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Abstract

The following very natural problem was raised by Chung and Erdős in the early 80’s and has since
been repeated a number of times. What is the minimum of the Turán number ex(n,H) among all
r-graphs H with a fixed number of edges? Their actual focus was on an equivalent and perhaps even
more natural question which asks what is the largest size of an r-graph that can not be avoided in any
r-graph on n vertices and e edges?

In the original paper they resolve this question asymptotically for graphs, for most of the range
of e. In a follow-up work Chung and Erdős resolve the 3-uniform case and raise the 4-uniform case
as the natural next step. In this paper we make first progress on this problem in over 40 years by
asymptotically resolving the 4-uniform case which gives us some indication on how the answer should
behave in general.

1 Introduction

The Turán number ex(n,H) of an r-graph H is the maximum number of edges in an r-graph on n vertices
which does not contain a copy of F as a subhypergraph. For ordinary graphs (the case r = 2), a rich
theory has been developed (see [31]), initiated by the classical Turán’s theorem [44] dating back to 1941.
The problem of finding the numbers ex(n,H) when r > 2 is notoriously difficult, and exact results are
very rare (see surveys [30, 32, 41, 43] and references therein).

The following very natural extremal question was raised by Chung and Erdős [7] almost 40 years ago.
What is the minimum possible value of ex(n,H) among r-graphs H with a fixed number of edges? The
focus of Chung and Erdős was on the equivalent inverse question which is perhaps even more natural.
Namely, what is the largest size of an r-graph that we can not avoid in any r-graph on n vertices and e
edges? This question was repeated multiple times over the years: it featured in a survey on Turán-type
problems [30], in an Erdős open problem collection [6] and more recently in an open problem collection
from AIM Workshop on Hypergraph Turán problems [36].

Following Chung and Erdős we call an r-graph H as above (n, e)-unavoidable, so if every r-graph on n

vertices and e edges contains a copy ofH. Their question now becomes to determine the maximum possible
number of edges in an (n, e)-unavoidable r-graph. Let us denote the answer by unr(n, e). In the graph
case, Chung and Erdős determined un2(n, e) up to a multiplicative factor for essentially the whole range.
In a follow-up paper from 1987, Chung and Erdős [8] studied the 3-uniform case and identified the order
of magnitude of un3(n, e) for essentially the whole range of e.1 In the same paper Chung and Erdős raise
the 4-uniform case as the natural next step since the 3-uniform result fails to give a clear indication on
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1Their argument unfortunately contains an error: the proof of [8, Lemma 6] is incorrect. We fill this gap in Section 5.
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how the answer should behave in general. In the present paper we resolve this question by determining
un4(n, e) up to a multiplicative factor for essentially the whole range of e.

Theorem 1.1. The following statements hold.

(i) For 1 ≤ e ≤ n2, we have un4(n, e) ≈ 1.

(ii) For n2 ≤ e ≤ n3, we have un4(n, e) ≈ min
{

(e/n2)3/4, (e/n)1/3
}
.

(iii) For n3 < e�
(
n
4

)
, we have un4(n, e) ≈ min

{
e4/3/n10/3, e1/4 logn

log((n4)/e)

}
.

The optimal unavoidable hypergraphs, or in other words hypergraphs which minimise the Turán number,
turn out to be certain combinations of sunflowers of different types. For this reason, it is essential for our
proof of Theorem 1.1 to have a good understanding of the Turán numbers of sunflowers for a wide range
of parameters. This turns out to be a well-studied problem in its own right.

1.1 Sunflowers

A family A1, . . . , Ak of distinct sets is said to be a sunflower if there exists a kernel C contained in each
of the Ai such that the petals Ai \C are disjoint. The original term for this concept was “∆-system”. The
more recent term “sunflower” coined by Deza and Frankl [10] has recently become more prevalent. For
r, k ≥ 1, let fr(k) denote the smallest natural number with the property that any family of fr(k) sets of
size r contains an (r-uniform) sunflower with k petals. The celebrated Erdős-Rado theorem [17] from 1960
asserts that fr(k) is finite; in fact Erdős and Rado gave the following bounds:

(k − 1)r ≤ fr(k) ≤ (k − 1)rr! + 1. (1)

They conjectured that for a fixed k the upper bound can be improved to fr(k) ≤ O(k)r. Despite signif-
icant efforts, a solution to this conjecture remains elusive. The current record is fr(k) ≤ O(k log(kr))r,
established in 2019 by Rao [38], building upon a breakthrough of Alweiss, Lovett, Wu and Zhang [2].

Some 43 years ago, Duke and Erdős [11] initiated the systematic investigation of a closely related problem.
Denote by Sf r(t, k) the r-uniform sunflower with k petals, and kernel of size t. Duke and Erdős asked for the
Turán number of Sf r(t, k). Over the years this problem has been reiterated several times [6, 30] including
in a recent collaborative “polymath” project [37]. The case k = 2 of the problem has received considerable
attention [22, 25, 27, 33, 34, 42], partly due to its huge impact in discrete geometry [26], communication
complexity [40] and quantum computing [4]. Another case that has a rich history [12, 15, 16, 19, 20, 21, 24]
is t = 0 (a matching of size k is forbidden); the optimal construction in this case is predicted by the Erdős
Matching Conjecture.

For fixed r, t and k with 1 ≤ t ≤ r− 1 and k ≥ 3 Frankl and Füredi [23, Conjecture 2.6] give a conjecture
for the correct value of ex(n,Sf r(t, k)) up to lower order terms, based on two natural candidates for
near-optimal Sf r(t, k)-free r-graphs. They verify their conjecture for r ≥ 2t + 3, but otherwise, with the
exception of a few particular small cases, it remains open in general. If we are only interested in asymptotic
results the answer of ex(n,Sf r(t, k)) ≈ nmax{r−t−1,t} was determined by Frankl and Füredi [22] and Füredi
[29].

Another natural question is what happens if we want to find large sunflowers, in other words if we only
fix the uniformity r and “type” of the sunflower, determined by its kernel size t, while allowing k to grow
with n. Further motivation for this question is that it is easy to imagine that it could be very useful
to know how big a sunflower of a fixed type we are guaranteed to be able to find in an r graph with n
vertices and e-edges. In particular, it is precisely the type of statement we require when studying the
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unavoidability problem of Chung and Erdős. In the graph case r = 2 the question simply asks for the
Turán number of a (big) star and the answer is easily seen to be ex(n,Sf 2(1, k)) ≈ nk. In contrast, the
3-uniform case is already non-trivial: Duke and Erdős [11] and Frankl [18] showed ex(n,Sf 3(1, k)) ≈ nk2

while ex(n,Sf 3(2, k)) ≈ n2k. Chung [5] even managed to determine the answer in the 3-uniform case up
to lower order terms, while Chung and Frankl [9] determined ex(n,Sf 3(1, k)) precisely for large enough
n. Chung and Erdős [8] wrote in their paper that results for such large sunflowers with uniformity higher
than 3 are far from satisfactory. Here we make first progress in this direction, by solving asymptotically
the 4-uniform case.

Theorem 1.2. For 2 ≤ k ≤ n we have

(i) ex(n,Sf 4(1, k)) ≈ k2n2,

(ii) ex(n,Sf 4(2, k)) ≈ k2n2 and

(iii) ex(n,Sf 4(3, k)) ≈ kn3.

1.2 General proof strategy

Our proof strategy for determining fr(n, e) for most of the range is as follows. In order to show an upper
bound fr(n, e) ≤ D we need to show there is no r-graph with more than D edges which is contained
in every r graph with n vertices and e edges. With this in mind we consider a number of, usually very
structured, n-vertex r-graphs on e or more edges, and argue they can not have a common subhypergraph
with more than D edges. The hypergraphs we use are often based on Steiner systems or modifications
thereof. A major benefit of this approach is that our collection of hypergraphs often imposes major
structural restrictions on possible common graphs which have close to D edges as well and tells us where
to look for our optimal examples of unavoidable hypergraphs which we need in order to show matching
lower bounds, by upper bounding their Turán numbers.

Organisation. In the following section we establish some preliminary results we will need later. In
Section 3 we prove Theorem 1.2. In Section 4 we prove the first two parts of Theorem 1.1. In Section 5
we deal with the remaining regime. This section is split into several parts, in Section 5.1 we establish a
number of 3-uniform results we will need for the lower bounds , which is proved in Section 5.2. We prove
the upper bounds in Section 5.4. Finally, in Section 6 we make some final remarks and give a number of
open problems and conjectures.

Notation. A generalised star is defined recursively as follows: St2(d) is the usual star Sd with d leaves,
and Str(d1, . . . , dr−1) is the r-graph in which all edges have a vertex v in common and upon removal of v
from every edge we obtain d1 copies of Str−1(d2, . . . , dr−1).

Let G be an r-graph, and let S ⊆ V (G) such that 1 ≤ |S| ≤ r−1. Then the link graph, denoted LS , is the
(r− |S|)-graph on V (G), whose edges are the sets T of size r− |S| such that S ∪ T ∈ E(G). The codegree
of S in G is defined as the number of edges of G which contain S. If the codegree of S is at least k, we say
that S is k-expanding. We will refer to the immediate fact that in any k-uniform hypergraph the number
of edges times the uniformity equals the sum of degrees over all vertices as the handshaking lemma.

For non-negative functions f and g we write either f . g or f = O(g) to mean there is a constant C > 0

such that f(n) ≤ Cg(n) for all n, we write f & g or f = Ω(g) to mean there is a constant c > 0 such that
f(n) ≥ cg(n) for all n, we write f ≈ g to mean that f . g and f & g. To simplify the presentation we
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write f � g or g � f to mean that f ≥ Cg for a sufficiently large constant C2, which can be computed
by analysing the argument. In particular, in this paper choosing C = 230 would be sufficient for all our
arguments. All asymptotics are as n→∞ unless specified otherwise.

From now on whenever we say optimal unavoidable graph, we mean it has the largest number of edges up
to a constant factor. Throughout the paper we omit floor and ceil signs whenever they are not crucial, for
the sake of clarity of presentation and since they would only, possibly, impact the constant factors.

