
RATIONAL POINTS ON VARIETIES AND THE BRAUER-MANIN
OBSTRUCTION

BIANCA VIRAY

Problem Sessions

TAs: Thomas Carr and Carlos Rivera

The problems are listed under the lecture that is most relevant, but you should feel free
to attempt the problems in whichever problem session you like (although you may have an
easier time if you try the problem after that lecture). All of the problems are likely too much
to complete in the given problem sessions. You should work on the parts that interest you
the most, and use parts freely in later problems.

Included with the problems are some background that did not make it into the lectures.
Some of the statements are given for your information and I do not expect you to prove
them. The parts of the problems that I think are reasonable in scope explicitly say “Prove”,
“Show”, “Determine”, etc.

All of the computational parts of the problems are feasible to do by hand (although some
may be involved). However, you may prefer to do them using computer algebra software,
particularly if you want to practice some of what you learned in Drew Sutherland’s lectures.
Computing by hand and computing using software are both valuable skills and you should
choose whichever appeals to you the most.

1. Lecture 1: Introduction to the Brauer-Manin obstruction

Recall that for any field k, Pn(k) := {[a0 : · · · : an] : ai ∈ k, at least one ai 6= 0} / ∼ where
[a0 : · · · : an] ∼ [λa0 : · · · : λan] for any λ ∈ k×.

(1) Find a rational point on

X := V (x3 + 2y3 + 10z3) ⊂ P2.

(2) Show that
X := V (x2 + y2 + 7z2) ⊂ P2

has no Q7-points. Conclude that X(Q) = ∅.

(3) Note: For this problem, the following specific consequence of Hensel’s Lemma will
be useful. If p be a prime and u ∈ Z×p , then

u ∈ Z×2p ⇔

{
u mod p ∈ F×2p if p 6= 2

u ≡ 1 (mod 8) if p = 2
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(a) Let p be an odd prime and let a, b, c ∈ Z − pZ. Show that {ax2 : x ∈ Fp} and
{c− by2 : y ∈ Fp} both have cardinality p+1

2
and therefore that the sets contain

a common value. Use this to show that

X := V (ax2 + by2 + cz2) ⊂ P2

has a Qp-point.

(b) Determine whether X := V (5x2 + 7y2 − 3z2) ⊂ P2 has AQ-points.

(c) Let a, b, c ∈ Z be squarefree, pairwise relatively prime integers. Prove that
X := V (ax2 + by2 + cz2) has AQ-points if and only if a, b, c are not all the same
sign and ax2 + by2 + cz2 has solutions in Z/8abcZ such that for every p|8abc, at
least two of the coordinates are nonzero modulo p.

Note: More generally, for any geometrically integral variety X over k, X(kv) 6= ∅ for
all but finitely many places v, and one can algorithmically determine a finite set of
places S such that X(kv) 6= ∅ for all v 6∈ S. (For X as in part (c), the exercise implies
that S = {2,∞} ∪ {p : p|abc}.) See [Poo17, Section 7.7.2] for more details.

(4) Let F be a field of characteristic different from 2 and let a, b ∈ F×. Complete one of
the following two problems.
(a) Let Aa,b be the 4-dimensional F -algebra with basis 1, i, j, ij defined by the fol-

lowing multiplication rules

i2 = a, j2 = b, ji = −ij.

Prove that Aa,b ∼= M2(F ) if and only if there is some x, y, z ∈ F , not all zero,
such that ax2 + by2 = z2.

(b) Let Ca,b be the conic ax2 + by2 = z2. Prove that Ca,b ∼= P1
F if and only if

Ca,b(F ) 6= ∅.
Conclude that (a, b) := [Aa,b] = [Ca,b] ∈ BrF is trivial if and only if Ca,b(F ) 6= ∅, and

that Ca,b(F ) 6= ∅ if and only if a ∈ N(k(
√
b)×). (By symmetry this is equivalent to

b ∈ N(k(
√
a)×))

Note: One can also show that Aa,b ⊕k Aa,c ∼= M2(Aa,bc), (see [GS17, Lemma 1.5.2])
which implies that in BrF, we have (a, b)(a, c) = (a, bc).

