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ABSTRACT
We investigate the approximability of the following optimization

problem. The input is an 𝑛 × 𝑛 matrix 𝐴 = (𝐴𝑖 𝑗 ) with real entries

and an origin-symmetric convex body 𝐾 ⊆ R𝑛 that is given by a

membership oracle. The task is to compute (or approximate) the

maximum of the quadratic form

∑𝑛
𝑖=1

∑𝑛
𝑗=1𝐴𝑖 𝑗𝑥𝑖𝑥 𝑗 = ⟨𝑥,𝐴𝑥⟩ as 𝑥

ranges over 𝐾 . This is a rich and expressive family of optimization

problems; for different choices of matrices 𝐴 and convex bodies 𝐾

it includes a diverse range of optimization problems like max-cut,

Grothendieck/non-commutative Grothendieck inequalities, small

set expansion and more. While the literature studied these spe-

cial cases using case-specific reasoning, here we develop a general

methodology for treatment of the approximability and inapprox-

imability aspects of these questions.

The underlying geometry of 𝐾 plays a critical role; we show un-

der commonly used complexity assumptions that polytime constant-

approximability necessitates that 𝐾 has type-2 constant that grows

slowly with 𝑛. However, we show that even when the type-2 con-

stant is bounded, this problem sometimes exhibits strong hardness

of approximation. Thus, even within the realm of type-2 bodies,

the approximability landscape is nuanced and subtle.

However, the link that we establish between optimization and

geometry of Banach spaces allows us to devise a generic algorithmic

approach to the above problem. We associate to each convex body

a new (higher dimensional) auxiliary set that is not convex, but is

approximately convexwhen𝐾 has a bounded type-2 constant. If our

auxiliary set has an approximate separation oracle, then we design

an approximation algorithm for the original quadratic optimization

problem, using an approximate version of the ellipsoid method.

Even though our hardness result implies that such an oracle does

not exist in general, this new question can be solved in specific

cases of interest by implementing a range of classical tools from

functional analysis, most notably the deep factorization theory of

linear operators.

Beyond encompassing the scenarios in the literature for which

constant-factor approximation algorithms were found, our generic

framework implies that that for convex sets with bounded type-2
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constant, constant factor approximability is preserved under the fol-

lowing basic operations: (a) Subspaces, (b) Quotients, (c) Minkowski

Sums, (d) Complex Interpolation. This yields a rich family of new

examples where constant factor approximations are possible, which

were beyond the reach of previous methods. We also show (under

commonly used complexity assumptions) that for symmetric norms

and unitarily invariant matrix norms the type-2 constant nearly

characterizes the approximability of quadratic maximization.
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1 INTRODUCTION
Suppose that 𝑛 ∈ N and that 𝐾 ⊆ R𝑛 is a convex body (i.e., 𝐾 is

convex, closed, bounded and has nonempty interior) that is origin-

symmetric (i.e., 𝑥 ∈ 𝐾 if and only if −𝑥 ∈ 𝐾). We will assume

throughout that 𝐾 is given by a membership oracle, so that the

efficiency of the ensuing algorithms is measured in terms of the

dependence on 𝑛 and the number of oracle calls.

In this article, we will investigate the approximability of the

following optimization problem, special cases of which have been

extensively studied in the literature (we will discuss that back-

ground after first presenting the problem and our main algorithm).

The input is an 𝑛 × 𝑛 matrix with real entries 𝐴 = (𝐴𝑖 𝑗 ) ∈ 𝑀𝑛 (R),
and the task is to evaluate the quantity

Q
max

𝐾
(𝐴) def

= max

𝑥 ∈𝐾

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝐴𝑖 𝑗𝑥𝑖𝑥 𝑗 = max

𝑥 ∈𝐾
⟨𝑥 ,𝐴𝑥⟩ . (1)

In (1) and throughout this text, ⟨· , ·⟩ : R𝑛 ×R𝑛 → R is the standard

scalar product on R𝑛 , namely ⟨𝑥 ,𝑦⟩ =
∑𝑛
𝑖=1 𝑥𝑖𝑦𝑖 for every two
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vectors 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ R𝑛 . Also, wewill adhere
throughout to the common convention that even though within any

in-line discussion the elements of R𝑛 are written as row vectors,

for the purpose of any linear-algebraic consideration we consider

them as column vectors, i.e., members of the 𝑛 × 1 matrix space

𝑀𝑛×1 (R).
The literature also considers a bilinear variant of (1) in which

one is given𝑚,𝑛 ∈ N, two convex origin-symmetric bodies 𝐾 ⊆ R𝑛
and 𝐿 ⊆ R𝑚 , and an 𝑛 ×𝑚 matrix 𝐵 = (𝐵𝑖 𝑗 ) ∈ 𝑀𝑛×𝑚 (R), and the

task is to evaluate (or estimate) the quantity

Op
max

𝐾,𝐿 (𝐵)
def

= max

𝑥 ∈𝐾
𝑦∈𝐿

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝐵𝑖 𝑗𝑥𝑖𝑦 𝑗 = max

𝑥 ∈𝐾
𝑦∈𝐿

⟨𝑥 , 𝐵𝑦⟩

=
1

2

max

𝑧∈𝐾×𝐿

〈
𝑧 ,

(
0 𝐵
𝐵∗

0

)
𝑧

〉
, (2)

where 𝐵∗ = (𝐵 𝑗𝑖 ) ∈ 𝑀𝑚×𝑛 (R) is the transpose of 𝐵. The final

equality in (2) shows that (2) is a special case of (1), which is why

we will mostly focus on (1). But, it is beneficial to consider the

bilinear variant separately because sometimes it exhibits better

approximation properties than what is possible in the quadratic

setting (a notable example is Grothendieck’s inequality; see below).

Another important special case of (1) which the literature some-

times treats separately is when the input matrix 𝐴 is symmetric

and positive semidefinite (PSD). In that case

Q
max

𝐾 (𝐴) = max

𝑥 ∈𝐾
∥𝐴

1

2 𝑥 ∥2
ℓ𝑛
2

= max

𝑥 ∈𝐾
𝑦∈Ball(ℓ𝑛

2
)

〈
𝐴

1

2 𝑥,𝑦
〉
2

=

(
Op

max

𝐾,Ball(ℓ𝑛
2
)
(
𝐴

1

2

) )2
,

where ∥ · ∥ℓ𝑛
2

is the standard Euclidean norm on R𝑛 and Ball(ℓ𝑛
2
) =

{𝑥 ∈ R𝑛 : 𝑥2
1
+ . . . + 𝑥2𝑛 ⩽ 1} is the corresponding Euclidean

ball of radius 1. Thus, the PSD case of (1) is a special case of the

aforementioned bilinear variant of (1), which explains why it has

better properties (another reason is that in this case 𝐿 is a Euclidean

ball rather than a more general convex body).

The above framework is a rich and expressive family of opti-

mization problems which contains many discrete and continuous

optimization problems as special cases (corresponding to choices

of matrices and convex bodies) that occur in several areas, includ-

ing combinatorial optimization, computational complexity, graph

theory, quantum information theory, statistical physics, machine

learning, game theory and functional analysis. In fact, we suspect

that many readers have already spotted familiar questions as such

special cases, but in order to first discuss the contribution of the

present work, we will defer specifying a variety of such examples

to Section 4.5.

While the literature contains investigations of such special cases

using case-specific reasoning, here we develop a general method-

ology for treatment of the approximability and inapproximability

aspects of these questions. We devise an overarching method for

obtaining constant factor approximation algorithms that includes

the prior cases in the literature for which this was achieved, as well

as many more new cases.

The precursor (and inspiration) of the present article is the man-

uscript [51] that has not yet been published but was circulated

widely over the years and will be published soon (it is available on

request). The goal of [51] was to broach the same issue of finding

an algorithmic approach to the optimization problem (1) which

treats a class of convex bodies 𝐾 that is more general than the

special cases that have been previously studied, as an extension of

the study of the ball of ℓ𝑛𝑝 that was conducted in [40] (see [32] for

the corresponding hardness result under a weaker hypothesis than

that of [40]). The success of [51] was partial, as it pertains only to

a certain subclass of convex bodies 𝐾 that satisfies the following

symmetry condition.

∀(𝑥1, . . . , 𝑥𝑛) ∈ R𝑛, (𝑥1, . . . , 𝑥𝑛) ∈ 𝐾 ⇐⇒ (|𝑥1 |, . . . , |𝑥𝑛 |) ∈ 𝐾.
(3)

When (3) holds, there is an obvious vector relaxation of (1) that

is given by the maximization

max

𝑥1,...,𝑥𝑛 ∈R𝑛
( ∥𝑥1 ∥ℓ𝑛

2

,..., ∥𝑥𝑛 ∥ℓ𝑛
2

) ∈𝐾

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝐴𝑖 𝑗
〈
𝑥𝑖 , 𝑥 𝑗

〉
. (4)

The utility of such a relaxation was investigated in [40, 51, 52],

where further geometric assumptions on 𝐾 were isolated that guar-

antee that (4) is a convex program that has bounded integrality gap

(see below). Note that (3) probes only the intersection 𝐾 ∩ [0,∞)𝑛
of 𝐾 with the positive orthant, which is why it is natural to study

it only when (4) holds; otherwise 𝐾 need not be determined by the

region of space to which the relaxation (4) is sensitive.