2 Preliminaries

In this section we collect several simple results, that we use later on. The next two results will provide
us with building blocks for examples of hypergraphs which will be useful both for proving lower bounds
on Turán numbers of sunflowers needed for Theorem 1.2 as well as to force structure when proving upper
bounds in Theorem 1.1. We include proofs for completeness.

Lemma 2.1 (Partial Steiner Systems). Let k > t > 0 be fixed integers. For every n sufficiently large,
there exists a k-graph S(t, k, n) on n vertices such that every set of vertices of size t is contained in at
most one edge, and the number of edges of S(t, k, n) is at least Ω(nt).

Proof. Let X be an arbitrary k-subset of [n]. The number of k-sets which intersect X in i elements is(
k
i

)(
n−k
k−i
)
. Thus the total number of k-sets which intersect X in at least t elements is

∑k
i=t

(
k
i

)(
n−k
k−i
)
. It

follows that there exists a k-graph G on [n] such that:

• Any two edges of G intersect in at most t− 1 elements;

• |E(G)| ≥ (nk)∑k
i=t (ki)(

n−k
k−i)

& nt.

This completes the proof.

The above result as stated requires k to be fixed, however for certain applications we will want to relax
this assumption. The following result is a special case where t = 2 and we allow k ≤

√
n/2. Here we say

a hypergraph is linear if no two of its edges intersect in more than one vertex.

Lemma 2.2. For 2 ≤ k ≤
√
n/2, there exists a linear k-graph on n vertices with at least n2/4k2 edges.

Proof. By Chebyshev’s theorem, there is a prime p between n/2k and n/k. Look at the affine plane F2
p,

and consider its subset V = {(x, y) ∈ F2
p | 0 ≤ x ≤ k − 1, y ∈ Fp}. The vertex set of our hypergraph will

be V . Note that |V | < n. The edges are partial lines L(x,y), defined as follows for each (x, y) ∈ F2
p:

L(x,y) = {(0, x) + t(1, y) | 0 ≤ t ≤ k − 1}.

Notice that for distinct pairs (x1, y1) and (x2, y2) the corresponding lines L(x1,y1) and L(x2,y2) intersect in
at most one vertex, so our k-graph is linear, and has p2 ≥ n2/4k2 edges.

The following simple lemma will often come in useful.

Lemma 2.3. Let G be a graph with at least 2k` edges and with no star Sk. Then G contains a matching
of size `.

2Note here that we are defining �, in a way which is more common in fields outside of combinatorics, namely f � g does
not mean g = o(f) but is more similar to g = O(f) with the exception that we are allowed to choose the constant in the big
O as small as we like, as long as it remains fixed.
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Proof. We find an `-matching M in G as follows. Let v ∈ V (G) be a non-isolated vertex, and take an
arbitrary edge (u, v) incident with v and put it in M . Now delete all edges incident to u and v from G

and repeat this procedure. If we found less than ` such edges, we deleted at most 2(`− 1)k edges in G, so
there is an edge left which we can add to M .

The next auxiliary lemma is a generalisation of [7, Lemma 5] which will come in useful when looking at
higher uniformities. We give a different proof, as it illustrates an idea which will be used a lot later on.

Lemma 2.4. Any graph with n vertices and e = 6sn ≥ 6kn edges contains at least min{s,
√
sn/k}

vertex-disjoint copies of the star Sk.

Proof. Let t = min{s,
√
sn/k}. If there are at least t vertices with degree at least (t − 1)(k + 1) + k =

t(k+ 1)− 1 then we can greedily find t vertex-disjoint copies of Sk. This means that by removing at most
t · n ≤ sn edges we get a graph with maximum degree less than t(k + 1). Now let us take a maximal
collection of vertex-disjoint Sk’s. Unless we are done there are at most (t− 1)(k + 1) vertices spanned by
these stars, so in total they touch less than t2(k + 1)2 ≤ 4t2k2 ≤ 4sn edges. So upon removing them we
are left with at least sn ≥ kn edges and can find another Sk.

3 Turán numbers of sunflowers

In this section we give the proof of Theorem 1.2.

3.1 3-uniform case

We will need the following 3-uniform results, which were already established by Duke and Erdős [11] and
Frankl [18]. We include our, somewhat simpler proofs, for completeness and to illustrate the ideas we will
use in the 4-uniform case. There are only two different types of 3-uniform sunflowers, namely Sf 3(1, k)

and Sf 3(2, k).

Lemma 3.1. Let 2 ≤ k � n we have ex(n,Sf 3(1, k)) ≈ k2n.

Proof. For the lower bound, we split [n] into disjoint sets: A of size n− k ≥ n/2, and B of size k. Let our
3-graph consist of all edges with one vertex in A and two vertices in B. This 3-graph has Ω(k2n) edges
and is Sf 3(1, k)-free. Indeed, if we can find a copy of Sf 3(1, k) each of its edges contains two vertices in
B, one of which is not the common vertex, so it uses at least k + 1 vertices of B, which has size k, a
contradiction. This shows ex(n,Sf 3(1, k)) = Ω(k2n).

For the upper bound, we will show that every 3-graph G with 4k2n edges contains a copy of Sf 3(1, k).
Let G be such a 3-graph and suppose towards a contradiction that it does not contain an Sf 3(1, k). For
each v ∈ V (G) let Dv denote the (2)-graph on V whose edges are the 2k-expanding pairs Y such that
v ∪ Y ∈ E(G). Dv does not contain matchings and stars of size k; if Dv contained a k-matching then v
and this matching would make an Sf 3(1, k) in G; if Dv contained a star of size k then we can greedily
extend each edge of the star by a new vertex to obtain an Sf 3(1, k), since the edges are 2k-expanding.
Using Lemma 2.3 this implies that Dv can have at most 2k2 edges. The number of edges of G containing
a 2k-expanding pair is upper bounded by

∑
v |Dv| ≤ 2k2n, so if we delete all such edges we are left with

a 3-graph G′ with at least 2k2n edges with no 2k-expanding pairs of vertices. Now take a vertex v with
degree at least 3|E(G′)|/n ≥ 4k2 in G′; it cannot have a star of size 2k in its link graph, as then the pair v
and centre of the star would be 2k-expanding. Using Lemma 2.3 this means there must be a k-matching
in its link graph, which together with v forms an Sf 3(1, k) in G, so we are done.
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We now proceed to the second type of sunflowers.

Lemma 3.2. For 2 ≤ k � n we have ex(n,Sf 3(2, k)) ≈ kn2.

Proof. To prove the lower bound, we consider the linear 3-graph S(2, 3, n) on [n] with Ω(n2) edges, given
by Lemma 2.1. Let G be a union of k − 1 random copies of S(2, 3, n), where each copy is obtained by
randomly permuting the vertices of S(2, 3, n). Since each pair of vertices lies in at most one edge from
each copy of S(2, 3, n), G does not contain a copy of Sf 3(2, k). A fixed triple is chosen with probability
Ω(1/n) in a random copy of S(2, 3, n), independently between our k− 1 copies. Thus the probability that
a given triple is chosen in one of our k − 1 copies is at least Ω(k/n) so the expected number of chosen
triples is Ω(kn2), giving ex(n,Sf 3(2, k)) = Ω(kn2).

We now turn to the upper bound. Let G be a 3-graph with kn2 edges. By averaging, there must exist a
pair of vertices belonging to at least k edges, which make a copy of Sf 3(2, k) in G.

3.2 4-uniform case

In this subsection we determine the behaviour of the Turán number of 4-uniform sunflowers, namely we
prove Theorem 1.2. We begin with Sf 4(1, k).

Lemma 3.3. For 2 ≤ k � n we have ex(n,Sf 4(1, k)) ≈ k2n2.

Proof. We consider the lower bound first. We split the n vertices into disjoint sets A of size n− k ≥ n/2
and B of size k. Let G be the 4-graph consisting of edges which have two vertices in each of A and B, so
in total G has ≈ k2n2 edges. Note that G is Sf 4(1, k)-free. Indeed, if we can find a copy of Sf 4(1, k) each
of its edges contains two vertices in B, one of which is not the common vertex, so it uses at least k + 1

vertices of B, which has size k, a contradiction.

For the upper bound, we will show that every 4-graph G with e� k2n2 edges contains a copy of Sf 4(1, k).
Let G be such a 4-graph and suppose it does not contain a copy of Sf 4(1, k). For each v ∈ V (G), let Dv

denote the set of 3k-expanding triples Y such that v ∪ Y ∈ E(G). So Dv is a 3-graph. If some Dv has
at least e/(2n)� k2n edges then by Lemma 3.1 we can find an Sf 3(1, k) in Dv and greedily extend it to
an Sf 4(1, k) in G, so we may assume that each Dv has at most e/(2n) edges. The number of edges of G
containing a 3k-expanding triple is upper bounded by

∑
v |Dv| ≤ e/2 so if we delete all such edges we are

left with a 4-graph G′ with at least e/2 edges and no 3k-expanding triple of vertices.

Now look at pairs of vertices which are 18k2-expanding. Any such pair has no star of size 3k in its link
graph as that would give a 3k-expanding triple, so by Lemma 2.3 it has a matching of size 3k. If we
can find a star of size k formed by the 18k2-expanding pairs, then using the matchings we found in the
link graphs we can once again greedily extend it into a copy of Sf 4(1, k). Hence, the total number of
18k2-expanding pairs is at most kn. They can lie in at most 3k2n2 different edges (since the third vertex
we can choose in n many ways but the fourth in at most 3k, because there are no 3k-expanding triples).
Deleting all such edges from G′ we obtain G′′ with at least e/4 ≥ 18k2n2 edges, without 18k2-expanding
pairs, which is a contradiction (since by density G′′ must have an 18k2-expanding pair).

Remark. By induction this easily extends to higher uniformities, giving ex(n,Sf r(1, k)) ≈r k2nr−2.
We now turn to the second type of 4-uniform sunflowers, namely Sf 4(2, k).

