma : \mathbb{R} \to G/K$ iff $C^\infty(\mathbb{R}, V)$ is a H-slice of the gauge action of $C^\infty(\mathbb{R}, K)$ on $C^\infty(\mathbb{R}, \mathcal{G})$.

- The map $g^{-1}g_x$ gives a complete set of differential invariants for curves in M.

The rigid motion group acts on \mathbb{R}^3 transitively by
\[
\begin{pmatrix}
A & y \\
0 & 1
\end{pmatrix} \cdot \begin{pmatrix} x \\ 1 \end{pmatrix} = \begin{pmatrix} Ax + y \\ 1 \end{pmatrix}.
\]

Let $\gamma : \mathbb{R} \to \mathbb{R}^3$ be parametrized by its arc-length, the Frenet frame $g = \begin{pmatrix} e_1 & n & b & \gamma \end{pmatrix}$ satisfies
\[
g^{-1}g_x = \begin{pmatrix}
0 & -k & 0 & 1 \\
k & 0 & -\tau & 0 \\
0 & \tau & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}.
\]

where k, τ are the curvature and torsion resp. Here $H = \{e\}$.
Let $\gamma : \mathbb{R} \rightarrow \mathbb{R}^3$ be parametrized by its arc-length. Let $e_1 = \gamma_x$, and (e_2, e_3) a parallel normal frame. Then

$$g = \begin{pmatrix} e_1 & e_2 & e_3 & \gamma \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

is an (H, V)-moving frame along γ with $H = 1 \times SO(2)$ and

$$g^{-1}g_x = \begin{pmatrix} 0 & -k_1 & -k_2 & 1 \\ k_1 & 0 & 0 & 0 \\ k_2 & 0 & 0 & 0 \end{pmatrix} \in V$$

k_1, k_2 are the principal curvatures w.r.t. e_2, e_3 resp.
The Adjoint frame

Terng-Uhlenbeck 2006

Let \(a = i \text{diag}(I_k, -I_{n-k}) \in u(n) \), \(M = \{ g^{-1}ag \in g \in U(n) \} \)
adjoint orbit at \(a \), \(U_a = u(k) \times u(n - k) \), and

\[
P = U_a^\perp = \left\{ \begin{pmatrix} 0 & q \\ -q^* & 0 \end{pmatrix} \right\}.
\]

Then there exists \((U_a, P)\) moving frame \(g \) along \(\gamma : \mathbb{R} \to M \), i.e.,

(i) \(\gamma = gag^{-1} \),
(ii) \(g^{-1}g_x \in P \),
(iii) if \(g_1 \) satisfies (i)-(ii) then there is a constant \(c \in U_a \) such that \(g_1 = gc \).
Central affine curve frame

(Pinkall 1995 for $n - 2$, Callini, Ivey, Mari Beffa 2013 for $n \geq 4$)

$SL(n, \mathbb{R})$ acts on $\mathbb{R}^n \setminus 0$ transitively by $A \cdot y = Ay$. If $\gamma : \mathbb{R} \to \mathbb{R}^n \setminus 0$ satisfying $\det(\gamma, \gamma_x, \ldots, \gamma_x^{(n-1)})$ never vanishes, then we can change parameter such that

- $\det(g) \equiv 1$, where $g = t(\gamma, \gamma_x, \ldots, \gamma_x^{(n-1)}) \in SL(n, \mathbb{R})$,
- $g^{-1}g_x = \begin{pmatrix} 0 & 0 & u_1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} u_2 \\ \cdot \\ \cdot \end{pmatrix}$.

Such g is called the central affine moving frame and u_1, \ldots, u_{n-1} the central affine curvatures of γ.
Lagrangian frame

Let \(w(X, Y) = X^t SY \) be the symplectic form on \(\mathbb{R}^{2n} \), and \(Sp(2n) = \{ g \in GL(2n, \mathbb{R}) \mid g^t S g = S \} \) the group of linear isomorphisms that preserves \(w \), where
\[
S = \sum_{i=1}^{2n} (-1)^{i+1} e_{i,2n+1-i}.
\]

(Terng- Wu 2021) Given a smooth \(\gamma : \mathbb{R} \to \mathbb{R}^{2n} \) satisfying \(\det(\gamma, \ldots, \gamma_{(2n-1)x}) \) never vanishes and \(\gamma, \gamma_x, \ldots, \gamma_{x}^{n-1} \) span a Lagrangian subspace, then

- we can change parameter so that \(w(\gamma_x^{(n)}, \gamma_x^{(n-1)}) = (-1)^n \),
- there exists \(g = (\gamma_x, \ldots, \gamma_x^{(n)}, g_{n+2}, \ldots, g_{2n}) : \mathbb{R} \to Sp(2n) \) such that
\[
g^{-1} g_x = b + u = \sum_{i=1}^{2n-1} e_{i+1,i} + \sum_{i=1}^{n} u_i e_{n+1-i,n+i}.
\]