This was the starting point of our work. Namely, for convex

bodies that do not satisfy the symmetry assumption (3), there is

no longer an obvious vector relaxation. Note that (3) is a stringent

assumption that fails for many norms of interest; e.g. for unit balls of

matrix norms such as the Schatten–von Neumann trace classes (see

below) where the norm of the entry-wise absolute value ( |𝐴𝑖 𝑗 |) of
a given matrix𝐴 = (𝐴𝑖 𝑗 ) ∈ 𝑀𝑛 (R) can be drastically different from

the norm of 𝐴. To overcome this conceptual obstacle, we devise an

entirely different algorithmic methodology. Before proceeding, we

set some notation and record some basic definitions.

2 NOTATION AND PRELIMINARIES
2.1 Normed Spaces
It is most natural to present our approach in the (equivalent) set-

ting of normed spaces rather than origin-symmetric convex bodies.

Specifically, let ∥ · ∥𝑋 : R𝑛 → [0,∞) be a norm on R𝑛 and denote

the corresponding normed space (R𝑛, ∥ · ∥𝑋 ) by 𝑋 . The (closed)
unit ball of 𝑋 will be denoted throughout what follows by

Ball(𝑋 ) def

= {𝑥 ∈ R𝑛 : ∥𝑥 ∥𝑋 ⩽ 1}.

The standard correspondence is that Ball(𝑋 ) is an origin-symmetric

convex body, and conversely any 𝐾 ⊆ R𝑛 as above is equal to

Ball(𝑋 ) for some 𝑋 = (R𝑛, ∥ · ∥𝑋 ), where the norm ∥𝑥 ∥𝑋 of each

𝑥 ∈ R𝑛∖{0} is the unique scaling factor 𝑠 > 0 for which
1

𝑠 𝑥 belongs

to the boundary of 𝐾 .

In accordance with the above convention for convex bodies,

we will tacitly assume throughout the ensuing discussion that all

normed spaces 𝑋 = (R𝑛, ∥ · ∥𝑋 ) are given by a membership oracle

for Ball(𝑋 ). By binary search for the smallest 𝑟 ⩾ 0 such that

𝑥 ∈ R𝑛 belongs to 𝑟 · Ball(𝑋 ), such an oracle directly yields also a

norm-evaluation oracle.
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So, given a normed space 𝑋 = (R𝑛, ∥ · ∥𝑋 ) and a matrix 𝐴 ∈
𝑀𝑛 (R), denote

Q
max

𝑋 (𝐴) def

= Q
max

Ball(𝑋 ) (𝐴).

Observe in passing that the bilinear variant (2) when 𝐾 = Ball(𝑋 )
and 𝐿 = Ball(𝑌 ) for normed spaces 𝑋 = (R𝑛, ∥ · ∥𝑋 ) and 𝑌 =

(R𝑚, ∥ · ∥𝑌 ), respectively, is nothing more that the operator norm

of the matrix 𝐵 ∈ 𝑀𝑛×𝑚 (R) when it is viewed as an operator from

𝑌 to the dual 𝑋 ∗
of 𝑋 . Namely,

Op
max

𝐾,𝐿 (𝐵) = ∥𝐵∥𝑌→𝑋 ∗ = ∥𝐵∗∥𝑋→𝑌 ∗ , (5)

where the first equality in (5) can be taken to be the definition

of the corresponding operator norm and it is equal to the more

common definition ∥𝐵∥𝑌→𝑋 ∗ = max𝑦∈Ball(𝑌 ) ∥𝐵𝑦∥𝑋 ∗ by duality

(Hahn–Banach). The second equality in (5) is the fact that the norm

of an operator between Banach spaces is equal to the norm of its

adjoint. See e.g. the textbook [61] for this standard material.

2.2 Type and Cotype
It is beneficial to introduce the following convention regarding

random variables that will be used extensively in what follows.

We will work throughout with the families of random variables

{Y𝑖 : 𝑖 ∈ N}, {g𝑖 : 𝑖 ∈ N} and {g𝑖 𝑗 : 𝑖, 𝑗 ∈ N}, where it will always
be tacitly understood that they are independent, {Y𝑖 : 𝑖 ∈ N} are ±1
Bernoulli random variables, i.e., distributed uniformly over {−1, 1},
and {g𝑖 : 𝑖 ∈ N} and {g𝑖 𝑗 : 𝑖, 𝑗 ∈ N} are standard Gaussian

random variables. All the expectations that appear below are with

respect to the joint distribution of these random variables. We

will always denote the standard Gaussian random vector in R𝑛 by

g = (g1, . . . , g𝑛).
The (Rademacher) type 2 constant [26] of a normed space 𝑋 =

(R𝑛, ∥ · ∥𝑋 ), denoted𝑇2 (𝑋 ), is the smallest𝑇 > 0 such that for every

𝑚 ∈ N, every 𝑥1, . . . , 𝑥𝑚 ∈ R𝑛 satisfy

E
[ 𝑚∑
𝑖=1

Y𝑖𝑥𝑖
2
𝑋

]
⩽ 𝑇 2 ·

𝑚∑
𝑖=1

∥𝑥𝑖 ∥2𝑋 , (6)

Correspondingly, the (Rademacher) cotype 2 constant of𝑋 , denoted

𝐶2 (𝑋 ), is the smallest𝐶 > 0 such that for every𝑚 ∈ N, every choice
of vectors 𝑥1, . . . , 𝑥𝑚 ∈ R𝑛 satisfies

𝑚∑
𝑖=1

∥𝑥𝑖 ∥2𝑋 ⩽ 𝐶
2 · E

[ 𝑚∑
𝑖=1

Y𝑖𝑥𝑖
2
𝑋

]
. (7)

These invariants of normed spaces are of immense importance

to various areas; see the survey [46] for an indication of (part

of) this body of work, as well as its history. Here we show that

they are closely related to the computational complexity of the

quadratic optimization problem (1), and, in fact, under common

complexity assumptions, they govern it in a sense that will be made

precise later. For concreteness, we record the following asymptotic

evaluations
1
of these constants when𝑋 = ℓ𝑛𝑝 for some integer𝑛 ⩾ 2

1
In addition to the usual 𝑜 ( ·),𝑂 ( ·),Ω ( ·),Θ( ·) notation for asymptotic relations, we

will also use throughout the following (standard) asymptotic notation. For 𝑃,𝑄 > 0,

the notations 𝑃 ≲ 𝑄 and𝑄 ≳ 𝑃 mean that 𝑃 ⩽ 𝐾𝑄 for a universal constant 𝐾 > 0.

The notation 𝑃 ≍ 𝑄 stands for (𝑃 ≲ 𝑄) ∧ (𝑄 ≲ 𝑃 ) .

and 𝑝 ∈ [1,∞], all of which can be found in [48].

𝑇2 (ℓ𝑛𝑝 ) ≍
{
𝑛

1

𝑝
− 1

2
if 1 ⩽ 𝑝 ⩽ 2,√

min{𝑝, log𝑛} if 2 ⩽ 𝑝 ⩽ ∞,
and

𝐶2 (ℓ𝑛𝑝 ) ≍
{

1 if 1 ⩽ 𝑝 ⩽ 2,

𝑛
1

2
− 1

𝑝
if 2 ⩽ 𝑝 ⩽ ∞.

(8)

We also record the following duality relations that hold for any

normed space 𝑋 .

𝐶2 (𝑋 ∗) ⩽ 𝑇2 (𝑋 ) ≲ 𝐶2 (𝑋 ∗) log(dim(𝑋 ) + 1). (9)

The first inequality in (9) is straightforward [47] and the second

inequality in (9) is from [54].

3 A GENERIC FRAMEWORK
We are now ready to describe our algorithmic approach, starting

with a simpler “warm-up” algorithm which covers many new in-

stances of (1). Fix an integer 𝑛 ⩾ 2. The set of symmetric positive

definite matrices with real entries will be denoted by PSD𝑛 ⊆
𝑀𝑛 (R). ForW ∈ 𝑀𝑛 (R) we will use the notationW ≽ 0 to indicate

thatW ∈ PSD𝑛 . We associate to a normed space𝑋 = (R𝑛, ∥ ·∥𝑋 ) the
following subsetU(𝑋 ) of PSD𝑛 that we call the upper covariance
body of 𝑋 .

U(𝑋 ) def

=

∞⋃
𝑚=1

{ 𝑚∑
𝑖=1

𝑤𝑖𝑤
∗
𝑖 : 𝑤1, . . . ,𝑤𝑚 ∈ R𝑛 and E

[ 𝑚∑
𝑖=1

g𝑖𝑤𝑖
2
𝑋

]
⩽ 1

}
.