Lemma 3.4. For 2 ≤ k � n we have ex(n,Sf 4(2, k)) ≈ k2n2.
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Proof. We prove a lower bound first. Let us say that a (2-)graph G is good if it has at most 2k vertices
and each of its edges is contained in a copy of K4. If we can show that there exists m edge disjoint copies
of good graphs G1, . . . , Gm on the same vertex set [n], with at least Θ(n2k2) copies of K4 in total among
G1, . . . , Gm, then we would be done. Indeed, we can construct a 4-graph H on [n] by putting a 4-edge in
H for any 4 vertices which induce a copy of K4 in one of G1, . . . , Gm; this 4-graph has at least Θ(n2k2)

edges, and by assumption each vertex pair P in [n] is an edge of at most one graph Gi, and therefore all
the 4-edges in H which contain P contain only vertices from Gi of which there are at most 2k, so no pair
can be the centre of a sunflower Sf 4(2, k) which has 2k + 2 vertices.

Now we show the existence of such G1, . . . , Gm, for m = n2

48k2
. We choose 2k vertices uniformly at random,

with repetition from [n] and choose G1 to be the complete graph on these 2k vertices. Suppose we obtained
graphs G1, . . . , Gi, where i < m. Choose again a set of uniformly random 2k vertices, and choose Gi+1 to
be the complete graph on these vertices from which we remove all the edges in G1, . . . , Gi and after this
we remove all edges not participating in a K4.

Notice that for each graph Gi, with i ∈ [m], the expected number of K4’s is at least(
2k

4

)(
1− 6i · (2k/n)2

)
· 1

2
≥ Θ(k4),

since probability that 4 randomly sampled vertices are different is at least 1 − 6/n ≥ 1/2 and by a
union bound the probability that one of its 6 edges already got chosen in some G1, . . . , Gi is at most
6i · (2k/n)2 ≤ 1/2. So the total expected number of K4’s among G1, . . . , Gm is by linearity of expectation
at least m ·Θ(k4) = Θ(n2k2) and we are done.

For the upper bound, there must be a vertex v with degree � k2n in any graph on � k2n2 edges, so we
can find an Sf 3(1, k) in its link graph, by Lemma 3.1, which together with v forms a copy of Sf 4(2, k).

Finally, we deal with the third and last kind, namely Sf 4(3, k).

Lemma 3.5. For 2 ≤ k � n we have ex(n,Sf 4(3, k)) ≈ kn3.

Proof. For the lower bound, we take a 4-graph G which is a union of k − 1 random copies of a 4-graph
S(3, 4, n) on n vertices with Ω(n3) edges, given by Lemma 2.1. A single triple of vertices lies in at most
one edge for each copy so in total in at most k− 1 edges; this means there is no Sf 4(3, k) in G. Each fixed
quadruple is an edge of G with probability Ω(1/n), independently between different choices. Thus the
probability that a quadruple is chosen in G is at least Ω(k/n), so the expected number of chosen triples
is at least Ω(kn3). Therefore, ex(n,Sf 4(3, k)) ≥ Ω(kn3).

Let G be a 4-graph on n vertices with kn3 edges. By the pigeonhole principle there is a triple of vertices
belonging to at least k edges, which makes an Sf 4(3, k). This shows ex(n,Sf 4(3, k)) ≤ kn3.

The above three results establish Theorem 1.2 when k � n. This shows that ex(n,Sf 4(i, k)) ≈ n4 for any
k = cn for some small enough constant c. The bound in the remaining range, namely when k ≥ cn, is
immediate since Sf 4(i, k) ⊆ Sf 4(i, k

′) for any k ≤ k′ in the case of lower bounds and by the trivial bound
ex(n,Sf 4(i, k)) ≤

(
n
4

)
in the case of upper bounds, since we are only interested in bounds up to constant

factor.

4 Unavoidability, sparse regimes

In this section we prove Theorem 1.1 for e � n3, so for the majority of the first two regimes. We note
that in order to prove Theorem 1.1 it is sufficient to prove it for the regimes e � n2, n2 � e � n3 and
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n3 � e � n4 since in the remaining cases e ≈ n2, e ≈ n3 the bounds of the regimes match (up to a
constant factor) and un4(n, e) is monotone in e. We begin with the sparsest regime e� n2, which is quite
simple to handle but illustrates the general approach.

Theorem 4.1. For 1 ≤ e� n2, we have un4(n, e) = 1.

Proof. Starting with the upper bound, let H be an (n, e)-unavoidable graph where e ≤ cn2 for some
sufficiently small constant c > 0. This means it is contained in any 4-graph on n vertices with at least e
edges and our task is to show that it must consist of only one edge. To see this, observe that the 4-graph
S(2, 4, n), given by Lemma 2.1, has Ω(n2) ≥ e edges so it must contain H as a subgraph. This forces H
to be linear. Similarly, the n-vertex 4-graph which consists of all edges which contain two fixed vertices
has Ω(n2) ≥ e edges so also has H as a subgraph. This forces any two edges of H to intersect in at least
2 vertices. Since H must also be linear this means it can have at most 1 edge.

The lower bound is immediate, since any n-vertex graph with e edges contains an edge (e ≥ 1) so a single
edge graph is (n, e)-unavoidable showing un4(n, e) ≥ 1.

We now turn to the upper bound for the second regime.

Theorem 4.2. For n2 � e� n3 we have un4(n, e) . min{(e/n2)3/4, (e/n)1/3}.

Proof. Let H be an (n, e)-unavoidable 4-graph and let k = c
√
e/n, for c > 0 large enough. This means

that any n-vertex 4-graph with at least Ω(k2n2) edges must contain H (by choosing c large enough, since
e = n2k2/c2). Note that the regime bounds imply 1 � k �

√
n. To show the bound it suffices to show

that |E(H)| ≤ min{2k3/2, (k2n)1/3}. In order to do this, we will consider a number of examples of 4-graphs
with more than e edges. Each of them will reveal some additional information on how H should look like
and allow us to conclude it can’t have more than the claimed number of edges.

• The 4-graph S(3, 4, n), given by Lemma 2.1, has Ω(n3) ≥ e edges. So it forces H to have no two edges
intersecting in three vertices.

• The graph with one special vertex contained in all of
(
n−1
3

)
possible edges implies that all edges of H

must contain a common vertex, say v. Let H3 be the link graph of v (so a 3-graph).

• We take the graph obtained from an n-vertex linear k-graph by taking every 4-subset of every edge in
this k-graph as an edge. Note that by Lemma 2.2, since k �

√
n, we can find such a 4-graph with

Ω(k2n2) edges. This implies that H3 splits into components of size at most k each, since v is contained
in all 4-edges and by construction any two 4-edges which intersect in more than one vertex belong to a
single k-edge of our starting linear k-graph.

• Let us take the hypergraph with sets of vertices V1 of size k and V2 of size n − k such that we choose
any pair of vertices in V1 and any pair of vertices in V2 and join them in an edge. This 4-graph has
Ω(k2n2) edges. Since every edge has at least two vertices in V1 this means every edge of H3 must have
at least one vertex in V1; in other words, H3 has a cover C of size at most k and (in particular) H3 has
at most k components.

• Let us take a set S of 2k2 � n vertices and split them into k2 pairs. We join each of these k2 pairs
with every pair among n − |S| vertices outside of S into a 4-edge. This gives us an n vertex 4-graph
with Ω(k2n2) edges, so we must be able to find a copy of H inside it. If v is embedded inside S and we
let w be its pair, then v and w belong to each edge of H. We claim this implies that H has at most k
edges. To see this observe first that every edge of H3 contains w, so H3 only has a single component.
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By the third point we know it consists of at most k vertices. We further know, by the first point, that
if we remove w we get a matching, since otherwise we would have two edges of H which intersect in 3

vertices. This implies H has at most k edges and we are done. So, v must be embedded outside of S.
If a vertex of C is in S then it participates in at most one edge of H (since we know each such edge
contains the vertex of C, its pair in S and v and there is only one edge of H containing any triple of
vertices), so such vertices contribute at most k edges. If we remove these edges from H we know that
in the remaining 4-graph upon removing v and the vertex of C from an edge we obtain one of our pairs
in S.

Since we removed at most k � min{k3/2, (k2n)1/3} edges, so at most a constant proportion of edges in H,
we may assume we started with H in which such edges did not exist. Putting together the observations
so far we know that H has a fixed vertex v in all edges, its link graph is the 3-graph H3 which consists of
at most k copies of a subhypergraph of Sf 3(1, k), whose centres are vertices of C and whose petals upon
removal of the centre vertices give a matching M (our pairing of vertices in S) which in total has size at
most k2. The following two further examples provide us with one of the desired bounds each.

• Let V1 induce k disjoint copies of K√k,√k, we extend each edge of this graph into 4-edges by adding
every possible pair of the remaining vertices (the set of which we denote by V2). Since |V1| = 2k3/2 � n

if we set |V2| = n − |V1| this 4-graph will have n vertices and Ω(k2n2) edges, so contains H. Let us
consider the edges of M containing a vertex embedded in V1. There can be at most 2k3/2 such edges
since |V1| = 2k3/2, so upon deleting all corresponding edges of H we are left with a subgraph of H in
which v and C got embedded into V1 (or we are left with an empty graph). But this implies |C| ≤ 2

√
k,

so again there are at most 2k3/2 edges of H remaining (since we know that if we fix a vertex from C, in
addition to v, their link graph is a matching of size at most k). It follows that |E(H)| ≤ 4k3/2 giving
us the first part of the result.

• Take a set V1 of (k2n)1/3 � n vertices and let V2 be the set of remaining vertices. We make a 4-
graph by taking any triple in V1 and a single vertex in V2. This gives us Ω(k2n2) edges and implies
|E(H)| ≤ (k2n)1/3 since among every pair of vertices in M at least one must be in V1.

This completes the proof.

The rest of this section is devoted to the upper bound part of the following theorem, as the lower bound
follows from Theorem 4.2. Analysing the above proof narrows down the possibilities for an optimal un-
avoidable graph significantly, leading us to St4(

√
k, k, 1) as a natural candidate for an optimal unavoidable

graph. This indeed turns out to be the case as a consequence of the following result.