\(g \) Lagrangian frame and \(u \) Lagrangian curvature along \(\gamma \).
(IV) Soliton eqs and Integrable curve flows

Schrödinger flow on Grassmanian

The Adjoint orbit M of $U(n)$ in $u(n)$ at $a = i \text{diag}(I_k, -I_{n-k})$ equipped with the metric induced from the Killing form of $u(n)$ is isometric to $\text{Gr}(k, \mathbb{C}^n)$. The Schrödinger flow, $\gamma_t = J_\gamma(\nabla_\gamma x \gamma_x)$ is

$$\gamma_t = [\gamma, \gamma_{xx}]. \quad (1)$$

Theorem (Terng-Uhlenbeck 2006)

If $\gamma : \mathbb{R}^2 \to M$ is a solution of (1), then there is $g : \mathbb{R}^2 \to U(n)$ such that

- $g(\cdot, t)$ is an Adjoint frame along $\gamma(\cdot, t)$ for each t,

 $$\begin{cases}
 g^{-1} g_x = \begin{pmatrix} 0 & q \\ -q^* & 0 \end{pmatrix}, \\
 g^{-1} g_t = \begin{pmatrix} -iqq^* & iq_x \\ iq_x^* & iqq^* \end{pmatrix},
 \end{cases} \quad (2)
 $$

 where $q(\cdot, t)$ is the differential invariant of $\gamma(\cdot, t)$.
• q satisfies the matrix NLS,

$$q_t = i(q_{xx} + 2qq^* q).$$

• Conversely, if q is a solution of Matrix NLS, then (2) is solvable; moreover, if g is a solution of (2), then $\gamma = gag^{-1}$ is a solution of (1).

• Use techniques from soliton theory, we solve the Cauchy problem, construct infinitely many families of explicit soliton solutions, and write down commuting higher flows, ... etc.

Theorem (Liu-Terng-Wu 2021)
The above results also hold for Schrödinger flows on compact Hermitian symmetric spaces.
Lax equation

1. The following is equivalent:
 \[
 \begin{cases}
 g^{-1}g_x = A, \\
 g^{-1}g_t = B
 \end{cases}
 \]
 is solvable,
 \[
 A_t = B_x + [A, B],
 \]
 \[
 A_t = (\partial_x + A)_t = [\partial_x + A, B].
 \]

2. The last equation is a Lax equation, i.e., evolution equation for maps \(y : \mathbb{R} \to B \) of the form \(y_t = [y, B(y)] \), where \(B \) is an associated algebra of operators and \(B : B \to B \).

3. Completely integrable Hamiltonian systems and soliton equations often can be written as Lax equations.

4. If \(x : \mathbb{R} \to gl(n) \) satisfies \(x_t = [x, B(x)] \) then \(\text{tr}(x^k(t)) \) and eigenvalues of \(x(t) \) are constants.

 Proof Compute directly: \((x^k)_t = [x^k, B(x)] \). So we have \((\text{tr}(x^k))_t = \text{tr}([x^k, B(x)]) = 0. \)
Adler-Kostant-Symes’ construction of completely integrable systems

L_+, L_- subgroups of L such that $\mathcal{L} = \mathcal{L}_+ \oplus \mathcal{L}_-$ as Linear subspaces ($(\mathcal{L}_+, \mathcal{L}_-)$ is a splitting of \mathcal{L}).

Let $(\ , \)$ be an ad-invariant non-degenerate bilinear form on \mathcal{L}. Then:

- \mathcal{L}^\perp_+ can be identified as \mathcal{L}^*_-.
- If $V_i : \mathcal{L} \to \mathcal{L}$ satisfies $[\xi, V_i(\xi)] = 0$ and $V_i(g\xi g^{-1}) = gV_i(\xi)g^{-1}$, then
 \[\xi_t = [\xi, (V_i(\xi))_+] \]
 is Hamiltonian w.r.t. the natural Poisson structure on the dual \mathcal{L}^*_- and they all commute, where η_+ is the projection of η onto \mathcal{L}_+ along \mathcal{L}_-.
Let $\mathcal{L} = sl(n, \mathbb{R})$, $\mathcal{L}_+ = so(n)$, and $\mathcal{L}_- = B_n$ upper triangular. Then $(\mathcal{L}_+, \mathcal{L}_-)$ is a splitting of \mathcal{L}. Let $(\xi, \eta) = \text{tr}(\xi \eta)$. Then $\mathcal{L}_+ = \mathcal{L}_+^\perp$ the space of trace zero symmetric $n \times n$ matrices, which is \mathcal{L}^\ast.