(10)

For every 𝑤1, . . . ,𝑤𝑚 ∈ R𝑛 , the random vectors

∑𝑚
𝑖=1 g𝑖𝑤𝑖 and

W
1

2 g, whereW =
∑𝑚
𝑖=1𝑤𝑖𝑤

∗
𝑖
≽ 0, are equi-distributed, since they

are both Gaussian vectors whose covariance matrix isW. Thus,

U(𝑋 ) =
{
W ∈ PSD𝑛 : E

[W 1

2 g
2
𝑋

]
⩽ 1

}
. (11)

This observation explains our choice of nomenclature, namely

U(𝑋 ) consists of those covariance matrices of Gaussian vectors

in R𝑛 whose expected squared 𝑋 -norm is bounded from above by

1. An important property of U(𝑋 ) is that one can relate quadratic

optimization over Ball(𝑋 ) to linear optimization overU(𝑋 ):

3.1 From Quadratic Optimization to Linear
Optimization

Observe that for any 𝐴 = (𝐴𝑖 𝑗 ) ∈ 𝑀𝑛 (R), any normed space 𝑋 =

(R𝑛, ∥ · ∥𝑋 ) satisfies

Q
max

𝑋 (𝐴) = max

W=(𝑊𝑖 𝑗 ) ∈U(𝑋 )

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝐴𝑖 𝑗𝑊𝑖 𝑗 = max

W∈U(𝑋 )
⟨𝐴 ,W⟩ .

(12)

Indeed, ifW ∈ PSD𝑛 satisfies E
[W 1

2 g
2
𝑋

]
⩽ 1, then

⟨𝐴 ,W⟩ = Tr(𝐴W) = Tr
(
W

1

2𝐴W
1

2

)
= E

[〈
W

1

2 g, 𝐴W
1

2 g
〉]

⩽ E
[
Q
max

𝑋
(𝐴) ·

W 1

2 g
2
𝑋

]
⩽ Q

max

𝑋
(𝐴).

This shows that right hand side of (12) is at most the left hand side

of (12). The reverse inequality follows by noting that if𝑤 ∈ Ball(𝑋 ),
then𝑤𝑤∗ ∈ U(𝑋 ) and ⟨𝐴 ,𝑤𝑤∗⟩ = ⟨𝑤 ,𝐴𝑤⟩.
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3.2 Approximate Convexity ofU(𝑋 )
The bodyU(𝑋 ) need not be convex, but it is𝑇2 (𝑋 )2-approximately
convex in the sense that

U(𝑋 ) ⊆ conv
(
U(𝑋 )

)
⊆ 𝑇2 (𝑋 )2 · U(𝑋 ), (13)

where, given a subset 𝑆 of some R𝑑 , we denote the convex hull of 𝑆
by conv(𝑆). To justify (13), fix 𝑘 ∈ N and suppose thatW1, . . .W𝑘 ∈
U(𝑋 ) and 𝑠1, . . . , 𝑠𝑘 ∈ [0, 1] satisfy ∑𝑘

𝑗=1 𝑠 𝑗 = 1. The goal is to

demonstrate that 𝑇2 (𝑋 )−2
∑𝑘
𝑗=1 𝑠 𝑗W𝑗 ∈ U(𝑋 ). For each

𝑗 ∈ {1, . . . , 𝑘}, the assumptionW𝑗 ∈ U(𝑋 ) means that for some

𝑚( 𝑗) ∈ N there are vectors𝑤1, 𝑗 , . . . ,𝑤𝑚 ( 𝑗), 𝑗 ∈ R𝑛 such that

W𝑗 =

𝑚 ( 𝑗)∑
𝑖=1

𝑤𝑖 𝑗𝑤
∗
𝑖 𝑗 and E

[𝑚 ( 𝑗)∑
𝑖=1

g𝑖 𝑗𝑤𝑖 𝑗
2
𝑋

]
⩽ 1.

Hence,

E
[ 𝑘∑
𝑗=1

𝑚 ( 𝑗)∑
𝑖=1

g𝑖 𝑗
√
𝑠 𝑗𝑤𝑖 𝑗

2
𝑋

]
= E

[ 𝑘∑
𝑗=1

Y 𝑗
√
𝑠 𝑗

𝑚 ( 𝑗)∑
𝑖=1

g𝑖 𝑗𝑤𝑖 𝑗
2
𝑋

]
⩽ 𝑇2 (𝑋 )2 ·

𝑘∑
𝑗=1

𝑠 𝑗E
[𝑚 ( 𝑗)∑

𝑖=1

g𝑖 𝑗𝑤𝑖 𝑗
2
𝑋

]
⩽ 𝑇2 (𝑋 )2 .

Therefore

𝑇2 (𝑋 )−2 ·
𝑘∑
𝑗=1

𝑚 ( 𝑗)∑
𝑖=1

(√
𝑠 𝑗𝑤𝑖 𝑗

) (√
𝑠 𝑗𝑤𝑖 𝑗

)∗
= 𝑇2 (𝑋 )−2 ·

𝑘∑
𝑗=1

𝑠 𝑗W𝑗

indeed belongs to U(𝑋 ).
Motivated by (13), we set the following terminology.

Definition 3.1. Suppose that 𝑆 ⊆ R𝑛 is star-shaped with respect

to the origin, i.e., 𝑡𝑥 ∈ 𝑆 for every 𝑥 ∈ 𝑆 and 𝑡 ∈ [0, 1]. Given 𝛼 ∈
[1,∞), we say that 𝑆 is 𝛼-approximately convex if conv(𝑆) ⊆ 𝛼𝑆 .

The two observations (12) and (13) highlight the following im-

portant facts. Firstly, the relaxation of Ball(𝑋 ) ⊆ R𝑛 to the upper

covariance bodyU(𝑋 ) ⊆ 𝑀𝑛 (R) is lossless, i.e., it reduces the max-

imization over Ball(𝑋 ) of a quadratic form to a maximization over

U(𝑋 ) of a linear function. Secondly, the geometry of 𝑋 , through

the extent to which it has type 2, plays a role by ensuring that the

potentially complicated setU(𝑋 ) is at the very least approximately

convex. It is thus natural to investigate the efficient optimization

of linear functions over approximately convex sets. However, the

following theorem (see Section 9 in [13]) shows that this is a sub-

tle matter, because even when the type-2 constant of 𝑋 is small,

the computational complexity of approximating Q
max

𝑋
(𝐴) could be

poor.

3.3 Impossibility Results
Theorem 3.2 (Impossibility of qadratic maximization as-

suming only bounded type-2).

For every 𝑛 ∈ N and 0 < Y < 1 there exists a distribution P = P𝑛,Y
over random normed spaces X = (R𝑛, ∥ · ∥X) and 𝑝𝑛 ∈ (0, 1) with
lim𝑛→∞ 𝑝𝑛 = 1, such that the following properties hold.

(1) P𝑛,Y [𝑇2 (X) ≲ 1] = 1.
(2) P𝑛,Y

[
𝑆 ∩ Ball(X) = 𝑆 ∩ Ball(ℓ𝑛

2
)
]
⩾ 𝑝𝑛 for every 𝑆 ⊆ R𝑛 with

|𝑆 | ⩽ exp(𝑛Y ).

(3) P𝑛,Y
[
Q
max

X (I𝑛) ≳ 𝑛1−Y
]
⩾ 𝑝𝑛 , where I𝑛 ∈ 𝑀𝑛 (R) is the

identity matrix.

Theorem 3.2 demonstrates that if there were an algorithm that

takes as input a normed space 𝑋 whose type-2 constant is 𝑂 (1)
and outputs a number that is guaranteed to be within a factor

that is 𝑜 (𝑛1−Y ) of Qmax

𝑋
(I𝑛), then that algorithm must necessarily

make more than exp(𝑛Y ) membership queries to Ball(𝑋 ). Indeed,
Q
max

𝑋
(I𝑛) = 1 when 𝑋 = ℓ𝑛

2
, while if X is the random normed

space of Theorem 3.2, then 𝑇2 (X) ≲ 1 and with high probability

Q
max

X (I𝑛) ≳ 𝑛1−Y . However, if 𝑆 is the set of points that the algo-

rithm queried, then with high probability the algorithm did not

obtain any information that distinguishes X from ℓ𝑛
2
.

Thus, even if 𝑋 has a small type-2 constant, this does not suf-

fice for the existence of an efficient algorithm for approximat-

ing Q
max

𝑋
(·), but, as we have seen, requiring this property is a

good place to start because it ensures that the upper covariance

body is approximately convex. The following theorem establishes

a further connection between type 2 and the computational com-

plexity of approximating Q
max

𝑋
(·) by providing evidence (under

a commonly used complexity assumption, namely the Small Set

Expansion Hypothesis) that if the type 2 constant of 𝑋 is very

large, then there is no polynomial time algorithm that obtains a

𝑂 (1)-approximation to Q
max

𝑋
(·). Further hardness results (with and

without non-uniform complexity assumptions and with weaker

assumptions on the growth of the type-2 constant assuming (nec-

essarily) the Exponential Time Hypothesis), are derived in the full

version [13].

Theorem 3.3 (Impossibility ofqadratic maximizationwhen-

ever type-2 is growing polynomially).

Fix a sequence of normed spaces {𝑋𝑛 = (R𝑛, ∥ · ∥𝑋𝑛 )}∞
𝑛=1

satisfying
𝑇2 (𝑋𝑛) = 𝑛Ω (1) . We assume that they are given to us algorithmically
in the sense that there is a polynomial time algorithm that takes as
input 𝑥 ∈ R𝑛 and determines whether or not 𝑥 ∈ Ball(𝑋𝑛). Then,
assuming the Small Set Expansion Hypothesis and that NP ⊈ P/poly,
there is no polynomial time algorithm that takes as input a matrix
𝐴 ∈ 𝑀𝑛 (R) and approximates Qmax

𝑋𝑛 (𝐴) up to a universal constant
factor.