Theorem 4.3. For 2 ≤ k ≤ n2/3 we have ex(n,St4(
√
k, k, 1)) ≈ max{k2n2, k9/2n}.

Before proving this result let’s see why it gives the desired lower bound for the unavoidability problem. We
want to show that there is an (n, e)-unavoidable 4-graph with & min{(e/n2)3/4, (e/n)1/3} edges, for any
n2 � e � n3. To do this we choose k as large as possible, so that e � max{k2n2, k9/2n}, which means
that k & min{(e/n2)1/2, (e/n)2/9}. By our choice of k the above theorem applies and tells us that any
4-graph with n vertices and e edges contains St4(

√
k, k, 1), i.e. it is (n, e)-unavoidable. This implies there

is an (n, e)-unavoidable 4-graph with k3/2 & min{(e/n2)3/4, (e/n)1/3} edges, as desired. So, combining
Theorem 4.3 and Theorem 4.2 we obtain the desired result for the middle range.

Theorem 4.4. For n2 � e� n3, we have un4(n, e) ≈ min
{

(e/n2)3/4, (e/n)1/3
}
.
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Let us now turn to the proof of Theorem 4.3. For the upper bound our task is to show that any 4-graph
G on n vertices with e� max(k2n2, k9/2n) edges contains a copy of St4(

√
k, k, 1). To this end, note that

by the pigeonhole principle, the link graph Lv of some vertex v ∈ V (G) must have e/n� max(k2n, k9/2)

triples. If Lv contains
√
k vertex-disjoint copies of Sf 3(1, k), then we are done. Unfortunately, a 3-graph

on n vertices with � max(k2n, k9/2) edges may not have more than one vertex-disjoint copy Sf 3(1, k),
let alone

√
k copies. For example, the 3-graph consisting of all triples containing a fixed vertex has

(
n−1
2

)
edges (which is large enough when k � n4/9), and it clearly does not contain two disjoint copies of
Sf 3(1, k). As the next result shows, one can remedy the situation by imposing a boundedness condition
on the codegrees.

Lemma 4.5. Let k ≥ 2. Every n-vertex 3-graph with at least e � max(k2n, k9/2) edges, in which every
pair of vertices has codegree at most 3k3/2, contains

√
k vertex-disjoint copies of Sf 3(1, k).

Proof. Assume first that there exist vertices v1, . . . , v√k with degree at least 18k3. Since there are no pairs
of vertices with codegree larger than 3k3/2, we know that the link graph of any vi does not contain a
star of size 3k3/2, so by Lemma 2.3 it must contain a matching of size 3k3/2. Now assume we have found
i − 1 disjoint copies of Sf 3(1, k) centred at v1, . . . , vi−1 and not using any other vj ’s. Let us consider a
matching of size 3k3/2 in the link graph of vi. At most

√
k+ 2(i−1)k < 2k3/2 of the pairs in the matching

already contain a vertex from either {vi, . . . , v√k} or belonging to one of our (i−1) already found copies of
Sf 3(1, k)’s. The remaining pairs make a matching of size at least k in the link graph of vi while avoiding
{v1, . . . , v√k} as well as any already used vertex. This gives us a new Sf 3(1, k) centred at vi which is
disjoint from the previous ones. After repeating

√
k many times we get the desired

√
k vertex-disjoint

copies of Sf 3(1, k).

So we may assume there are less than
√
k vertices with degree at least 18k3. Each such vertex belongs

to at most 3k3/2n edges (the second vertex we can choose in n ways and then third in 3k3/2 ways since
codegrees are at most 3k3/2). Thus in total there are at most 3k2n edges containing a vertex with degree
at least 18k3. We delete these edges and are left with at least e/2 edges.

Suppose we have found i−1 vertex-disjoint copies of Sf 3(1, k) in the remaining 3-graph, where 1 ≤ i ≤
√
k.

There are at most (i− 1)(2k + 1) · 18k3 < 54k9/2 edges which contains a vertex from one of these copies.
Removing these edges, we are left with at least e/4 � k2n edges. Thus Lemma 3.1 applies giving us a
new Sf 3(1, k). This way we obtain

√
k vertex-disjoint copies of Sf 3(1, k).

We are now ready to finish our analysis of the middle range by proving Theorem 4.3.

Proof of Theorem 4.3. The lower bound follows from Theorem 4.2.

Turning to the upper bound, set m� max(k2n, k9/2) and let G be an n-vertex 4-graph with at least nm
edges. Suppose to the contrary that G has no copies of St4(

√
k, k, 1).

Let us first consider the case that there are at most nm/2 edges containing a 3k3/2-expanding triple in
G. Remove all these edges to obtain a 4-graph G′ with at least nm/2 edges in which there is no 3k3/2-
expanding triple. By the handshaking lemma, we can find a vertex x in G′ of degree at least 2m. If we
look at the 3-graph Gx obtained by removing x from all these edges we know it has at least 2m edges,
additionally we know that no pair of vertices is 3k3/2-expanding in Gx as such pair together with x would
give a 3k3/2-expanding triple. So all codegrees in Gx are at most 3k3/2 and Lemma 4.5 applies, giving us√
k vertex-disjoint copies of Sf 3(1, k) which together with x make a copy of St4(

√
k, k, 1), a contradiction.

Therefore, there are at least nm/2 edges which contain a 3k3/2-expanding triple. For any v ∈ V (G) let
Dv denote the 3-graph consisting of triples X such that v ∪X ∈ E(G) and X is 3k3/2-expanding. Note
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that we have
∑

v∈V (G) |Dv| ≥ nm/2 since each edge of G, containing a 3k3/2-expanding triple, contributes
at least 1 to this sum. Hence, there exists a vertex x with |Dx| ≥ m/2.

Claim 1. There is no star of size
√
k consisting of 3k3/2-expanding pairs in the 3-graph Dx.

Proof. Suppose to the contrary that we can find distinct vertices v0, . . . , v√k such that {v0, vi} makes a
3k3/2-expanding pair for all 1 ≤ i ≤

√
k. We know that {v0, vi} completes into an edge of Dx in at least

3k3/2 different ways, so we can greedily find k vertices vi1, . . . vik such that {v0, vi, vij} ∈ E(Dx) and all
vi, vij are distinct, for all 1 ≤ i ≤

√
k and 1 ≤ j ≤ k. The last part is due to the fact that we choose at

most 1 +
√
k+ k3/2 < 2k3/2 vertices in total and each pair completed an edge in at least 3k3/2 ways so we

always have an unused vertex to choose for our vij ’s.

Now since each {v0, vi, vij} ∈ E(Dx) and is in particular expanding, we can extend it into an edge of G in
3k3/2 ways so again greedily we obtain St4(

√
k, k, 1) as it contains 1 +

√
k + 2k3/2 < 3k3/2 vertices so we

always have a new vertex to choose to extend {v0, vi, vij}. This is a contradiction.

For y 6= x, let Dxy denote the set of pairs X such that y ∪X ∈ E(Dx) and X is 3k3/2-expanding in Dx.

Claim 2. For every y 6= x, one has |Dxy| ≤ 6k3/2n.

Proof. Suppose to the contrary that |Dxy| ≥ 6k3/2n for some y 6= x. According to Lemma 2.4 (with
s = k3/2), the graph Dxy contains

√
k3/2n
k ≥

√
k (using n ≥ k3/2) vertex-disjoint copies of Sk. Label the

edges of these stars by e1, e2, . . . , ek3/2 . As y ∪ ei is a 3k3/2-expanding triple for every i, we can greedily
find distinct vertices v1, . . . , vk3/2 ∈ V (G) \

⋃
j ej such that y ∪ e1 ∪ v1, . . . , y ∪ ek3/2 ∪ vk3/2 are edges of G.

This yields a copy of St4(
√
k, k, 1), a contradiction.

Claim 3. There are at most
√
k vertices y having |Dxy| ≥ 6k2.

Proof. Suppose otherwise and let v1, . . . , v√k denote vertices with |Dxvi | ≥ 6k2. Since by Claim 1 there
are no stars of size

√
k in Dxvi we know by Lemma 2.3 that there must be a matching of size 3k3/2 in Dxvi .

Now assume for some i ≤
√
k we have found i−1 vertex-disjoint copies of Sf 3(1, k) centred at v1, . . . , vi−1

which do not use vertices from {vi, . . . , v√k}. We know there is a matching of size 3k3/2 in Dxvi , at most√
k + 2k3/2 of the pairs in the matching use a vertex which already belongs to one of our Sf 3(1, k)’s so

we can still find a k-matching in Dxvi , avoiding any already used vertices. This gives us a new Sf 3(1, k)

centred at vi disjoint from the previous ones and we may repeat this
√
k many times. Finally, these copies

of Sf 3(1, k) when joined with x make a copy of St4(
√
k, k, 1) which is a contradiction.

Finally, it follows from Claims 2 and 3 that the number of edges in Dx containing a 3k3/2-expanding pair
is at most

∑
y |Dxy| ≤

√
k · 6k3/2n+ n · 6k2 ≤ m/4. Deleting all such edges we are left with m/4 edges of

Dx such that no pair of vertices is 3k3/2-expanding. Lemma 4.5 implies we can find
√
k disjoint copies of

Sf 3(1, k) which together with x gives us a St4(
√
k, k, 1), a contradiction. This completes the proof.

5 Unavoidability, the dense regime

In this section we deal with the last regime, when e � n3. Note once again that by monotonicity of
un4(n, e) and combining it with Theorem 4.4 this will imply the result for e ≈ n3 as well.