(5) Let X be a smooth projective geometrically integral variety over a number field k
and let π denote the structure morphism π : X → Spec k.
(a) Let α0 ∈ Br k. Show that X(Ak)

π∗α0 = X(Ak).

(b) Let α, β ∈ BrX. Show that

X(Ak)
α ∩X(Ak)

β =
⋂

γ∈〈α,β〉

X(Ak)
γ
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(6) Let X ⊂ P4 be given by the vanishing of the following two quadrics

st− x2 + 5y2, (s+ t)(s+ 2t)− x2 + 5z2.

This variety was first studied by Birch and Swinnerton-Dyer [BSD75].
(a) Note that an intersection of quadrics in P3 is a genus 1 curve, and any smooth

genus 1 curve over a finite field F has an F-point. Prove that X∩V (z) is smooth
modulo p for all p 6= 2, 5. Use this to prove that X(Qp) 6= ∅ for all p 6= 2, 5.

(b) Building on the previous part, show that X(AQ) 6= ∅.

(c) Using (4), show that (5, s
t
) and (5, s+t

s+2t
) are trivial in Brk(X).

(d) Using the previous part and the remark at the end of (4) show that, in Brk(X)

A :=

(
5,
s+ t

s

)
=

(
5,
s+ 2t

s

)
=

(
5,
s+ t

t

)
=

(
5,
s+ 2t

t

)
.

Additionally show that for every point P ∈ X − V (s, t), there is an open set
P ∈ UP ⊂ X − V (s, t) such that at least one of s+t

s
, s+t

t
, s+2t

s
, s+2t

t
is regular and

invertible on U .
Note: Since V (s, t) ⊂ X is codimension 2 in X, this together with the purity
theorem (see [Poo17, Thm. 6.8.3]) allows us to conclude that A ∈ BrX.

(e) Show that X(AQ)A = ∅ and hence X(AQ)Br = ∅. (Sketch: First show that for
all p 6= 5 and Pp ∈ X(Qp), at least one of s+t

s
, s+t

t
, s+2t

s
, s+2t

t
is a p-adic unit at

Pp. Then, noting that Qp(
√

5)/Qp is unramified for p 6= 5, use Problem (4) to
deduce that A(Pp) = 0 ∈ BrQp. Lastly, show that A(P5) 6= 0 ∈ BrQ5 for all
P5 ∈ X(Q5.)

2. Lecture 2: Elements that capture a Brauer-Manin obstruction

Problems (2) and (3) require some familiarity with divisors in algebraic geometry. Feel
free to read through the exercises and to try only the parts that you think you have the
background for.

(1) Let X is a smooth projective geometrically integral variety over a number field k.
Then X(Ak) =

∏
vX(kv) and X(Ak) is a compact set (for the adelic topology, which

in this case is the product topology), and, given any α ∈ BrX, evα : X(kv) → Q/Z
is locally constant. (See [Poo17, Sections 2.6 and 8.2.4] for more details).

(a) Show that evα : X(Ak)→ Q/Z is locally constant.

(b) Let α ∈ BrX. Show that X(Ak)
α is open and closed in the adelic topology.

Conclude that X(Ak)
Br is closed.

(c) Assume that X(Ak)
Br = ∅. Show that there exists a finite set B ⊂ BrX such

that X(Ak)
B = ∅.
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(2) Let C = V (ax2+by2−c2) be a smooth projective conic over a field F of characteristic
0 such that C(F ) = ∅. The exact sequence of low degree terms from the Hochschild-
Serre spectral sequence (c.f. [Poo17, Section 6.7]) begins

0→ PicC → (PicC)GF → BrF → BrC → H1(GF ,PicC) (2.1)

(a) Show that PicC ∼= Z with the trivial Galois action, and that

PicC ⊂ (PicC)GF ' Z

corresponds to the subgroup 2Z, i.e., PicC is exactly the subgroup of PicC
consisting of divisors of even degree.