Remark 1. The Small Set Expansion Hypothesis (SSEH) is a com-
monly used hardness assumption that was formulated in [59] and
is recalled in the full version [13]. Of course, the SSEH is less stan-
dard than, say, NP ⊈ P/poly, so one should take Theorem 3.3 as
evidence that if the underlying norm has large type-2 constant, then it
is unlikely that there is an efficient constant-factor algorithm for (1),
namely by designing such an algorithm one would refute the SSEH,
thus making a major breakthrough in complexity theory.

Remark 2. Recalling (8), Theorem 3.3 applies in particular to𝑋𝑛 =

ℓ𝑛𝑝 when 1 ⩽ 𝑝 < 2, thus demonstrating the computational difficulty
of the ℓ𝑝 Grothendieck problem, which was left open in [40], where
it was shown that this problem does have a 𝑂𝑝 (1) approximation
algorithm when 2 ⩽ 𝑝 < ∞. In the unpublished manuscript [1] it
was proved that a 𝑂 (1) approximation algorithm exists when 𝑝 = 1

provided that all of the diagonal entries of the input matrix 𝐴 vanish;
see the exposition in [38]. In the full version [13] we show that if
𝑋𝑛 = ℓ𝑛𝑝 and 1 < 𝑝 < 2, then the hardness statement of Theorem 3.3
holds even when the diagonal of𝐴 vanishes, so in this setting we obtain
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rigorous evidence for an interesting complexity theoretic terrain: The
ℓ𝑝 Grothendieck problem is approximable when 𝑝 = 1 or 2 ⩽ 𝑝 < ∞,
but likely hard to approximate when 1 < 𝑝 < 2 or 𝑝 = ∞ (see [7] for
hardness when 𝑝 = ∞).

3.4 Approximation Algorithms from Upper
Covariance Separation Oracle

Recall that Theorem 3.2 implies that even though the (random)

upper covariance bodyU(X) is 𝑂 (1)-approximately convex (as X
has bounded type 2 constant), with high probability one cannot

optimize linear functionals over U(X) efficiently. It turns out that

the issue at hand is that even if one permits the algorithm to make

oracle norm-evaluation queries for X, the auxiliary bodyU(X) need
not even have an efficient “approximate separation oracle,” which

we define as follows.

Definition 3.4. Fix 𝛼 ⩾ 1. Let 𝑆 ⊆ R𝑛 be star shaped with respect

to the origin and 𝛼-approximately convex. An 𝛼-approximate sep-

aration oracle for 𝑆 is a function O defined on R𝑛 that outputs to

each input 𝑥 ∈ R𝑛 either “Inside” or an affine hyperplane of R𝑛 .
The requirements for O are as follows.

• If the output O(𝑥) is “Inside,” then necessarily 𝑥 ∈ 𝛼𝑆 .
• If the output O(𝑥) is a hyperplane 𝐻 ⊆ R𝑛 , then 𝐻 must

separate 𝑥 from 𝑆 , i.e., 𝑥 and 𝑆 are contained in different sides

of 𝐻 . Note that this implies in particular that 𝑥 ∉ conv(𝑆).
Observe that these requirements are not dichotomic, i.e., they are

ambiguous when 𝑥 ∈ (𝛼𝑆) ∖ conv(𝑆) (recall that conv(𝑆) ⊆ 𝛼𝑆

since 𝑆 is 𝛼-approximately convex). Namely, if 𝑥 ∈ (𝛼𝑆) ∖ conv(𝑆),
then the oracle is allowed to either output a hyperplane or output

“Inside.”

Using a natural approximate version of the ellipsoid method, we

prove the following theorem (see the full version [13]).

Theorem 3.5 (Approximate Ellipsoid Method).

Fix 𝛼 ⩾ 1 and 𝑅 ⩾ 𝑟 > 0. Suppose that 𝑆 ⊆ PSD𝑛 is star shaped
with respect to the origin, 𝛼-approximately convex, and has an 𝛼-
approximate separation oracle. Suppose also that

𝑟 · Ball(ℓ𝑛
2

2
) ⊆ 𝑆 ⊆ 𝑅 · Ball(ℓ𝑛

2

2
),

where we use the natural identification of 𝑀𝑛 (R) with R𝑛
2

. Then,
there exists an algorithm that takes as input a matrix 𝐴 ∈ 𝑀𝑛 (R),
makes a number of oracle calls that grows polynomially in 𝑛, log𝑅,
log(1/𝑟 ) and the length of the bit description of 𝐴, and outputs a
matrixW ∈ 𝑆 that satisfies

⟨W, 𝐴⟩ ⩾ 1 − 𝑜 (1)
𝛼

sup

V∈𝑆
⟨V, 𝐴⟩.

For the sake of the discussion within this extended abstract, it

will be convenient to always assume tacitly that 𝑋 = (R𝑛, ∥ · ∥𝑋 ) is
a normed space whose upper covariance body satisfies

𝑒−𝑛
𝑂 (1)

· Ball(ℓ𝑛
2

2
) ⊆ U(𝑋 ) ⊆ 𝑒𝑛

𝑂 (1)
· Ball(ℓ𝑛

2

2
) . (14)

Such a normalization, which is mechanical to verify in all the cases

that we examined, removes the need to state running times in terms

of 𝑟, 𝑅 as done in Theorem 3.5. Another simplifying assumption that

we will make throughout this extended abstract is that the length

of the bit description of all inputs (namely matrices) to algorithms

is 𝑛𝑂 (1)
.

Using Theorem 3.5 and applying it to U(𝑋 ), we readily deduce

the following approximation algorithm for quadratic maximization

(see the full version [13])

Proposition 3.6 (QuadraticMaximizationGiven Separation

Oracle for Upper Covariance Body).

Given access to an 𝛼-approximate separation oracle forU(𝑋 ), there
is an algorithm that on any input 𝐴 ∈ 𝑀𝑛 (R) runs in polynomial
time and returns a (1 + 𝑜 (1))𝛼-approximation to Qmax

𝑋
(𝐴).

The upshot of the above result is that it refocuses our attention

to the task of designing an approximate separation oracle for the

upper covariance body. Using this approach, we are already able

to conclude new results for quadratic maximization by applying

tools from classical analysis to design an approximate separation

oracle for U(𝑋 ). In some cases, however, it is quite difficult to

design such an oracle directly for U(𝑋 ). Inspired by deep tools

from functional analysis, specifically the factorization theory of

linear operators (see the monograph [55]), we will prove that under

the assumption of having a bounded type-2 constant it suffices

to design a separation oracle for the lower covariance region of 𝑋

which we define in (15) below.

To give a couple of examples, it is easy to design a lower covari-

ance separation oracle for the Minkowski sum ℓ𝑛
4
+ℓ𝑛

5
(see Section 4)

or for the quotient ℓ𝑛
4
/ℓ𝑚
5
, while on the other hand it is unclear

how to directly describe an upper covariance separation oracle in

these cases (see the full version [13] for more details). Another

advantage which will become apparent soon is that lower covari-

ance separation oracles allow for provably better approximation

factors than the upper covariance separation oracles in the special

cases of PSD quadratic maximization and bilinear maximization

(the difference can be as big as log𝑛, as can be seen in the familiar

example of 𝑋 = ℓ𝑛∞). Below we give a proof sketch for main “frame-

work” theorem, namely an approximation algorithm for quadratic

maximization (resp. bilinear maximization) when type-2 (resp. dual

cotype-2) is bounded assuming access to only a separation oracle

for the lower covariance region.

Remark 3. In the interest of simplicity, the proof sketch below
assumes we only desire to approximate the optimal value (and not
produce solution vectors). For this simpler goal it suffices to use cer-
tain factorization theorems (see the full version [13] for a detailed
introduction to factorization and the relevant theorems we use) as a
black box. For the full proof in [13], we give rounding algorithms as
well. For technical reasons, it was necessary to “open the factorization
black box” and make some parts of the argument constructive, in
addition to dualizing the entire argument. We therefore caution the
reader that the full proof in [13] is syntactically different from the
ensuing overview.
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3.5 Lower Covariance Region
We define the lower covariance region as follows:

L(𝑋 ) def

=

∞⋃
𝑚=1

{ 𝑚∑
𝑖=1

𝑤𝑖𝑤
∗
𝑖 : 𝑤1, . . . ,𝑤𝑚 ∈ R𝑛 and E

[ 𝑚∑
𝑖=1

g𝑖𝑤𝑖
2
𝑋 ∗

]
⩾ 1

}
=

{
W ∈ PSD𝑛 : E

[W 1

2 g
2
𝑋 ∗

]
⩾ 1

}
,

(15)

where the second inequality in (15) is justified the same way as (11).