For the majority of the regime the optimal unavoidable 4-graphs turn out to be based on generalised stars.
Specifically, for e = kn3 they will be disjoint unions of St4((n/k)1/3, (n/k)1/3, k) of suitable size. Unfortu-
nately, in this regime upper bounds do not force as much structure as they do in the previous section, so
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we begin with the lower bounds. With this in mind our first goal is to determine ex(n,St4(d1, d2, d3)) for
d1 = d2 = (n/k)1/3 and d3 = k (although our methods should allow one to answer this question in general
as well).
In order to find a copy of St4(d1, d2, d3) in a graph we will either find d1 copies of St3(d2, d3) inside the
link graph of a vertex or find St3(d1, d2) consisting of so called expanding triples, namely triples of vertices
which belong to many edges of our graph. In the former case we are done immediately, in the latter we can
use the expansion of the triples to greedily extend each edge of our St3(d1, d2) using d3 new vertices. To
find disjoint copies of St3(d2, d3) or St4(d1, d2, d3) we can simply remove any already used vertex from the
graph and argue that the remainder still contains enough edges to find a new copy. Unfortunately, as we
have already seen in the previous section this approach fails to provide enough stars in most cases. A way
around this is to embed the leaves of all our stars (since there are many of them) among vertices with low
degrees, the 3rd layer vertices among vertices with only slightly higher degree and so on. This approach
requires very good understanding of Turán numbers of 3-uniform generalised stars and their unions which
we give in the following section.
In the subsequent section we show the desired bounds for our 4-uniform case. Interestingly, towards the
end of the range, as e approaches

(
n
4

)
, generalised stars stop being the optimal examples and are replaced

with (disjoint unions) of complete 4-partite graphs, which we will find through a combination of the
Kövári-Sós-Turán theorem and a similar embedding trick where we embed largest parts of our already
found r-partite graphs into vertices with low degree, in order to be able to find many disjoint copies.

5.1 Turán numbers of 3-uniform generalised stars

In this section we will give a number of upper bounds on Turán numbers of generalised stars, and their
disjoint unions. The first two results determine these Turán numbers up to constant factors and we prove
them in full generality since we find them interesting in their own right. The subsequent three lemmas
allow us to do even better (find our stars in graphs with even less edges) if we know certain additional
properties of our graph or give us more control where in the graph we can find our stars. We do not state
these in full generality, but rather for the cases which arise naturally in the proof of our 4-uniform result.
The following lemma, which generalises Lemma 3.1, determines the Turán number of any 3-uniform
generalised star, up to a constant factor.

Theorem 5.1. For every positive integers n, h and k, we have

ex(n,St3(h, k)) . max{kn2, h2k2n}.

Proof. Let G be a 3-graph with e � max(kn2, h2k2n) edges. We want to find h vertex-disjoint copies of
Sk in the link graph of some vertex. Let Dv be the subgraph of the link graph of v consisting of pairs Y
for which v ∪ Y is an edge of G and Y is 3hk-expanding.
If at least e/2 edges in G contain a pair which is 3hk-expanding then there exists a Dv of size at least
e/(2n), as

∑
v∈V |Dv| ≥ e/2. If Dv contains an Sh, then since it consists of 3hk-expanding edges, we

would be done by greedily extending it into a copy of St3(h, k), since 3hk ≥ hk + h + 1 = |St3(h, k)|.
Hence, we suppose there is no Sh in Dv, i.e. every vertex has degree at most h in Dv. Take a maximal
collection of disjoint k-stars in Dv. If this collection consists of at least h stars, they together with v make
St3(h, k) and we are done, so let us assume towards a contradiction that there are less than h of them. So
the union of the stars in this collection has at most hk + h ≤ 2hk vertices, which participate in at most
2hk ·h ≤ e/(4n) edges of Dv, since we have shown that degree of any vertex is at most h. This means that
among the remaining at least e/(4n) ≥ kn edges in Dv we can find a new Sk, contradicting maximality of
our collection.
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So we may assume that G contains at most e/2 edges containing a 3hk-expanding pair; removing all such
edges we obtain a graph G′ in which there is no 3hk-expanding pair of vertices. We can find a vertex with
degree at least e/n and once again keep finding k-stars in its link graph for as long as we have less than h
of them. At any point we have at most hk vertices and they have degree at most 3hk in the link graph of
the found vertex (since we removed all edges containing a 3hk-expanding pair), so they always touch at
most 3h2k2 ≤ e/(4n) edges, hence we have at least e/(4n) ≥ kn other edges, and we can find a new Sk,
as desired.

Remark. One can show the bound in the proposition is tight, up to a constant factor, provided 2 ≤ k ≤
n/h. Indeed, Lemma 3.2 gives the first term, and taking n/(hk) disjoint copies of the complete 3-graph on
hk vertices gives the second. Note also that, since |St3(h, k)| > hk, when hk > n we can never find a copy
of St3(h, k) in a graph on n vertices, hence the largest St3(h, k)-free graph is complete; this completes the
picture on Turán numbers of generalised 3-uniform stars (case k = 1 being Lemma 3.1).

The next result shows that if |E(G)| � max{kn2, h2k2n} then not only G contains a copy of St3(h, k), as
guaranteed by the above proposition, but it contains many disjoint copies of them.

Theorem 5.2. Every 3-graph on n vertices with e � sn2 edges, with s ≥ max{k, h2k2/n}, contains at
least t = min{s,

√
sn/h, s1/3n2/3/(hk)} vertex-disjoint copies of St3(h, k).

Proof. Let G be a 3-graph on n vertices with e edges. Set L2 = e/(3ht) and L3 = e/(3hkt). We call
a star St3(h, k) in G well-behaved if its h second layer vertices have degrees at most L2 and its hk third
layer vertices have degrees at most L3. Suppose we have found a collection of less than t vertex-disjoint
well-behaved generalised stars St3(h, k). The used vertices touch at most t ·

(
n
2

)
+ ht · L2 + hkt · L3 ≤ 3

4e

edges. We call this set of edges R.

Our goal now is to show that we can find a new well-behaved star St3(h, k) in G among the vertices which
are not contained in any of the previous stars. Let A denote the set of vertices with degree at least L2,
B the set of vertices with degrees between L3 and L2 and C the set of vertices with degree at most L3.
Note that |A ∪ B| ≤ 9ht + 9hkt ≤ 18hkt. Furthermore, there exists a subset F ⊆ E(G) \ R such that
every edge in F contains the exact same number of vertices in A, as well as in B, and in C, and we have
|F | ≥ 1

10 ·
1
4e � sn2, since there are3

(
3+2
2

)
= 10 different types of edges according to how many vertices

they have in each of the sets A,B and C. We distinguish four cases.

Case (i). The edges in F have no vertices in C.

We have |F | ≤
(|A∪B|

3

)
. (hkt)3 ≤ sn2 � |F |, a contradiction.

Case (ii). All three vertices of each edge in F are in C.

We can find a copy of St3(h, k) using only the edges in F by Theorem 5.1, since s ≥ max{k, h2k2/n}
and |F | � sn2. As all its vertices are in C the star is well-behaved.

Case (iii). All edges of F have exactly two vertices in C.

There must exist a vertex in A ∪ B of degree at least |F |
|A∪B| ≥

|F |
18hkt �

sn2

hkt . Hence, we can use
Lemma 2.4 to find h vertex-disjoint copies of Sk in its link graph. To see why the lemma gives this,
note that for s′ = sn/(hkt) we have min{s′,

√
s′n/k} ≥ h and s′ ≥ k. Indeed, we have

s′

h
=

√
sn

hk
·
√
sn

ht
≥ 1,

√
s′n

hk
= t ·

√
sn2

(hkt)3
≥ t ≥ 1 and

s′

k
=
s

k
· s

1/3n2/3

hkt
· n

1/3

s1/3
≥ 1,

3The number of non-negative integer solutions to x1 + x2 + x3 = 3.
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where we used s ≥ h2k2/n and t ≤
√
sn/h in the first inequality, t ≤ s1/3n2/3/hk in the second and

last inequalities, where we also used n ≥ s ≥ k. This yields a copy of St3(h, k) with all second and
third layer vertices in C, so the copy is well-behaved.

Case (iv). Each edge in F has exactly one vertex in C.

Let P be the set of sn2/(hkt)2-expanding pairs of vertices in A∪B. The total number of edges in F
which do not contain a pair in P is less than

(|A∪B|
2

)
·sn2/(hkt)2 ≤ 9 ·18sn2 ≤ |F |/2. The remaining,

at least |F |/2 edges each contain a pair from P and each such pair can belong to at most n edges,
so |P| ≥ |F |/(2n)� sn. Since at most

(|A|
2

)
≤
(
9ht
2

)
< 41sn pairs have both vertices in A, there are

at least 18sn pairs in P with at least one vertex in B. This means that there is a vertex in A ∪ B
having at least 18sn/|A∪B| ≥ sn/(hkt) ≥ h neighbours (with respect to P) in B, so we find a copy
of Sh in P with leaves in B. Since the pairs in P have degrees at least sn2/(hkt)2 ≥ hkt ≥ hk (using
t ≤ s1/3n2/3/hk), we can greedily extend this Sh into a copy of St3(h, k), which is well-behaved since
every edge in Sh had at most one vertex in A and exactly two in A ∪ B so the third vertex of any
edge containing it must be in C, by the case assumption.

Remark. This result is again best possible in a number of ways. We need the bound on s in order to be
able to find even a single star, since Theorem 5.1 is tight, as explained by the remark bellow it. The actual
number of stars we find is also optimal: the bound t ≤ s follows by taking Ks,n,n, t ≤

√
sn/h by taking

K√sn,
√
sn,n (note that

√
sn ≤ n) and t ≤ s1/3n2/3/(hk) by taking the complete graph on s1/3n2/3 ≤ n

vertices.

The following lemmas arise as parts of our argument bounding ex(n,St4(d, d, k), where d = (n/k)1/3, in
the following subsection. They are either strengthenings of the above bounds or allow us more control
over where we find vertices of our 3-uniform stars.

Lemma 5.3. Let H be a 3-graph on n vertices with e � kn2 edges. If every pair of vertices belongs to
less than 3kd2 edges of H, then H contains d vertex-disjoint copies of St3(d, k), where d = (n/k)1/3.

Proof. We first show that for any vertex w of degree at least 7kn in H, there is an St3(d, k) centred at
w. Observe first that the link graph Lw does not contain a star of size 3kd2, as otherwise the centre of
this star and w make a pair of too high codegree. This means that in the link graph of w we can find d
vertex-disjoint copies of Sk, again by a greedy procedure. Indeed in every step we have used at most 2kd

vertices, each having degree at most 3kd2 in Lw, so in total they touch at most 6k2d3 = 6kn edges, and
we can find the new Sk among the remaining nk edges. This gives us the desired St3(d, k) centred at w.

