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We discuss Bézout’s identity, a fundamental theorem in number theory established by

Étienne Bézout in 1779. We give a proof by a method that also serves as a basis for proving

Fermat’s little theorem and Euler’s theorem. We then explore the mathematical underpin-

nings of Vernier calipers, elucidating their precision measurement capabilities and historical

origins. We derive a formula relating the number of divisions on the main and Vernier scales

of the caliper to the minimum length measurable by the Vernier, as determined by Bézout’s

identity, giving us a connection between these two concepts. As a conclusion, we ask Chat-

GPT if there is a connection between Bézout’s identity and the Vernier caliper; the response

prompts a reflection on the role of human imagination in scientific discovery and contrasts

it with the limitations of current artificial intelligence systems.

I. PREAMBLE: SOME BASIC CONCEPTS IN NUMBER THEORY

Before plunging into our exposition, we review some basic number theory concepts and defini-

tions that are used.

Every positive integer is either prime, that is not factorizable into integers, or composite, if it can

be factored. A fundamental result is that every integer has a unique factorization into primes, for

example 12 = 2×2×3. Two positive integers j and k are said to be relatively prime if they have no

prime factors in common. Thus their greatest common divisor is unity, abbreviated gcd{k, j} = 1.

For example, since 10 = 2× 5 and 9 = 3× 3, gcd{10, 9} = 1.

Two integers m and n are said to be congruent modulo j if m − n = Qj, or equivalently,

m = n+Qj, for some integer Q; this is written as m ≡ n (mod j). As an example, 22 ≡ 1 (mod 7)

because 22 = 1+3× 7. If mk ≡ 0 (mod j) and the integers k and j are relatively prime, then each

prime factor of j must divide m, since it cannot divide k. But this means that m is divisible by j,
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that is m ≡ 0 (mod j). This will be applied with m = n− l where n, l are both integers, with the

conclusion that nk ≡ lk (mod j), and k and j relatively prime, implies that n ≡ l (mod j). This

result is called the modular cancellation theorem.

Some further notation: We will use curly brackets to denote a set, for example {1, .., 3} denotes

the set with elements 1,2,3.

II. BÉZOUT’S IDENTITY

Best known for his work on the number of solutions of polynomial equations, Etienne Bézout

(1730-1783) left the world of number theory with an essential lemma or subsidiary theorem,

Bézout’s identity. It was officially published in 1779 in his book,“Théorie Générale des Équations

Algébrique” (General Theory of Algebraic Equations) [1], which explored systems of equations

in many variables [2]. Buried in this book, Bézout’s identity appears and relates to many basic

results in number theory; the proof method we give below is also used in proving Fermat’s little

theorem and Euler’s theorem. In our case, we will use a specific form of the identity: for some k

and j that are relatively prime, there exists some m and n such that, for any positive integer d less

than the larger of j and k, one has mk−nj = d, where m and n range over all positive integers [3].

Since k and j are relatively prime, they cannot be equal, so one must be larger than the other.

Without loss of generality, we assume j is the larger one, and start from the following,

gcd(k, j) = 1, j > k (1)

We begin by showing that the set of integers {1, ..., j − 1}k is congruent, (mod j), to the set of

integers {1, ..., j − 1}, that is, we want to show

{1, ..., j − 1}k (mod j) ≡ {1, ..., j − 1} (mod j) (2)

The sets on the left and right of this equation contain the same number of elements as long as

there are no duplications. There are clearly no duplications in the set on the right. Suppose there

is a duplication in the set on the left, that is there are positive integers l and n such that

nk ≡ lk (mod j) (3)

(4)
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This can be rewritten as

(n− l)k ≡ 0 (mod j) (5)

Using the modular cancellation theorem, which applies since k and j are relatively prime
(
Eq.

(1)
)

(n− l) ≡ 0 (mod j) (6)

However, for n and l to be both positive and less than j, they must be equal. So the set

{1, ..., j − 1}k contains no duplications since the multipliers of k in this set are all distinct.

Hence by the definition of congruence, we have now

{1, ..., j − 1}k = {m1, ...,mj−1}j + {1, ..., j − 1} (7)

However, all the mi in this equation must be nonnegative. Suppose mI were negative, mI =

−|mI | with |mI | > 0, then transposing we have

Ik + |mI |j = I, (8)

but this is impossible because the left hand side is bigger than j, and the right hand side is

smaller than j.

So we conclude,

{1, ..., j − 1}k − {m1, ...,mj−1}j = {1, ..., j − 1} (9)

for m positive, or in the Bézout form, the set of integers nk − mj for n and m positive and

gcd(k, j) = 1, always contains the set of integers {1, ..., j − 1}.

A. Exercises and Examples

Here, we give some concrete examples of Eq. (2), some of which you may prove on your own.
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Example 1:

Given that j = 10, k = 9

1× 9 ≡ 9 (mod 10)

2× 9 = 18 ≡ 8 (mod 10)

3× 9 = 27 ≡ 7 (mod 10)

.....