Note that because L(𝑋 ) is equal to

PSD𝑛 ∖ {W ∈ PSD𝑛 : E[∥W
1

2 g∥2𝑋 ∗ ] < 1} ,
the lower covariance region of 𝑋 is the complement in PSD𝑛 of

the interior of the upper covariance body of 𝑋 ∗
. As such, it is a

complement of a set that is star shaped with respect to the origin,

and therefore 𝑠 · L(𝑋 ) ⊇ L(𝑋 ) for every 0 < 𝑠 ⩽ 1.

3.6 Approximate Convexity of Lower
Covariance Region

By reasoning analogously to the proof of (13), we see that

L(𝑋 ) ⊆ conv
(
L(𝑋 )

)
⊆ 1

𝐶2 (𝑋 ∗) L(𝑋 ) . (16)

Thus, the lower covariance region of 𝑋 is 𝐶2 (𝑋 ∗)2-approximately

convex in the following sense, which is the natural adaptation of

Definition 3.1 to regions that are complements of star shape sets.

Recall that by (9) if 𝑋 has bounded type 2 constant, then 𝑋 ∗
has

bounded cotype 2 constant.

Definition 3.7. Let 𝑇 ⊆ R𝑛 satisfy [1,∞)𝑇 ⊆ 𝑇 (equivalently,

R𝑛 ∖𝑇 is star shaped with respect to the origin). Given 𝛼 ⩾ 1, we

say that 𝑇 is 𝛼-approximately convex if conv(𝑇 ) ⊆ 1

𝛼𝑇 .

With this definition at hand, the natural adaptation of Defini-

tion 3.4 is as follows.

Definition 3.8. Fix𝛼 ⩾ 1. Suppose that𝑇 ⊆ R𝑛 satisfies [1,∞)𝑇 ⊆
𝑇 and that 𝑇 is 𝛼-approximately convex. An 𝛼-approximate sepa-

ration oracle for 𝑇 is a function O defined on R𝑛 that outputs to

each input 𝑥 ∈ R𝑛 either “Inside” or an affine hyperplane of R𝑛 .
The requirements for O are as follows.

• If the output O(𝑥) is “Inside,” then necessarily 𝑥 ∈ 1

𝛼𝑇 .

• If the output O(𝑥) is a hyperplane 𝐻 ⊆ R𝑛 , then 𝐻 must

separate 𝑥 from 𝑇 .

If 𝑥 ∈ ( 1𝛼𝑇 ) ∖ conv(𝑇 ), then O is allowed to either output a hyper-

plane or output “Inside”.

3.7 Approximation Algorithms from Lower
Covariance Separation Oracle

With these notions at hand, if the lower covariance region of 𝑋 has

an 𝛼-approximate separation oracle for some 𝛼 ⩾ 𝐶2 (𝑋 ∗), then by

analysing a natural approximate version of the ellipsoid method

we obtain an (oracle-time) efficient algorithm for approximating

certain convex programs up to factor (1 + 𝑜 (1))𝛼 , in the spirit of

Theorem 3.5. For the sake of simplicity, rather than explaining this

methodology in the introduction in its full generality, we state the

following two consequences of it and refer to the full version [13]

for a complete treatment.

Theorem 3.9 (Quadratic/bilinear maximization given sepa-

ration oracle for lower covariance region).

Suppose that 𝑋 = (R𝑛, ∥ · ∥𝑋 ) is a normed space such that L(𝑋 )
has an 𝛼-approximate separation oracle for some 𝛼 ⩾ 𝐶2 (𝑋 ∗). Then,
there is an algorithm that given an input matrix 𝐴 ∈ 𝑀𝑛 (R) makes
polynomially many oracle calls and runs in time 𝑛𝑂 (1) , and outputs
a matrixW ∈ PSD𝑛 withW ≽ 𝐴 that satisfies

inf

{
Q
max

𝑋
(M) : M ∈ PSD𝑛 andM ≽ 𝐴

}
≳

Q
max

𝑋
(W)
𝛼

. (17)

Also, if 𝑋 = (R𝑛, ∥ · ∥𝑋 ), 𝑌 = (R𝑚, ∥ · ∥𝑌 ) are normed spaces such
that L(𝑋 ),L(𝑌 ) have 𝛼-approximate separation oracles for 𝛼 ⩾
max{𝐶2 (𝑋 ∗),𝐶2 (𝑌 ∗)}, then there is an algorithm that given an input
matrix 𝐵 ∈ 𝑀𝑛×𝑚 (R) makes polynomially many oracle calls and
runs in time that is polynomial in 𝑛,𝑚, and outputs a matricesW ∈
PSD𝑛,V ∈ PSD𝑚 with

(
W 0

0 V

)
≽

(
0 𝐵
𝐵∗

0

)
and

inf

{
Q
max

𝑋
(M1) + Q

max

𝑌
(M2) : (M1,M2) ∈ PSD𝑛 × PSD𝑚

and

(
M1 0

0 M2

)
≽

(
0 𝐵

𝐵∗ 0

) }
≳

Q
max

𝑋
(W) + Q

max

𝑌
(V)

𝛼
.

(18)

We will next explain the ingredients that go into (17); the justifi-

cation of (18) is similar andwill be carried out in the full version [13].

The reason why we include (18) here is that it is important for the

bilinear variant (2), namely for the question of approximating the

operator norm ∥𝐴∥𝑌→𝑋 ∗ .

The goal of (17) is to 𝑂 (𝛼)-approximately minimize the con-

vex function M ↦→ Q
max

𝑋
(M) over the convex set {M ∈ PSD𝑛 :

M ≽ 𝐴}. In the full version [13], we will show that in order to

efficiently find a (1 + 𝑜 (1))𝛼-approximate minimizer, it suffices to

show that each of the corresponding sub-level sets {{M ∈ PSD𝑛 :

Q
max

𝑋
(M) ⩽ 𝑡} : 𝑡 ∈ R} has a (1 + 𝑜 (1))𝛼-approximate separa-

tion oracle. By homogeneity, we therefore need to show that under

the assumptions of Theorem 3.9, the convex set {M ∈ PSD𝑛 :

Q
max

𝑋
(M) ⩽ 1} has a (1 + 𝑜 (1))𝛼-approximate separation oracle.

To this end, fixM ∈ PSD𝑛 and consider the following optimiza-

tion problem.

max

{
E
[
∥M

1

2V
1

2 g∥2𝑋 ∗
]
: V ∈ PSD𝑛 and Tr(V) ⩽ 1

}
. (19)

We claim that one can find in polynomial time and with polynomi-

ally many oracle calls a matrixV ∈ PSD𝑛 the attains this maximum

up to a factor of (1 + 𝑜 (1))𝛼 . Indeed, in the full version [13] we will

show that for this it suffices to check that each of the corresponding

super-level sets{
{V ∈ PSD𝑛 : E

[
∥M

1

2V
1

2 g∥2𝑋 ∗
]
⩾ 𝑡} : 𝑡 ∈ R

}
(20)

has an 𝛼-approximate separation oracle. Since each of the sets

appearing in (20) is (by definition) a linear transformation of the

lower covariance body of𝑋 , the assumption of Theorem 3.9 ensures

that the desired oracle exists. Therefore, we can find V ∈ PSD𝑛
with Tr(V) ⩽ 1 at which the maximum in (19) is attained up to a

factor of (1 + 𝑜 (1))𝛼 .
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Finally, we can describe what the desired oracle for {M′ ∈ PSD𝑛 :

Q
max

𝑋
(M′) ⩽ 1} will output for the input matrix M. For each re-

alization of the Gaussian vector g ∈ R𝑛 , let 𝑥g ∈ Ball(𝑋 ) be the
random vector that is given by

𝑥g
def

= argmax

𝑥 ′∈Ball(𝑋 )

〈
𝑥 ′,M

1

2V
1

2 g
〉
.

Note that 𝑥g can be found efficiently using polynomially many

membership queries to Ball(𝑋 ), using the classical theory of convex
programming [31]. If

∥M
1

2V
1

2 g∥𝑋 ∗

∥V
1

2 g∥ℓ𝑛
2

⩽ 1,

then the oracle outputs “Inside.” Otherwise, the oracle outputs the

hyperplane

{M′ ∈ 𝑀𝑛 (R) : ⟨M′𝑥g, 𝑥𝑔⟩ = 1}.
By tracking the above definitions, one checks that this oracle satis-

fies the desired properties with positive probability. One gets this to

hold with sufficiently high probability (to account for the polynomi-

ally many oracle calls) by repeating the above procedure with 𝑛𝑂 (1)

independent samples from g rather than only one such sample; the

details appear in the full version [13].

With the algorithmic groundwork of Theorem 3.9 complete, our

final algorithm relies on the analytic inequalities that are contained

in the following theorem (see the full version [13] for proofs).

Theorem 3.10 (Factorization Ineqalities).

For every normed space 𝑋 = (R𝑛, ∥ · ∥𝑋 ) and 𝐴 ∈ 𝑀𝑛 (R) we have
Q
max

𝑋 (𝐴) ⩽ inf

{
Q
max

𝑋 (W) : W ∈ PSD𝑛 andW ≽ 𝐴
}

⩽ 𝑇2 (𝑋 )2 · Qmax

𝑋
(𝐴) . (21)

Also, for every two normed spaces 𝑋 = (R𝑛, ∥ · ∥𝑋 ), 𝑌 = (R𝑚, ∥ · ∥𝑌 ),
and every 𝐵 ∈ 𝑀𝑛×𝑚 (R), denote

𝛾𝑌→𝑋 ∗
2

(𝐵) def

=

inf

{
Q
max

𝑋
(W) + Q

max

𝑌
(V)

2

: (W,V) ∈ PSD𝑛 × PSD𝑚

and

(
W 0

0 V

)
≽

(
0 𝐵

𝐵∗ 0

) }
.