(b) Use the previous exercise together with the exact sequence (2.1) to conclude that
we have an exact sequence

0→ Z/2Z→ BrF → BrC → 0

(c) Recall from Problem (4) in Lecture 1 that C can be viewed as giving a class in
BrF . Use Problem (4) to show that [C] = 0 in Brk(C) and [C] 6= 0 in BrF .
Conclude that C generates the kernel of the map BrF → BrC, and thus

BrF

〈[C]〉
∼−→ BrC.

(3) Let p(t) ∈ k[t] be a separable degree 4 polynomial with roots α1, α2, α3, α4 ∈ k
×

.
Let a ∈ k× be an element that is not a square in the splitting field of p(t). Let
X → P1 be a relatively minimal smooth proper model of the affine surface y2 −
az2 = p(t)x2 ∈ P2 × A1, where the map to P1 agrees with the projection onto the
t-coordinate; X is a Châtelet surface. (One can check that under these assumptions,
π−1(∞) ∼= V (y2 − az2 = cx2, where c is the leading coefficient of p(t).)

Remark 2.1. The arithmetic of Châtelet surfaces is well-understood, due to landmark
work of Colliot-Thélène, Sansuc, and Swinnerton-Dyer [CTSSD87b,CTSSD87a]. They
proved that for any Châtelet surface X over a number field k, X(k) is dense (for the
adelic topology) in the Brauer-Manin set X(Ak)

Br. In addition, work of Coray and
Colliot-Thélène implies that for any field F , X(F ) 6= ∅ if and only if there is some
extension L/F of odd degree such that X(L) 6= ∅ [CTC79, Thm. C].

In this problem you will compute H1(Gk,PicX)[2], under the assumption that
X(Ak) 6= ∅. For a Châtelet surface, H1(Gk,PicX)[2] is isomorphic to BrX/Br0X.
With the approach I have outlined, it is enough to know that X is a smooth proper
compactification of the surface y2 − az2 = p(t)x2 ∈ P2 × A1.

Note that restriction of divisors to the generic fiber of π, Xη, gives a Galois-
equivariant surjective map PicX → PicXη whose kernel, which we denote N , is
generated by fibral curves, i.e., curves on X that map to points under π. Additionally
note that since a /∈ k×2, the conic Xη has no k(η)-point. However, by Tsen’s theorem,
Xη does have a k(ηk)-point.
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(a) Taking cohomology of the short exact sequence 0→ N → PicX → PicXη → 0,
prove that we have an exact sequence

(PicX)Gk → (PicXη)
Gk → H1(Gk, N)→ H1(Gk,PicX)→ H1(Gk,PicXη).

Since X(Ak) 6= ∅, (PicX)Gk ' PicX[Poo17, Ex. 6.10]. Using this and (2),
conclude that we have a short exact sequence

0→ Z/2Z→ H1(Gk, N)→ H1(Gk,PicX)→ 0.

(b) Consider the fibral curves F : V (t), and F±i : V (y ±
√
az, t− αi), for i = 1, . . . , 4.

Show that

N ' ZF ⊕
⊕4

i=1 F
+
i ⊕

⊕
i=14 F

−
i

〈F−i − (F − F+
i ) : i = 1, . . . , 4〉

' ZF ⊕
4⊕
i=1

F+
i

(c) By the assumption on a, observe that the absolute Galois group of k, denoted Gk,
acts on the set of curves {F, F±i } through a subgroup of Gal(k(

√
a)/k)×Aut(αi).

Determine how Gal(k(
√
a)/k)× Aut(αi) acts on the set of curves {F, F±i }.