9× 9 = 81 ≡ 1 (mod 10).

(10)

That is, in set notation,

{1, 2, 3, ..., 9}9 ≡ (mod 10) {9, 8, 7, ..., 1} = {1, 2, 3, ..., 9} . (11)

,

Exercise: Prove that when k = j − 1, a reverse ordering is always produced

We will encounter the case k = j − 1 below, where it is used in the simplest realization of the

Vernier caliper.

But this is not true in general, for example when k and j are not separated by 1, we get a

scrambling in the ordering.

Example 2:

Given that j = 7, k = 5

1× 5 = 5 ≡ 5 (mod 7)

2× 5 = 10 ≡ 3 (mod 7)

3× 5 = 15 ≡ 1 (mod 7)

4× 5 = 20 ≡ 6 (mod 7)

5× 5 = 25 ≡ 4 (mod 7)

6× 5 = 30 ≡ 2 (mod 7)

(12)

So on the right we get 1,...,6, but in scrambled order: 5,3,1,6,4,2.
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FIG. 1: Drawing of a Vernier caliper [4] . The bottom jaws are for measuring outer diameter, for which we

give formulas below.

Exercise: Make up your example and work out the scrambling order.

Exercise: Search for Euler’s theorem, and prove it using the set congruence method used above

to prove Bézout’s identity.

III. THE CALIPER SYSTEM

The Vernier caliper was first created in 1631 by Pierre Vernier, a French Mathematician known

for inventing various measurement devices. The goal of the Vernier caliper was to gain more

accurate measurements using two separate graduated scales, the fixed main scale and the movable

Vernier scale, by exploiting the fact that the human eye excels at aligning fine lines with high

precision but lacks accuracy when interpolating within an open interval. The main scale measures

the desired unit’s integer and first decimal value (e.g. 1.1), and the Vernier scale measures values

in the second decimal place. (e.g. 0.01). To be specific we assume that the Vernier scale consists

of ten divisions, each of which are 0.9 mm=.09 cm [5], whereas the main scale (for a 10 cm caliper

capacity) is split into 100 divisions of 1 mm=.1 cm. The discrepancy in division size lets the

scale align at certain interval values, yielding a measurement to the hundredth decimal place.

The difference between the main scale division and the Vernier scale division, in this example,

(.1 − .09) cm = .01 cm is called the Vernier constant, and it determines the caliper’s precision.

The smaller the Vernier constant is, the higher the accuracy of the caliper. In this example, using

the caliper to measure an object .01 cm wide, since .01 + .09 = .1, the first tick on the Vernier

scale would align with the first tick on the main scale. To measure an object .03 cm wide, since

.03+ 3× .09 = .03+ .27 = .3, the third tick on the Vernier scale would align with the third tick on

the main scale, and so forth.

IV. THE BÉZOUT VERNIER

Let k be the number of divisions per centimeter on the main scale of the caliper, and let j be

the number of divisions per centimeter on the Vernier scale of the caliper, where j > k and both
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j and k are relatively prime. Let L be length in centimeters of the Vernier scale, up to the zero

point when the jaws are closed, and let D be the distance between the inner sides of the jaws, one

of which moves the Vernier scale.

Length of each division on the main scale: L/k

Length of each division on the Vernier scale: L/j

There are R divisions of size L/k on the main scale and S divisions of size L/j on the Vernier

scale at the place where the markings on the main and Vernier scales exactly align.

The total length on the main scale where markings align, R(L/k), is equal to the distance

between the caliper’s jaws plus the length on the Vernier scale, D+S(L/j). So as an equation, we

get

R(L/k) = D + S(L/j) (13)

Transposing the length of the Vernier scale to the other side we may write it in terms of the

distance between the jaws of the caliper,

D = R(L/k)− S(L/j) =
RL

k
− SL

j
(14)

Combining both terms on the right side, we get

D =
RLj − SLk

kj
= L(

Rj − Sk

kj
) . (15)

The minimum value of D reduces the numerator, Rj − Sk, to 1, which is always attainable by

Bézout’s identity,

Dmin = L(
1

kj
) =

L

k

1

j
(16)

This gives the standard formula for the “Vernier constant”, which is the minimum length (or

increment of length) measurable by use of the Vernier. An alternative formula is also given in an
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online engineering text [5] as the difference in widths of the main scale and Vernier scale divisions,

which is

L

k
− L

j
= L

j − k

jk
, (17)

which agrees with Eq. (16) when j − k = 1. This is the customary choice in caliper systems, and

what is illustrated in Fig. 1 where k = 9 and j = 10. A specific example of both formulas for the

Vernier constant is given next.