(22)

Then,

∥𝐵∥𝑌→𝑋 ∗ ⩽ 𝛾𝑌→𝑋 ∗
2

(𝐵)
≲ 𝐶2 (𝑋 ∗)𝐶2 (𝑌 ∗) log

(
𝐶2 (𝑋 ∗)𝐶2 (𝑌 ∗)

)
· ∥𝐵∥𝑌→𝑋 ∗ . (23)

We chose the notation𝛾𝑌→𝑋 ∗
2

(𝐵) in (22) purposefully to coincide
with the classical functional analytic notation for factorization

norms [55], namely it is the 𝛾2 norm of 𝐵 when it is viewed as an

operator from 𝑌 to 𝑋 ∗
. The equality (22) is therefore a variational

characterization of the classical quantity in the left hand side in

terms of the infimum on the right hand side; we prove this identity

in the full version [13].With this identity at hand, the inequality (23)

is an application of a deep factorization theorem of Pisier [54].

The inequality (21) is inspired by the aforementioned factorization

theory, but it seems to be new; it could be viewed as a factorization

theorem for quadratic forms (see the full version [13] for details) and

it would be interesting to study its ramifications within functional

analysis.

By combining Theorem 3.9 with Theorem 3.10, we get the fol-

lowing algorithmic result.

Theorem 3.11 (Generic Framework).

Suppose that 𝑋 = (R𝑛, ∥ · ∥𝑋 ) is a normed space such that L(𝑋 )
has an 𝛼-approximate separation oracle for some 𝛼 ⩾ 𝐶2 (𝑋 ∗). Then,
there is an algorithm that given an input matrix 𝐴 ∈ 𝑀𝑛 (R) makes
polynomially many oracle calls and runs in time 𝑛𝑂 (1) , and outputs
a number Alg

1
that is guaranteed to satisfy

Q
max

𝑋
(𝐴) ⩽ Alg

1
≲ 𝛼 𝑇2 (𝑋 )2 · Qmax

𝑋
(𝐴) .

For the bilinear case,if𝑋 = (R𝑛, ∥·∥𝑋 ), 𝑌 = (R𝑚, ∥·∥𝑌 ) are normed
spaces such that L(𝑋 ),L(𝑌 ) have 𝛼-approximate separation oracles
for some 𝛼 ⩾ max{𝐶2 (𝑋 ∗),𝐶2 (𝑌 ∗)}, then there is an algorithm that
given an input matrix 𝐵 ∈ 𝑀𝑛×𝑚 (R) makes polynomially many
oracle calls and runs in time that is polynomial in 𝑛,𝑚, and outputs
a number Alg

2
that is guaranteed to satisfy

∥𝐵∥𝑌→𝑋 ∗ ⩽ Alg
2

≲ 𝛼 𝐶2 (𝑋 ∗)𝐶2 (𝑌 ∗) log
(
𝐶2 (𝑋 ∗)𝐶2 (𝑌 ∗)

)
· ∥𝐵∥𝑌→𝑋 ∗ .

Remark 4. One often wishes to approximate efficiently not only
the values of the quantities Qmax

𝑋
(𝐴) and ∥𝐵∥𝑌→𝑋 ∗ , but also to find

efficiently the vector 𝑥 ∈ 𝑅𝑛 at which Q
max

𝑋
(𝐴) is approximately

attained, and correspondingly the vectors 𝑥 ∈ R𝑛 and 𝑦 ∈ R𝑚 at
which ∥𝐵∥𝑌→𝑋 ∗ is approximately attained. For the latter, we need
a constructive version of Pisier’s factorization theorem that entails
several adjustments of its classical proof; the details appear in the full
version [13]. For this variant (namely, finding almost maximizing
vectors rather than only estimating the quantity ∥𝐵∥𝑌→𝑋 ∗ ), we get
the slightly worse approximation factor

𝑂 (𝛼𝐶2 (𝑋 ∗)𝐶2 (𝑌 ∗) log(𝛼𝐶2 (𝑋 ∗)𝐶2 (𝑌 ∗)))
in the second part of Theorem 3.11.

4 EXAMPLES OF APPLICATIONS
Theorem 3.11 focuses our attention to designing approximate sep-

aration oracles for lower covariance bodies. In the specific cases

that we examined, it turns out that this task is tractable because

it reduces to probabilistic (Khinchine-type) inequalities that are

available in the literature. We will examine such applications next.

The advantage of the above approach is that it shifts our focus

to a new algorithmic task. This task most likely cannot always

be achieved due to the aforementioned hardness results, but in

specific cases it becomes a concrete new question that lends itself

to classical tools that may have not seemed relevant in the initial

formulation of the problem. This reframing also allows us to prove

various closure properties for the class of convex bodies for which

efficient quadratic or bilinear maximization is possible.

4.1 Closure Properties
Given normed spaces𝑋 = (R𝑛, ∥ · ∥𝑋 ) and 𝑌 = (R𝑛, ∥ · ∥𝑌 ), one can
obtain various other normed spaces. The most basic examples are

passing to a subspace or a quotient of 𝑋 . One can also consider the

normed spaces 𝑋 + 𝑌 = (R𝑛, ∥ · ∥𝑋+𝑌 ) and 𝑋 ∩ 𝑌 = (R𝑛, ∥ · ∥𝑋∩𝑌 )
whose unit balls are Ball(𝑋 ) +Ball(𝑌 ) = {𝑥 +𝑦 : (𝑥,𝑦) ∈ Ball(𝑋 ) ×
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Ball(𝑌 )} and Ball(𝑋 ) ∩Ball(𝑌 ), respectively; we call the former the

Minkowski sum of𝑋 and 𝑌 and we call the latter the intersection of

𝑋 and𝑌 . A further operation of great importance is the 1-parameter

family of complex
2
interpolation spaces {[𝑋,𝑌 ]\ }\ ∈[0,1] whose

definition is recalled in the full version [13] (see the monograph [11]

for a thorough account). There are of course more such operations

(a notable example is duality), but the above list of constructions

is singled out because it always results in a normed space whose

type 2 constant does not exceed 𝑂 (max{𝑇2 (𝑋 ),𝑇2 (𝑌 )}), which is

crucial for us due to Theorem 3.3.

In the full version [13], we use the above framework to show

that the class of normed spaces 𝑋 with 𝑇2 (𝑋 ) = 𝑂 (1) for which
there exists a polynomial time 𝑂 (1)-approximation algorithm for

Q
max

𝑋
(𝐴) is preserved under subspaces, quotients, Minkowski sums,

intersection and complex interpolation. Among these operations,

passing to subspaces is quite straightforward, but the rest rely on the

methodology that is developed here. Beyond the intrinsic interest

of such closure properties, we remark that if one starts with the

many examples of spaces that belong to the aforementioned class

(see below), then these operations produce a rich variety of new

examples that were beyond the reach of previous methods. Also,

observe that these closure properties do not assume any information

whatsoever on the initial algorithms: These algorithms are used

as a “black box” to design an approximate separation oracle for

the lower covariance body of the resulting normed space, after

which one applies the first part of Theorem 3.11. An analogous

treatment of the bilinear case is carried out using the second part

of Theorem 3.11, where closure under quotients and Minkowski

sums is derived under the assumption that cotype 2 constants of the

duals of the initial spaces are 𝑂 (1); we do not treat the rest of the

above-listed operations because they do not necessarily preserve

this bounded cotype 2 assumption on the dual.

4.2 Symmetric Norms
A norm ∥ · ∥ on R𝑛 is said to be a symmetric norm if ∥𝑥 ∥ ≍
∥(Y1𝑥𝜋 (1) , . . . , Y𝑛𝑥𝜋 (𝑛) )∥ for any 𝑥 ∈ R𝑛 , any permutation 𝜋 of

{1, . . . , 𝑛}, and any choice of signs Y1, . . . , Y𝑛 ∈ {−1, 1}.3 This is a
well studied class of norms occurring frequently in the computer

science, learning and optimization literature. Several papers have

attempted to characterize the symmetric norms that are appropriate

for various algorithmic tasks; see e.g. [5, 6, 14, 42, 62, 63].

In the full version [13], we use Theorem 3.11 to give a constant-

factor approximation algorithm for quadratic (respectively bilinear)

maximization over unit balls of symmetric norms whose type-2

constant (respectively the cotype-2 constant of their dual) is 𝑂 (1).
Combined with Theorem 3.3, we obtain a near characterization of

those symmetric norms for which quadratic maximization admits

a constant factor approximation algorithm.

The class of those symmetric norms that have a bounded (or

slowly growing) type-2 constant contains many examples that are

2
The real interpolation method (see [11]) furnishes another such 1-parameter family

of intermediate norms, but in the present work we will investigate only the complex in-

terpolation method and we expect that it would be mechanical to obtain the analogous

results for real interpolation using the same ideas.