(d) Using the previous parts of the problem, compute that for every f(t)|p(t) of even
degree ∑

i,f(αi)=0

F+
i ∈ (N/2N)Gk .

(e) Use the previous parts of the problem to compute that

H1(Gk,PicX) '


{0} if p(t) has an irreducible factor of degree at least 3

Z/2Z if p(t) has an irreducible quadratic factor

(Z/2Z)2 if αi ∈ k× for all i

Note: Using an argument similar to that in Problem 6(6d), one can show that if
f(x) is a quadratic factor of p(x), then (a, f(x)) = (a, p(x)/f(x)) is an element
of BrX. Additionally, it is true that (a, f(x)) and

∑
i,f(αi)=0 F

+
i ∈ (N/2N)Gk

have the same image in H1(Gk,PicX).

3. Lecture 3: The Brauer-Manin obstruction over extensions

(1) Let X be a smooth projective variety over a number field k that is everywhere locally
soluble, and let α ∈ BrX. For any extension F/k, let αF denote the image of α
under the map BrX → BrXF .

For any (Pv) ∈ X(Ak) and any finite extension L/k, exhibit a point (Qw) ∈ X(AL)
such that ϕαL

((Qw)) = [L : k]ϕα((Pv)). (Recall that ϕα is what we used to denote
the Brauer-Manin pairing.) This gives a proof of [CV, Lemma 2.1(2)] mentioned in
today’s lecture.
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(2) In this problem we will show that the Châtelet surface given by

y2 − 5z2 =
3

5

(
5t4 + 7t2 + 1

)
fails to have points exactly over the extensions

{L/Q finite : ∃w|3 such that [Lw : Q3] ≡ 1 mod 2} ∪ {L/Q(
√

29) odd degree}.

This example was constructed by Sam Roven; he proved that X obtains a Brauer-
Manin obstruction to the Hasse principle over Q(

√
29) [Rov, Thm. 1.2].

(a) Show that X(Qp) 6= ∅ for all p 6= 3. (Hint : Try looking at fibers of π and then
applying Problem 3 from Lecture 1)

(b) Show that X(Q3) = ∅ and that X(F ) 6= ∅ for all extensions F/Q3 of even degree.
Conclude (using the previous part as well) that

{L/Q finite : X(AL) = ∅} = {L/Q finite : ∃w|3 such that [Lw : Q3] ≡ 1 mod 2} .

(c) Prove that 5t4 + 7t2 + 1 is irreducible over Q. Then, using Problem 3 from
Lecture 2, compute that BrXL = Br0XL for all L that are linearly disjoint from
the splitting field of 5t4 + 7t2 + 1. Conclude, using Remark 2.1, that for such L,
X(AL) 6= ∅ ⇔ X(L) 6= ∅.

(d) One can compute that the splitting field of 5t4 + 7t2 + 1, which we will denote
K, is a D4 extension. (Bonus: Verify this using a computer algebra software.)
Use this to prove that for every subfield F ⊂ K, exactly one of the following
things occurs:
• 5t4 + 7t2 + 1 remains irreducible over F ,

• 5t4 + 7t2 + 1 obtains a root over F ,

• F = Q(
√

29) and 5t4 + 7t2 + 1 factors as two irreducible quadratic poly-
nomials.

(e) Show that if 5t4 + 7t2 + 1 has a root over F , then X(F ) 6= ∅. (Hint : Consider
the fiber of π above the root.)

(f) By [Rov, Theorem 1.2], X(AQ(
√
29)) 6= ∅ and X(AQ(

√
29))

Br = ∅. Using this and

Remark 2.1, prove that if L/Q(
√

29) is an extension of odd degree X(L) = ∅.
Additionally, using Problem (1) from Lecture 3, prove that if L/Q(

√
29) is an

extension of even degree then X(AL)Br 6= ∅ and hence X(L) 6= ∅.

(g) Assemble all of the previous parts to prove the desired statement.
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