The **Toda lattice (in Flaschka variables)** is the flow on the co-adjoint orbit M of tri-diagonal trace 0 symmetric $n \times n$ matrices constructed from $V(\xi) = \xi$, i.e.,

$$\xi_t = [\xi, \xi_+]$$

and flows $\xi_t = [\xi, (\xi^k)_+]$ all commute for $1 \leq k \leq n - 1$. So this is a completely Hamiltonian system.
A standard splitting of Loop algebra

Let G be a finite dimensional simple Lie algebra,

$$L(G) = \left\{ \sum_{i \leq i_0} \xi_i \lambda^i \mid \xi_i \in G \right\},$$

$$L_+(G) = \left\{ \sum_{i \geq 0} \xi_i \lambda^i \in L(G) \right\},$$

$$L_-(G) = \left\{ \sum_{i < 0} \xi_i \lambda^i \in L(G) \right\}.$$

Then

- $(L_+(G), L_-(G))$ is a splitting of $L(G)$,
- $(\xi, \eta) = \text{Res}(\text{tr}(\xi \eta))$ is an ad-invariant non-degenerate bi-linear form,
- $L_\pm(G)^* = L_\pm(G)$,
- The coadjoint $L_-(G)$ orbit at $J = a \lambda$ or $J = a \lambda + b$ is $J + [a, G]$.
• Given smooth $u : \mathbb{R} \to [a, G]$, there exists a unique

$$P(u, \cdot) = a\lambda + \sum_{i \leq 0} P_i(u)\lambda^i$$

in $\mathcal{L}(G)$ such that

$$\begin{cases}
[\partial_x + J + u, P(u, \lambda)] = 0, \\
P(u, \lambda) \text{ is conjugate to } P(0, \lambda).
\end{cases}$$

Then the AKS method gives commuting soliton flows

$$u_t = [\partial_x + b + u, P_i(u)].$$

Note these equations are Lax equations, hence invariants of $\partial_x + b + u$ are constants of these flows.
• The matrix NLS hierarchy is constructed with $\mathcal{G} = su(n)$ on the coadjoint orbit at $J = a\lambda$, where $a = i\text{diag}(I_k, -I_{n-k})$.

• Let $\{\alpha_1, \ldots, \alpha_n\}$ be a system of simple negative roots of \mathcal{G}, $b = \sum_{i=1}^{n} \alpha_i$, α the highest root, and $J = \alpha\lambda + b$. The soliton hierarchy on $C^\infty(\mathbb{R}, [a, \mathcal{G}])$ constructed from J is invariant under the gauge action of $C^\infty(\mathbb{R}, \mathcal{N}_+)$, where \mathcal{N}_+ is the positive nilpotent subalgebra. The Drinfeld-Sokolov’s \mathcal{G}-KdV hierarchy is the quotient hierarchy induced on a cross section (canonical form) of the gauge action of $C^\infty(\mathbb{R}, \mathcal{N}_+)$.

• The $sl(2, \mathbb{R})$-KdV hierarchy with $J = e_{21} + e_{12}\lambda$ gives the standard KdV hierarchy and the $sl(n, \mathbb{R})$-KdV gives the Gelfand-Dikki hierarchy on the space of n-th order linear differential operators on the line.
• The central affine moving frames and the Lagrangian moving frames give cross sections of the gauge actions in the constructions of the $sl(n, \mathbb{R})$-KdV and the $sp(2n)$-KdV flows resp.

• There is a hierarchy of central affine curve flows in \mathbb{R}^n such that the induced flow for central affine curvature are the $sl(n, \mathbb{R})$-KdV flows ($n = 2$ by Pinkall (1995), $n = 3$ by Callini-Ivey-Mari Baffe (2013), and $n \geq 4$ by Terng-Wu (2019)).

• Terng-Wu (2019) also construct Darboux transforms, explicit soliton solutions, and gives the Hamiltonian properties of central affine curve flows on \mathbb{R}^n.
• (Terng-Wu 2020) Isotropic curve flow on \mathbb{R}^{2n+1}

We constructed a hierarchy of isotropic curve flows in \mathbb{R}^{2n+1} invariant under $O(n + 1, n)$, whose isotropic curvature flows are the $o(n + 1, n)$-KdV hierarchy, and also give explicit solitons solutions, and bi-Hamiltonian property for these curve flows.

• (Terng-Wu 2021) Lagrangian curve flow on \mathbb{R}^{2n}

We construct a sequence of commuting Lagrangian curve flows on the symplectic space \mathbb{R}^{2n} whose Lagrangian curvature are solutions of the $sp(2n)$-KdV flows. Darboux transforms, explicit soliton solutions, and the Hamiltonian properties of these Lagrangian curve flows are given.