3
One could replace the exact invariance under permutations and signs by the analogous

approximate requirement ∥𝑥 ∥ ≍ ∥ (Y1𝑥𝜋 (1) , . . . , Y𝑛𝑥𝜋 (𝑛) ) ∥. We will no do so here,

though our results work under that assumption as well.

not covered by the available literature. Below we will list some

explicit examples of symmetric norms appearing in the optimiza-

tion literature for various algorithmic tasks and for which we can

conclude either a new quadratic maximization approximation algo-

rithm or a new inapproximability result.

(1) An Orlicz norm ℓ𝑛
𝜙
is defined by setting for every 𝑥 ∈ R𝑛 ,

∥𝑥 ∥ℓ𝑛
𝜙

def

= inf

{
_ > 0 :

𝑛∑
𝑖=1

𝜙

( |𝑥𝑖 |
_

)
⩽ 1

}
,

where 𝜙 : [0,∞) → [0,∞) is a convex function satisfying

𝜙 (0) = 0 and 𝜙 (𝑡) > 0 for all 𝑡 > 0. Thus, in the special case

𝜙 (𝑡) = 𝑡𝑝 for some 𝑝 ⩾ 1 we have ℓ𝑛
𝜙
= ℓ𝑛𝑝 . Among the many

applications of Orlicz norms, we note that they are important

for the study of tail behaviour of random variables and are

studied in statistics/machine learning [22] as examples of

M-estimators with (convex loss functions).

The class of Orlicz norms with bounded type-2 constant has

a complete description [37] as the set of norms ℓ𝑛
𝜙
where

𝜙 : [0,∞) → [0,∞) satisfies the following two conditions.

(a) There are constants 𝐾, 𝛿, 𝑐 > 0 such that for all 𝑡 > 0, if

𝜙 (𝑡) ⩽ 𝛿 , then 𝜙 (2𝑡) ⩽ 𝐾𝜙 (𝑡) + 𝑐 .
(b) There is 𝜓 : [0,∞) → [0,∞) such that 𝑡 ↦→ 𝜓 (

√
𝑡) is

convex and 𝜙 is equivalent to 𝜓 in the sense that there

are constants 𝐾1, 𝐾2, 𝛿1, 𝛿2, 𝑐1, 𝑐2 > 0 such that𝜓 (𝑡) ⩽ 𝛿1
implies𝜙 (𝐾1𝑡) ⩽ 𝜓 (𝑡)+𝑐1 and𝜙 (𝑡) ⩽ 𝛿2 implies𝜓 (𝐾2𝑡) ⩽
𝜙 (𝑡) + 𝑐2 for all 𝑡 > 0.

(2) Normswhose unit balls are of the formBall(ℓ𝑛𝑝 )∩(𝛼Ball(ℓ𝑛𝑞 ))
have a 𝑂 (1) type-2 constant (i.e., independent of 𝑛, 𝛼) when-
ever 2 ⩽ 𝑝, 𝑞 < ∞. Quadratic maximization over such norms

is considered in order to capture optimization problems with

a sparsity restriction. For instance, the densest 𝑘-subgraph

and 𝑘-sparse principal component analysis, which are ex-

tensively studied optimization problems, can be cast as qua-

dratic maximization by taking the underlying norm to be

Ball(ℓ𝑛∞) ∩ (𝑘Ball(ℓ𝑛
1
)) and Ball(ℓ𝑛

2
) ∩ (

√
𝑘Ball(ℓ𝑛

1
)), respec-

tively; note that these norms have polynomially large type-

2 constant due to the ℓ1 component, which is consistent

with the widespread belief that densest 𝑘-subgraph and 𝑘-

sparse principal component analysis are hard to approximate.

The above examples with 2 ⩽ 𝑝, 𝑞 < ∞ can be viewed as

smoothed out versions of these classical algorithmic ques-

tions which do admit a polynomial time constant factor

approximation algorithm.

(3) Motivated by applications to kernel pattern matching, [51]

gave an approximation algorithm for the following symmet-

ric norm that has slowly growing type-2 constant.

∥(𝑥1, . . . , 𝑥𝑛)∥𝑝,∞
def

= max

𝑖∈{1,...,𝑛}
𝑖
1

𝑝 𝑥∗𝑖 ,

where 𝑝 ⩾ 2 and 𝑥∗
𝑖
denotes the entry of ( |𝑥1 |, . . . , |𝑥𝑛 |) with

the 𝑖-th largest magnitude.

(4) Order statistics norms are defined as the inner product of

a non-increasing vector 𝑎 with the sorted vector 𝑥∗. This
class is well studied in the clustering literature [18–20] and

includes e.g. the top-𝑘 norm (sum of top 𝑘 magnitudes of 𝑥 ).
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The type-2 constant of such norms is bounded whenever 𝑎

has bounded support.

4.3 Unitarily Invariant Matrix Norms
A norm ∥ · ∥ : 𝑀𝑛 (C) → [0,∞) on the space𝑀𝑛 (C) of𝑛×𝑛matrices

with complex entries is said to be unitarily invariant if ∥𝑈𝐴𝑉 ∥ =
∥𝐴∥ for any matrix 𝐴 ∈ 𝑀𝑛 (C) and any two unitary matrices

𝑈 ,𝑉 ∈ 𝑈𝑀𝑛 (C); this can be defined analogously for matrices with

real entries (using orthogonal matrices), as well as for rectangular

matrices, and all of our results hold in these settings. Key examples

include the Schtatten–von Neumann trace class S𝑝 for 𝑝 ∈ [1,∞],
which is defined by

∀𝐴 ∈ 𝑀𝑛 (C), ∥𝐴∥S𝑝
def

=

(
Tr

(
(𝐴𝐴∗)

𝑝

2

) ) 1

𝑝
=

(
Tr

(
(𝐴∗𝐴)

𝑝

2

) ) 1

𝑝

=

( 𝑛∑
𝑗=1

𝜎 𝑗 (𝐴)𝑝
) 1

𝑝
,

where 𝜎1 (𝐴) ⩾ . . . ⩾ 𝜎𝑛 (𝐴) ⩾ 0 are the singular values of 𝐴. Thus,

∥𝐴∥S∞ = ∥𝐴∥ℓ𝑛
2
(C)→ℓ𝑛

2
(C) is the usual operator norm of𝐴. Another

example is the Ky-Fan 𝑘-norm ∥ · ∥(𝑘) for each 𝑘 ∈ {1, . . . , 𝑛}, which
is the sum of the top 𝑘 singular values, i.e.,

∀𝐴 ∈ 𝑀𝑛 (C), ∥𝐴∥(𝑘)
def

=

𝑛∑
𝑗=𝑛−𝑘+1

𝜎 𝑗 (𝐴) .

More generally, if 𝐸 = (R𝑛, ∥ · ∥𝐸 ) is a symmetric normed space,

then the following norm is unitarily invariant and any unitarily

invariant norm is obtained in this way (the fact that this defines a

norm in not immediate; see e.g. [12] for a proof).

∀𝐴 ∈ 𝑀𝑛 (C), ∥𝐴∥S𝐸
def

= ∥(𝜎1 (𝐴), . . . , 𝜎𝑛 (𝐴))∥𝐸 .

A (substantial) theorem of [28] asserts that ∥ · ∥𝐸 has 𝑂 (1) type 2
or cotype 2 constant if and only if ∥ · ∥𝐸 does.

In the full version [13] we use Theorem 3.11 to obtain a constant-

factor approximation algorithm for quadratic (respectively bilinear)

maximization over unitarily invariant norms with bounded type-2

constant (respectively whose dual has cotype-2 constant). In par-

ticular, this provides a different rounding algorithm for the non-

commutative Grothendieck problem [50] (namely, bilinear maxi-

mization over the operator norm), albeit with a worse universal

constant than in [50]. As another concrete example, this gives a

constant factor approximation algorithm for bilinear maximization

over Ky-Fan 𝑘-norms when 𝑘 = 𝑂 (1). Combined with Theorem 3.3,

we thus obtain a near characterization of unitarily invariant matrix

norms over which quadratic maximization admits a constant factor

approximation algorithm.

4.4 Robust Principle Component Analysis
In [50], efficient bilinear maximization over the operator norm

(Schatten-∞) was used to give a constant factor approximation al-

gorithm for the following subspace approximation problem, called

𝑅1-PCA, which was introduced in [25]. Given a set of vectors

𝑣1, . . . 𝑣𝑚 ∈ R𝑛 find a 𝑘-dimensional subspace 𝑆 ⊆ R𝑛 maximizing

the sum of the Euclidean lengths of the orthogonal projections

Π𝑆𝑣1, . . . ,Π𝑆𝑣𝑚 of 𝑣1, . . . , 𝑣𝑚 onto 𝑆 . Thus, the goal of 𝑅1-PCA is

to find a 𝑘-dimensional subspace 𝑆 ⊆ R𝑛 for which the quantity∑𝑚
𝑖=1 ∥Π𝑆𝑣𝑖 ∥ℓ𝑛2 is (approximately) minimized.