Let A be the set of vertices with degree larger than ed/(8n)� nkd and B the set of vertices with degree
at most this. Since we have e edges in total this implies |A| ≤ 24n/d. This in turn implies that there can
be at most

(|A|
2

)
· 3kd2 ≤ e/3 edges with at least 2 vertices in A, so we can remove them to get a subgraph

H ′ ⊆ H in which every vertex has at most one vertex in A and |E(H ′)| ≥ 2e/3� kn2.

Let us first assume there are at least e/3 edges with all vertices in B. Taking a maximal collection of
vertex-disjoint St3(d, k) using only such edges, either we are done (if we have found d of them) or have
used at most 2kd2 vertices, each with degree at most ed/(8n). So in total, currently used vertices touch
at most 2kd2 · ed/(8n) = e/4 edges of H ′. Upon removing them we are left with at least e/12 � kn2

edges with all vertices in B and disjoint from the set of already used vertices. In particular, there is still
a vertex of degree at least 7kn and we can use the observation from the beginning of the proof to find an
additional St3(d, k), a contradiction.

So we may assume there are at least e/3 edges with one vertex in A and 2 in B. Now take a maximal
collection of vertex-disjoint copies of St3(d, k) with centres in A and remaining vertices in B. Either we
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are done or we have used at most d vertices from A and 2kd2 vertices in B. The former have degrees at
most n · 3kd2 (second vertex we may choose in n many ways, but for the final we are restricted by the
codegree assumption) so touch at most d · n · 3kd2 = 3n2 ≤ e/24 edges. The latter have degrees at most
ed/(8n), by definition of B, so touch at most 2kd2 · ed/(8n) = e/4 edges. Hence, upon removing all these
edges we are left with at least e/24 ≥ 7kn2 of our edges, all of which are disjoint from the set of already
used vertices. This means there is a vertex in A with degree at least 7kn, so once again using our initial
observation we find an additional St3(d, k), a contradiction.

The following lemma allows us to find many copies of 3-uniform stars with an added restriction that its
leaves should avoid a relatively small subset of vertices, provided the edges of our graph have at least one
vertex in this small subset. The choice of parameters might seem a bit arbitrary, but it arises from our
intended application of the lemma in the 4-uniform case.

Lemma 5.4. Let n, k and t be positive integers with t ≤ min{k,
√
d}, where d = (n/k)1/3. Let H be an

n-vertex 3-graph with e � n3

td2
edges. Let C ⊆ V (H) such that |C| ≤ 16nt/d and assume that every edge

of H has precisely one vertex in C. Then H contains d vertex-disjoint copies of St3(d, k) whose leaves lie
outside of C.

Proof. Let D = V (H) \ C. Suppose there exists a set X of d vertices in D with degree at least

δ :=
ed

8n
� n2

dt
=
nd2k

t
≥ max(nd2, ntdk) (2)

where in the last inequality we used the assumption on t. We delete from H any edge containing two
vertices in X. We deleted at most

d2|C| ≤ 16ntd� δ

k

such edges, using (2). Hence, vertices in X after deletion still have degree at least δ
2 . We now show how to

find d vertex disjoint copies of St3(d, k) with centres in X, 2nd layer vertices in C and leaves in D \X. We
construct them as follows. We pick a vertex from X and look inside its link graph for copies of stars Sk
with centres in C, leaves in D\X and not using any already used vertices. If we find d of them we proceed
to the next vertex of X, otherwise we stop. If we did not stop by the time we considered all vertices of X,
we have found our desired structure. So we may assume that we do stop at some point when considering
x ∈ X. At this point we have used at most d2 vertices from C and kd2 + d ≤ 2kd2 vertices from D (the
first term being the contribution of D \ X and the second of X). In the link graph Lx (note that this
graph consists of edges with one vertex in C and one in D), already used vertices from C touch at most
d2 · n ≤ δ/8 edges in total, using (2) and t ≤ k. Furthermore, used vertices from D touch at most

2kd2|C| ≤ 32ntdk ≤ δ

8

edges in total, using (2). So removing all edges touching these forbidden, already used, vertices we are left
with at least

δ

4
≥ 16ntk

d
≥ k|C|

edges in Lx, avoiding all already used vertices. Hence, we find another appropriate Sk, a contradiction.

So we may assume that there are at most d vertices in D with degree at least δ. These vertices participate
in at most

dn2 =
n3

kd2
≤ e

4

edges (using t ≤ k); we delete them and are left with a graph H ′ with at least 3e
4 edges such that all
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vertices in D have degree at most δ in H ′. Let us take a maximal collection of vertex-disjoint copies of
St3(d, k) with centres in C. If we are not done, the centres touch at most dn2 ≤ e

4 edges, while the other
used vertices touch at most 2kd2 · δ = e

4 edges (since they all belong to D so touch at most δ edges). So
there are at least e/4 edges which do not touch any of the used vertices. Let H ′′ be the graph consisting
of these edges. Now it is enough to find another St3(d, k) in H ′′, with its centre in C. Note that there is
a vertex in C of degree at least

e

4|C|
≥ 6n2

dt2
= 6n · kd

2

t2

in H ′′. Applying Lemma 2.4 with s := kd2

t2
, which we can since s ≥ kd ≥ k (using t ≤

√
d), we find

min(s,
√
sn/k) ≥ min(kd, d2) ≥ d (using n = kd3 and t ≤

√
d in the second term) disjoint stars Sk in the

link graph of this vertex, completing the proof.

The final lemma for the 3-uniform case is the following. It is similar in spirit to the above one, except
that it works with smaller sets and only finds a single star. While the above lemma will be used to embed
a number of stars within the link graph of a fixed vertex, the following one will be used to find the star
making the first 3-layers.

Lemma 5.5. Let n, k and t be positive integers with t ≤ min{k,
√
d}, where d = (n/k)1/3. Let H be a

3-graph on vertex set B∪C where B and C are disjoint, |B| ≤ 16td2 and |C| ≤ 16td2k. If H has e� kn2

edges then it contains a copy of St3(d, d) whose leaves all lie in C.

Proof. There are at most (
|B|
3

)
≤ 212t3d6 ≤ 212k3(n/k)2 ≤ e

4

edges within B. If we have e/4 edges living completely in C then by Theorem 5.1, since

e/4 ≥ 28n2 ≥ max{d|C|2, d4|C|},

where we used t2 ≤ d for the first term and t ≤ k for the second, we can find a copy of St3(d, d) consisting
of these edges, so in particular having all leaves in C, as desired. So we may assume there are at least e/2
edges containing vertices from both B and C. Let H ′ be the subgraph consisting of such edges.
A pair of vertices in H is said to be a B-pair if it contains at least one vertex in B. There are at most

|B| · (|B|+ |C|) ≤ 29t2d4k ≤ 29d4k3 = 29kn2/d2 ≤ e/(12d2)

B-pairs. We say a B-pair is C-expanding if it extends into an edge of H ′ using a vertex from C in at least
3d2 many ways. This means there are at most e/4 edges which contain a non-C-expanding B-pair. The
remaining, at least e/4, edges only contain C-expanding B-pairs. Each of these edges can be split into a
B-pair, which must be C-expanding and a vertex in C. Hence, there needs to be at least

e

4|C|
≥ kn2

td2k
=
k

t
· n
d3k
· dn ≥ dn

C-expanding B pairs. Hence, we can find a star of size d made of such pairs and since each of them extends
to at least 3d2 ≥ |St3(d, d)| edges using a vertex in C, we find our desired star by a greedy procedure.

5.2 Optimal 4-uniform unavoidable graphs

We finally have all the 3-uniform results our hearts might desire, we proceed to the 4-uniform case.
We begin by determining the Turán number of a single copy of our unavoidable generalised 4-uniform star.
The proof is relatively simple since we did most of the legwork in the previous section.
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Lemma 5.6. For 1 ≤ k ≤ n one has ex(n,St4(d, d, k)) . kn3, where d = (n/k)1/3.

Proof. For ease of notation, set St = St4(d, d, k). Let G be an n-vertex 4-graph with e� kn3 edges. We
say a triple of vertices X is expanding in G if it is 3kd2-expanding.

Claim. If at least e/2� kn3 edges contain an expanding triple, then G contains St .

Proof. Let Dv := {X ⊆ V (G)3 | X ∪ v ∈ E(G), X is expanding}. We have
∑

v |Dv| ≥ e/2, since every
edge containing an expanding triple contributes at least one to the sum on the left. This implies that there
exists a vertex v with |Dv| ≥ e/(2n). Now, if there exists a vertex w with degree at least 6dn in Dv then
we can find d vertex-disjoint copies of the star of size d within the link graph of w in Dv, by Lemma 2.4
and using that n = d3k ≥ d3. Adding w to these edges gives us an St3(d, d) within Dv (so consisting of
expanding triples). This in turn implies we are done by greedily extending it to a copy of St . So we may
assume every vertex has degree at most 6dn in Dv.

Theorem 5.1 tells us that we can find at least one St3(d, k) in any 3-graph with e/(4n)� kn2 edges (using
that n = d3k ≥ d2k so that d2k2n ≤ kn2). Suppose we have found t < d vertex-disjoint copies of St3(d, k)

in Dv; they span at most 3kd2 vertices, each having degree at most 6dn in Dv. Hence, these vertices
are incident to at most 18n2 edges, so if we remove all of them, we are left with at least e/(4n) edges.
Now, Theorem 5.1 implies that we can find another disjoint St3(d, k). Therefore, we can find at least d
vertex-disjoint copies of St3(d, k) inside Dv, which together with v give us a copy of St .

By the claim we may assume there are at most e/2 edges containing an expanding triple, so after deleting
them we are left with a subgraph G′ with at least e/2 � kn3 edges, with no expanding triples. Take
a vertex of maximum degree; it has degree at least e/n � kn2 and in its link graph no pair of vertices
belongs to more than 3kd2 edges since there is no expanding triple. So Lemma 5.3 implies the result.