A. Convenient Versus Inconvenient Verniers

To give a specific example, we use millimeters as our unit of measurement. Thus, the main

scale will be divided into ten one-millimeter intervals, while the Vernier scale will be divided into

ten intervals of 0.9 millimeters.

Vernier: 0.9 mm width

Main: 1 mm width

According to online literature, one can calculate the Vernier constant in two equivalent ways [5]:

[1] 1 mm− 0.9 mm = 0.1 mm = Vernier Constant

[2] Main Scale Width
Number of V ernier Scale Intervals = 1 mm

10 = 0.1 mm = Vernier Constant

As noted in our general discussion, these formulas agree because j − k = 1.

Bézout’s identity gives more general calipers, but the alignment is not convenient because of

the scrambled order of tick labels, as seen already in Example 2 above, where we got a scrambled

order when k ̸= j − 1. To create easily read alignments, we must use the case where k = j − 1, as

it produces a simple caliper, where the ticks align at consecutive interval values.

Example:

Lets give an example of this phenomena, working in integers, as we did in previous sections.
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Given that j = 10, k = 9,

1× 10− 1× 9 = 1

2× 10− 2× 9 = 2

3× 10− 3× 9 = 3

.....

9× 10− 9× 9 = 9

(18)

The correspondence between the numbers 1...9 on left and right leads to an easily readable

Vernier: alignment of ticks at an integer n out of the set {1, 2, ..., 9} means the extra fraction of

diameter is .n mm.

Let’s try it now with k and j differing by 2:

Given that j = 7, k = 5,

3× 7− 4× 5 = 1

1× 7− 1× 5 = 2

4× 7− 5× 5 = 3

.....

7× 7− 8× 5 = 9

(19)

In order to maintain an increasing increment of 1, the tick values on the left had to be

scrambled. This would correspond to a harder to read Vernier.

In conclusion, we find that the difference between the number of divisions per unit value of

the Vernier scale and main scale should be one, as it produces a serially ordered tick alignment,

allowing the caliper to be conveniently read. That is why this specific configuration is deliberately

adopted in practical engineering calipers. Further examples of more general Vernier systems, from

a number theoretic point of view, have been given by Evans [6], with specific application of the

Chinese Remainder Theorem for simultaneous congruences rather than the Bézout identity.
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V. CHATGPT’S OPINION

Clearly, there is a connection between Bézout’s identity and the theory of the Vernier caliper,

but as far as we can tell it is not discussed anywhere on the internet. Moreover, the association

with Bézout’s identity is not immediately apparent, so when we asked ChatGPT “What is the

connection between Bézout’s identity and the Vernier caliper?”, we got this response:

“Bézout’s identity and the Vernier caliper are unrelated concepts from different math-

ematical and practical domains.

Bézout’s Identity:

Bézout’s identity is a theorem in number theory named after the French mathematician

Étienne Bézout. It states that for any two integers a and b, there exist integers x and

y such that ax+by = gcd(a, b), where gcd(a, b) is the greatest common divisor of a and

b. In other words, Bézout’s identity provides a way to express the greatest common

divisor of two integers as a linear combination of those integers.

Vernier Caliper:

The Vernier caliper is a precision measuring instrument used in various fields, such

as physics and engineering, to measure the dimensions of objects with high accuracy.

It consists of a main scale and a sliding Vernier scale. The Vernier scale allows for

measurements with a higher degree of precision than what is possible with just the

main scale. The difference between one main scale division and one Vernier scale

division is known as the least count of the Vernier caliper.

In summary, there is no direct connection between Bézout’s identity and the Vernier

caliper. Bézout’s identity is a mathematical theorem related to integers and their

greatest common divisors, while the Vernier caliper is a physical measuring tool used

for accurate length measurements. They belong to different areas of study and appli-

cation [7].”
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VI. CONCLUSION

So, there is a moral in this: many discoveries in mathematics and physics require a scientist’s

imagination, an irreplaceable tool which separates humans from computers. At this stage, artificial

intelligence (AI) is still reliant on manmade information databases, trained and biased by human

intellect, so self-taught software is not yet prevalent. The ability to think abstractly and make

intuitive leaps is a unique feature of human intelligence. Mathematical and physical theories

often emerge from a combination of rigorous logical reasoning and imaginative insight, whereas

computer artificial intelligence systems operate based on patterns and information present in their

training data. While computer based AI can generate novel combinations and responses, these are

essentially rearrangements of existing knowledge rather than true imaginative leaps.

Research in the development of explainable artificial intelligence, a system which allows for hu-

mans to retain intellectual oversight, is gaining traction, aiming to make AI systems more transpar-

ent and interpretable. This transparency is essential for human researchers to trust and collaborate

effectively with artificial intelligence, especially in domains as complex as mathematics and theo-

retical physics, but still does not go far enough. Eventually, if a self-learning software is created,

analogous to the human brain, computers may be able to construct creative connections between

physical and theoretical concepts, potentially unlocking a new pathway of scientific development.
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