Our framework implies that a more general class of robust PCA

variants admits constant factor approximation algorithms. Given

a normed space 𝑋 = (R𝑚, ∥·∥𝑋 ), one can use it to aggregate the

length of the projections, thus leading to the following subspace

approximation problem.

OPT

def

= max

dim(𝑆)=𝑘
∥(∥Π𝑆𝑣1∥2, . . . , ∥Π𝑆𝑣𝑚 ∥2)∥𝑋 .

Let 𝑇 denote the linear operator taking an𝑚 × 𝑘 matrix 𝑈 with

column vectors 𝑢1, . . . , 𝑢𝑘 ∈ R𝑛 as input and outputting the vector

(⟨𝑢1 , 𝑣1⟩, . . . ⟨𝑢𝑘 , 𝑣1⟩) ⊕ · · · ⊕ (⟨𝑢1 , 𝑣𝑚⟩, . . . ⟨𝑢𝑘 , 𝑣𝑚⟩),

where ⊕ denotes vector-concatenation. Let ∥·∥
𝑋 (ℓ𝑘

2
) be a norm

defined over the set of sequences (𝑎𝑖 )𝑚𝑖=1 ∈ (R𝑘 )𝑚 of 𝑘-dimensional

vectors and given by

∥(𝑎𝑖 )𝑚𝑖=1∥𝑋 (ℓ𝑘
2
)
def

= ∥(∥𝑎1∥2, . . . , ∥𝑎𝑚 ∥2)∥𝑋 .

Then, one can cast OPT as a bilinear maximization problem in the

following way.

OPT = max

𝑈 ∈𝑂𝑛

∥𝑇 (𝑈 )∥
𝑋 (ℓ𝑘

2
) = max

∥𝑈 ∥S∞⩽1
∥𝑇 (𝑈 )∥

𝑋 (ℓ𝑘
2
)

= ∥𝑇 ∥S∞→𝑋 (ℓ𝑘
2
) ,

where 𝑂𝑛 ⊆ 𝑀𝑛 (R) is the set of orthogonal matrices. The second

equality above follows since the extreme points of Ball(S∞) are
precisely𝑂𝑛 , and the maximum of a convex function over a convex

set occurs at an extreme point.

Thanks to this bilinear maximization formulation, Theorem 3.11

may be combined with the lower covariance separation oracles

constructed in the full version [13], to provide good approximation

algorithms for a variety of norms ∥·∥𝑋 , like constant approxima-

tions for sign-invariant norms with 2-concavity constant 1 or sym-

metric norms with bounded cotype-2 constant. We illustrate the

versatility of our framework by providing a more intricate example;

by combining Theorem 3.11 with the separation oracles constructed

in the full version [13] and using algorithmic closure properties

for complex interpolation (see the full version [13]), we obtain a

(log𝑛)𝑂 (1)
-factor approximation algorithm for the following re-

finement of robust-PCA: Find a 𝑘-dimensional subspace 𝑆 ⊆ R𝑛
(approximately) maximizing

∥(Π𝑆𝑣𝑖 )𝑚𝑖=1∥[𝑋0,𝑋1 ]\ ,

where [·, ·]\ denotes complex interpolation, 𝛼 ⩾ 0 is a parameter,

and

∥(Π𝑆𝑣𝑖 )𝑚𝑖=1∥𝑋0

def

=

𝑚∑
𝑖=1

∥Π𝑆𝑣𝑖 ∥2 and

∥(Π𝑆𝑣𝑖 )𝑚𝑖=1∥𝑋1

def

= 𝛼 ·
𝑚∑
𝑖=1

𝑚∑
𝑗=1

∥Π𝑆𝑣𝑖 − Π𝑆𝑣 𝑗 ∥2 .

As defined above, 𝑋1 is a semi-norm but can be made into a norm

by adding a sufficiently small multiple of ℓ𝑛
2
which would cause

negligible change to the objective value. By tuning the parameters

𝛼 ⩾ 0 and \ ∈ [0, 1], the above optimization problem intuitively
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asks for a subspace maximizing its correlation with the given vec-

tors {𝑣𝑖 }𝑚𝑖=1, while also requiring that the orthogonal projections

onto 𝑆 of these vectors are not clustered together much on average.

4.5 Brief Summary of the Literature and
Problems Captured by Quardatic
Maximization

Here we will mention some of what is known about the qua-

dratic and bilinear optimization problem over convex bodies. Qua-

dratic/bilinear maximization over Ball(ℓ𝑛
2
) correspond to the fa-

miliar linear-algebraic quantities maximum eigenvalue/maximum

singular value. The (non-origin-symmetric) case of (1) when 𝐾 is a

simplex has been investigated in [24, 34], partly in connection to

problems in computational biology. The case when 𝐾 is a polytope

with polynomially many facets is classical. It is among the most

important non-linear optimization problems, with a wide range of

applications in operations research, computational biology and eco-

nomics. See [10, 16, 27] for more information on the computational

complexity of such problems.

Perhaps the first nontrivial and most influential case of bilin-

ear maximization is Grothendieck’s classical inequality [30] and

its more common formulation in [43], which corresponds to the

case 𝐾 = Ball(ℓ𝑛∞). This leads to a constant factor polynomial time

algorithm, as shown in [4] (see [15] for the best known approx-

imation factor), with a variety of applications to combinatorial

optimization. The quadratic maximization problem over Ball(ℓ∞)
was studied in [21] with application to correlation clustering, and

the matching integrality-gap lower bound in this case was obtained

in [3]. Hardness results in these settings (under various complexity

assumptions) were obtained in [4, 7, 39, 58]. The survey [38] is de-

voted to the use of Grothendieck-type inequalities in combinatorial

optimization.

Krivine [41] (see also [56]) observed that Grothendieck’s inequal-

ity generalizes (with the same constant) to the class of norms of

the form

||| (𝑥1, . . . , 𝑥𝑛) |||
def

= ∥(𝑥2
1
, . . . , 𝑥2𝑛)∥

1

2

𝑌
,

where ∥ · ∥𝑌 is a norm on R𝑛 that satisfies the symmetry condi-

tion (3). Such norms are clearly invariant to flipping signs of the

entries and are precisely those norms having a 2-convexity con-

stant of 1 (see the full version [13] for definitions). Hereafter, we

shall refer to them as exactly 2-convex norms. Note in particular

that the above class includes the norm ℓ𝑛𝑝 whenever 𝑝 ⩾ 2. Un-

derlying Krivine’s observation is a constant factor bound on the

integrality gap of the bilinear analogue of the convex programming

relaxation (4) over exactly 2-convex norms; in [52], a different proof

of this was obtained. The problem of quadratic maximization over

exactly 2-convex norms was investigated in [51], where a constant

factor approximation algorithm was obtained under the additional

(necessary) assumption of bounded 𝑞-concavity for some finite 𝑞

(see the full version [13] for the definition); this was used in [51] to

obtain a (log log𝑛)𝑂 (1)
-approximation algorithm for a special case

of the quadratic assignment problem. It can also be shown that the

(log𝑛)-approximation algorithm for vertex expansion of a graph

due to [44] is a consequence of the algorithm of [51].

Implicit in the non-commutative Khintchine inequality [45] is

a constant factor convex programming algorithm for Quadratic

Maximization over Schatten-𝑝 when 2 ⩽ 𝑝 < ∞ (and a log𝑛-

approximation when 𝑝 = ∞). In the bilinear Schatten-∞ case,

Grothendieck [30] conjectured a noncommutative version of his

inequality which was proven in [53] (the sharp constant was ob-

tained in [33]). In [50], algorithmic proofs of the non-commutative

Grothendieck inequality were derived, thereby obtaining efficient

constant factor rounding algorithms for bilinear maximization over

Schatten-∞. This was used in [50] to give approximation algorithms

for robust principal component analysis and a generalization of

the orthogonal Procrustes problem. In [60], it was shown how

this can be used to bound the power of entanglement in quantum

XOR games. A corresponding (sharp) hardness result was obtained

in [17] (see also [35] for a different proof).

4.6 Other Problems in the Literature Captured
by Quadratic Maximization

The bilinear ℓ𝑝 case captures the problem of certifying hypercon-

tractivity which in turn has connections to small set expansion

and quantum separability ([8]). Vertex expansion and a related

analytic proxy ([44]) can be cast as quadratic maximization, and

so can densest-𝑘-subgraph, sparse-PCA, the spread constant of a

metric [2], and the Poincaré constant (in discrete domains). Ap-

proximability/inapproximability aspects of these expansion-type

problems have been the subject of a large body of work. Expansion-

type problems are of interest in part due to their connection to

the unique games conjecture, and also due to their relevance to

hardness results for optimization over pseudo-random instances.

For appropriate choices of linear maps and convex sets, quadratic

maximization also captures (upto constants) the maximization of

the absolute value of homogeneous polynomials of any constant de-

gree. Homogeneous polynomial maximization is a very expressive

class of problems in its own right, and has connections to quan-

tum information theory [8], refuting random constraint satisfaction

problems [57], statistical physics, tensor principal component anal-

ysis and tensor decomposition [9, 29, 36, 49], game theory, control

theory and population dynamics [23].

Quadratic maximization also captures problems of interest in

compressed sensing and coding theory, like subspace distortion, or

the sparsest vector in a subspace.
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