The following result gives us our optimal unavoidable 4-graphs.

Theorem 5.7. In any 4-graph G on n vertices with e � kn3 edges, one can find t = min{k, d1/4}
vertex-disjoint copies of St4(d, d, k), where d = (n/k)1/3.

Proof. Set L2 = e
4td , L3 = e

4td2
and L4 = e

4td2k
. We partition V (G) into level sets according to their

degrees

A := {v | d(v) > L2} ,
B := {v | L3 < d(v) ≤ L2} ,
C := {v | L4 < d(v) ≤ L3} and

D := {v | d(v) ≤ L4} .

Let St := St4(d, d, k). A generalised star St in G is said to be well-behaved if its second layer vertices are
embedded among vertices with degree at most L2 (i.e. vertices in B ∪ C ∪ D), the third layer vertices
in vertices of degree at most L3 (i.e. vertices in C ∪ D), and the fourth layer vertices in vertices of
degree at most L4 (i.e. vertices in D). Let us consider a maximal collection of vertex-disjoint well-
behaved generalised stars St . If we found less than t stars then already used vertices touch at most
t ·
(
n
3

)
+ td ·L2 + td2 ·L3 + td2k ·L4 ≤ 7

8e edges. So there are at least e/8 edges disjoint from any previously
used edges and our task is to to show we can embed an additional well-behaved St using these edges.
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Handshaking lemma gives us:

|A| ≤ 4e/L2 = 16td,

|B| ≤ 4e/L3 = 16td2 and

|C| ≤ 4e/L4 = 16td2k.

This implies |A ∪B| ≤ 32td2 and |A ∪B ∪ C| ≤ 48td2k. Hence the total number of edges with at least 2

vertices in A, or at least 3 vertices in A ∪B, or all 4 vertices in A ∪B ∪ C is upper bounded by(
|A|
2

)(
n

2

)
+

(
|A ∪B|

3

)
n+

(
|A ∪B ∪ C|

4

)
≤ 26t2d2n2 + 210t3d6n + 219t4d8k4

≤ 26d5/2n2 + 210k3d6n + 219d9k4

≤ 26n3k + 210n3k + 219n3k ≤ 220kn3 ≤ e/16,

where we used t4 ≤ d and t ≤ k in the second inequality and n = kd3 in the third. In particular, there
are at least e/16 remaining edges (which do not touch used vertices) such that they have at least 1 vertex
in D, at least 2 vertices in C ∪D and at least 3 vertices in B ∪C ∪D. Furthermore, there exists a subset
F of these edges of size |F | ≥ (e/16)/35 � kn3 which all have the same number of vertices in each of
A,B,C and D, since there are4

(
4+3
3

)
= 35 different types of edges according to how many vertices they

have in each of the sets A,B,C and D. We distinguish several cases depending on how many vertices our
edges in F have in D.

Case (i). All edges in F have 4 vertices in D.

Any St we find in this case is well-behaved so we are done by Lemma 5.6.

Case (ii). All edges in F have exactly 3 vertices in D.

There is a vertex v in A ∪ B ∪ C of degree at least |F |
|A∪B∪C| �

kn3

td2k
= n2dk/t. Using Theorem 5.2

(with s := dk/t and h := d so that s ≥ k and ns = k2d4/t ≥ h2k2), we get at least d vertex-disjoint
copies of St3(d, k), since

s ≥ d,
√
sn

h
=
kd√
t
≥ d and

s1/3n2/3

hk
= (d4/t)1/3 ≥ d.

Together with v, this gives a desired well-behaved copy of St .

Case (iii). All edges in F have exactly 2 vertices in D.

There can be at most |A||B|
(
n
2

)
≤ 128t2n3/k < |F | edges in F with 1 vertex in A and 1 in B. Hence

our edges either have exactly 2 vertices in B and 2 in D, or at least 1 vertex in C.

Subcase (a). All edges in F have 2 vertices in B and 2 in D.
Given a vertex set S, a pair of vertices in S is called an S-S pair. Denote by P the set of B-B
pairs with at least |F |/|B|2 ≥ 3nkd2 pairs in their link graph. Since there are

(|B|
2

)
different

B-B pairs, ones outside of P belong to at most
(|B|

2

)
· |F |/|B|2 ≤ |F |/2 edges. Hence, the

remaining |F |/2 edges have their B-B pair belonging to P. Each B − B pair can extend into
an edge in at most

(|D|
2

)
many ways. Hence,

|P| ≥ |F |
2
/

(
|D|
2

)
≥ 16kn ≥ d|B|.

Therefore, P contains a star of size d. We embed vertex-disjoint stars Sk into the link graphs of
the leaves of our star in P, dealing with one leaf at a time and moving to the next one when we

4The number of non-negative integer solutions to x1 + x2 + x3 + x4 = 4.
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found d stars Sk inside its link. Unless we are done, we have used at most 2kd2 vertices which
can touch at most 2kd2 · n many D-D pairs within the current link graph. Thus we still have
at least nkd2 ≥ kn many D-D pairs in the link graph, disjoint from any already used vertices,
which means we can find another Sk, as desired.

Subcase (b). All edges have at least 1 vertex in C and exactly 2 vertices in D.
There is a vertex v ∈ A ∪ B ∪ C which appears in at least |F |

|A∪B∪C| �
kn3

td2k
= n3/(td2)

edges with the remaining vertices being one in C and two in D. By Lemma 5.4 (note that
|C| ≤ 16td2k = 16nt/d), the link graph of v contains d vertex-disjoint copies of St3(d, k) whose
leaves lie in D.

Case (iv). All edges in F have exactly 1 vertex in D.

Let T denote the collection of all triples in A ∪B ∪ C of codegree at least

|F |
|A ∪B ∪ C|3

≥ 3kn3

(td2k)3
=

3kd3

t3
≥ 3kd2.

Triples from A ∪B ∪ C outside T belong to at most
(|A∪B∪C|

3

)
· |F |
|A∪B∪C|3 ≤ |F |/2 edges, so at least

half of the edges in F contain a triple in T , and so |T | ≥ |F |/(2n)� kn2. As there are at most

|A| ·
(
|A ∪B ∪ C|

2

)
≤ 216t3d5k2 ≤ 216d6k2 = 216n2 ≤ |T |/2

triples with a vertex in A, we can remove them to obtain a collection T ′ of triples in B∪C such that
|T ′| � kn2. Now, if we find a well-behaved St3(d, d) within T ′ (meaning that the second and third
layer of vertices are embedded in B ∪C and C respectively) then we are done by greedily extending
it and choosing distinct vertices in D for 4-th layer vertices of St , which we can since each triple has
codegree at least 3kd2. The existence of such St3(d, d) is guaranteed by Lemma 5.5.

Finally, the optimal unavoidable 4-graphs at the very end of the range are of a very different flavour.

Theorem 5.8. Every n-vertex 4-graph with e ≥ n4−1/216 edges contains 1
24(e/n)1/4 vertex-disjoint copies

of the complete 4-partite 4-graph K4(s, s, s, t), where s = 1
12

(
logn

log(n4/e)

)1/3
and t = n1/4.

As the proof is an easy consequence of the well-known Kövári-Sós-Turán theorem and is very similar to
its 3-uniform analogue ([8, Theorem 8]), we defer it to the appendix.

5.3 Lower bounds

Let us now deduce the lower bound of the last regime of the unavoidability problem, i.e. we show the
lower bound in Theorem 1.1 (iii). Note first that if e ≤ n4−ε for any ε > 0 we know e1/4 logn

log((n4)/e)
≈ e1/4.

In particular, for n3 � e ≤ n4−1/216, we can use Theorem 5.7 with k & e/n3, to conclude there is an
(n, e)-unavoidable 4-graph with

min(k, (n/k)1/12) · (n/k)2/3k = min(n2/3k4/3, n3/4k1/4) & min(e4/3/n10/3, e1/4)

edges, showing the desired bound.

Similarly for n4−1/216 ≤ e� n4, Theorem 5.8 provides us with an (n, e)-unavoidable graph with

& (e/n)1/4
log n

log(n4/e)
n1/4 &

e1/4 log n

log(
(
n
4

)
/e)

edges, as desired.
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5.4 Upper bounds

The results of the previous sections complete the picture in terms of lower bounds on un4(n, e). Let us now
turn to the upper bounds. They turn out to be much simpler than in the previous case, largely thanks to
the following easy counting lemma from [8].

Lemma 5.9. If an r-graph H on p vertices with q edges is (n, e)-unavoidable then

q <
p log n

log
((
n
r

)
/e
) .

The following result, together with monotonicity of un4(n, e) establishes the upper bounds for Theorem 1.1
(iii) and completes its proof.

Theorem 5.10.

(i) For n3 � e� n40/13 we have un4(n, e) . e4/3/n10/3.

(ii) For n40/13 � e ≤
(
n
4

)
we have un4(n, e) .

e1/4 logn

log((n4)/e)
.

Proof of Theorem 5.10. (i) Let H be an (n, e)-unavoidable graph. Let t = 3(e/n)1/3. Take n/t disjoint
copies of a 4-uniform clique on t vertices. In total this gives us n

t

(
t
4

)
> e edges so this graph must

contain H as a subgraph. In particular, every connected component of H has size at most t. Now take
another graph with a set V1 of 50e/n3 ≤ n/2 vertices and a set V2 of n/2 vertices and we pick all edges
having one vertex in V1 and three in V2; this graph has more than e edges, so it must contain H as a
subgraph. This implies H can have at most 50e/n3 connected components. In turn this implies H has
at most 50te/n3 = 150e4/3/n10/3 vertices. Now Lemma 5.9 implies H has at most 13

12 |V (H)| edges, which
completes the proof.
(ii) Let H be an (n, e)-unavoidable graph. Take a 4-uniform clique on m = 3e1/4 vertices; it has

(
m
4

)
> e

edges so must contain H, hence H has at most m vertices. The claimed upper bound again follows from
Lemma 5.9.

6 Concluding remarks and open problems

In this paper we resolve a question of Chung and Erdős which asks to determine the order of magnitude
of un4(n, e) defined as the maximum number of edges in a 4-graph G which is contained in every 4-graph
on n vertices and e �

(
n
4

)
edges. The most immediate open question is to answer their question for any

uniformity.

Question 6.1 (Chung and Erdős, 1983). What is the order of magnitude of unr(n, e) for any r?

From our result the answer is now known for r ≤ 4 and e �
(
n
4

)
. In addition, our methods and certain

further partial results give some indication about how the answer should behave for larger uniformities as
well. For example, it seems likely that in general there are

⌈
r
2

⌉
+ 1 different regimes. The first one, when

e� nb
r
2c always has an easy answer of unr(n, e) = 1 and the following regimes are ni � e� ni+1 where⌊

r
2

⌋
≤ i ≤ r−1. In each regime (with the exception of i = (r−1)/2 and i = r−1) there are two competing

bounds, which arise from the fact there are two sunflowers Sf r(t, 2) with ex(n,Sf r(t, 2)) ≈ ni. Our answer
in the second regime for the 4-uniform case turned out to be a bit surprising and is in fact in-between the
two natural guesses, so we are not willing to conjecture the correct value of the turning point for general
uniformity. In the last regime, i = r − 1, the upper bound given by Theorem 5.10 generalises easily and
seems to give the correct answer for all uniformities (as long as e� nr).
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Conjecture 6.2. For any r ≥ 2 and ε > 0, provided nr−1 � e� nr−ε we have

unr(n, e) ≈ min(e
r

r−1 /nr−1+
1

r−1 , e
1
r ).

Here, even the optimal unavoidable r-graphs seem to be clear, namely they should consist of an appropriate
number of copies of Str((n/k)1/(r−1), . . . , (n/k)1/(r−1), k), however bounding their Turán numbers seems
to be highly non-trivial. The assumption e� nr−ε was made since it is not hard to generalise Theorem 5.8
(we do so in the Appendix) and hence determine unr(n, e) for all nr−ε � e� nr for some ε > 0.

The main stumbling block for extending our methods to higher uniformities is the fact that Turán numbers
of sunflowers ex(n,Sf r(t, k)) are not very well understood when r ≥ 5 and k is allowed to depend on n,
as pointed out by Chung and Erdős in [8]. The main reason being that these sunflowers represent main
building blocks for all our examples, across most of the range. On this front, the appropriate generalisation
of Theorem 1.2 seems to be as follows.

Conjecture 6.3. For every fixed r ≥ 5 and t < r one has ex(n,Sf r(t, k)) ≈ kmin{t+1,r−t}nmax{r−t−1,t}.

This would generalise a result of Frankl and Füredi [22] and Füredi [29] (who solve it when k is a constant)
and the question may be attributed to Chung and Erdős. One can generalise our constructions from
Section 3 to show the lower bound part, and some methods for upper bounds also generalise. We can
prove this conjecture for several more uniformities, although even in the case r = 5 we needed additional
ideas.

Since generalised stars seem to be optimal unavoidable graphs, as long as e � nr−1, (at which point
their unions take over) the following seems to be the key problem one needs to resolve in order to answer
Question 6.1.

Question 6.4. Let r be fixed. Determine the order of magnitude of ex(n,Str(d1, . . . , dr−1)), where di’s
are allowed to depend on n.

One can read out the answer for r = 3 from Theorem 5.1 and we believe our methods suffice to also solve
it for r = 4. Yet for higher uniformities even the case in which we keep the di’s fixed, which is yet another
generalisation of the result of Frankl and Füredi [22] and Füredi [29] on Turán numbers of sunflowers with
fixed uniformity and number of petals, seems potentially interesting.

Both Conjecture 6.2 and Question 6.4 are examples of an interesting general question. Turán numbers of
both graphs and hypergraphs are well-studied, but in most cases one is only interested in Turán numbers of
a graph of fixed size. For many classical examples one can ask what happens if the fixed size restriction is
removed. This can be very useful in a number of situations, perhaps the most ubiquitous being the Kövári-
Sós-Turán theorem [35] which is often used to find complete bipartite graphs of order even comparable to
that of the underlying graph. For some additional examples see [1, 13, 28]. It definitely seems there is
plenty of potential for interesting future work in this direction.

So far we have avoided discussing the assumption e� n4 in Theorem 1.1, mostly following in line of Chung
and Erdős. In fact we can replace this condition in Theorem 1.1 with e ≤

(
n
4

)
− n1+c for any c > 0 (it

requires choosing s and t slightly differently in Theorem 5.8). The problem seems to change significantly
at this point and attains a very different flavour. Even the graph case, which was raised by Chung and
Erdős in 1983 has only recently been resolved in [3] and it suggests that around this point the optimal
extremal examples seem to become (pseudo)random graphs in place of the complete r-partite graphs and
the answer changes. Given that even the graph case turned out to be somewhat involved and relies on
completely different ideas, we leave this open for future research.

Question 6.5. For r ≥ 3 determine the order of magnitude of unr(n, e) when e = (1− o(1))
(
n
r

)
.
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Another natural follow-up question is to determine how optimal (up to a constant factor) (n, e)-unavoidable
r-graphs look like. It is entirely possible to answer this question without answering Question 6.1, since
one can potentially force the structure of an optimal unavoidable graph similarly as in Theorem 4.2 (as
was demonstrated by Chung and Erdős in the 3-uniform case). At the very least we believe that optimal
unavoidable graphs should be (close to) generalised stars as long as e is not too close to

(
n
4

)
. Towards the

end of the range the situation becomes blurry, as at least for part of the range, both copies of complete
r-partite graphs and generalised stars are simultaneously optimal.
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A Large complete r-partite subgraphs of dense r-graphs

In this section we provide a proof of (a generalisation of) Theorem 5.8.

The proof is based on Kövári-Sós-Turán theorem [35], for hypergraphs. Since the sizes of the r-partite
graphs we want to find grow with the number of vertices we need to go through the standard proof with
care. The starting point is the graph case.
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Theorem A.1 (Kövári, Sós and Turán [35]). If G = (A∪B,E) is a bipartite graph and for some integers
s and t we have

t

(
|A|
s

)
< |B|

(
|E|/|B|

s

)
then G contains a complete bipartite graph Ks,t with the vertex class of size s embedded in A.

We will apply the following in the not so dense case.

Lemma A.2. Let n, r and s be positive integers with r ≥ 2 and n ≥ 2(4s)
r−1. Let V1, . . . , Vr be sets of size

n and M be a subset of V1 × · · · × Vr with |M | ≥ nr−1/(4s)r−1 . Then there exists A1 × · · · ×Ar ⊂M such
that |Ai| = s for every 1 ≤ i < r and |Ar| =

√
n.

Proof. We prove Lemma A.2 by induction on r. The base case r = 2 follows from Theorem A.1 since

√
n

(
n

s

)
< n

(
n1−1/(4s)

s

)
.

Here we used the fact that
(
n
s

)
/
(
m
s

)
≤ ( n

m−s)
s ≤ (2nm )s provided m ≥ 2s.

Assume that the statement holds for r−1. Consider the bipartite graph G = (A∪B,M) in which A = V1
and B = V2 × · · · × Vr. Since

nr−1−1/(4s)
r−2

(
n

s

)
< nr−1

(
n1−1/(4s)

r−1

s

)
for n ≥ 2(4s)

r−1 , there exists A1 ×M ′ ⊂M with |A1| = s and |M ′| = nr−1−1/(4s)
r−2 . By appealing to the

induction hypothesis, we conclude M ′ contains A2 × . . . × Ar such that |Ai| = s for every 2 ≤ i ≤ r − 1

and |Ar| =
√
n. This completes the proof of Lemma A.2.

We now show a similar bound for a number of copies of r-partite graphs.

Theorem A.3. Every n-vertex r-graph G with e ≥ nr−1/6
r−1 edges contains 1

6r (e/n)1/r vertex-disjoint

copies of the complete r-partite r-graph Kr(s, . . . , s, t), where s = 1
12

(
logn

log(nr/e)

)1/(r−1)
and t = n1/r.

Proof. A vertex of G is called expanding if its degree is at least re1−1/r. By the handshaking lemma,
there are at most e1/r expanding vertices. Let k denote the maximum number of vertex-disjoint copies
of Kr(s, . . . , s, t) that can be embedded in G, whereas in each copy the r-th vertex class consists of t
non-expanding vertices. Suppose to the contrary that k < (e/n)1/r.

The number of edges containing some used vertices is at most k(r−1)s ·
(
n
r−1
)

+kt ·re1−1/r ≤ e/3 assuming

e ≥ nr−1/r. Moreover, the number of edges within the set of expanding vertices is at most
(
e1/r

r

)
≤ e/6.

Therefore, by removing those edges we obtain a subhypergraph H with e/2 edges such that any edge
of H contains at least one non-expanding vertices, and the edges of H don’t touch used vertices. Let
V1, . . . , Vr−1 be r − 1 copies of V (G), and Vr be a copy of the set of non-expanding vertices. Denote
by M the set of r-tuples (v1, . . . , vr) in V1 × · · · × Vr such that {v1, . . . , vr} is an edge of H. Clearly,
|M | ≥ |E(H)| ≥ e/2 ≥ nr−1/(4s)

r−1 .5 Lemma A.2 implies that there exists a set A1 × · · · × Ar ⊂ M

satisfying |A1| = . . . = |Ar−1| = s and |Ar| =
√
n ≥ t. The sets A1, . . . , Ar are disjoint, for the edges of

H consist of distinct vertices. Hence H contains a copy of Kr(s, . . . , s, t) in which the r-th vertex class is
embedded in the set of non-expanding vertices, a contradiction to the maximality of k.

5Notice that e/2 ≥ nr−1/(4s)r−1

provided s ≤ 1
6

(
logn

log(nr/e)

)1/(r−1)

, while n ≥ 2(4s)
r−1

for s ≤ 1
4
(logn)1/(r−1). Furthermore,

for e ≥ n1−1/6r−1

we have 1
6

(
logn

log(nr/e)

)1/(r−1)

≥ 1.
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