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Background. The fundamental questions of metric geometry, particularly with regard to
metric transforms, have evolved from purely theoretical bases to impact upon an array of
applied fields; here we only mention prediction of stationary processes, approximation by
splines, and the statistics of big data. Over Euclidean space, works by Fréchet and Schoenberg
in [Ann. of Math. 1935] provided characterizations of such metric transforms in terms of
matrix positivity, following Menger. A variant was also studied by Schoenberg in [loc. cit.],
wherein he characterized metric embeddings into Euclidean spheres, and in [Duke Math. J.
1942] he classified the positive definite functions on them. This was recast as a positivity
preserver problem and pursued by Rudin [Duke Math. J. 1959] in the dimension-free case,
and by Loewner in fixed dimension (see Horn [Trans. AMS 1969]).

In recent works, we have refined and strengthened these results on both fronts: dimension-
free (à la Schoenberg and Rudin) and in fixed dimension (following Loewner and Horn); an
account of some of this theory, old and new, has appeared in book form.

In our Summer Collaboration from 10th to 21st July 2023 at the Institute for Advanced
Study, we have made further progress along both of these fronts, as is now described.

1. Dimension-free setting: preservers of negativity. Schur’s Theorem in [Crelle 1911]
asserts that the cone of N × N positive semidefinite matrices is closed under the entrywise
product for any N . Schoenberg and Rudin proved in the work cited above that a function
f : (−1, 1) → R applied entrywise preserves the collection of such matrices of all sizes and
entries in (−1, 1) if and only if f is represented by a power series with non-negative coefficients.

Recently, we have obtained enhanced versions of these results. In [J. Eur. Math. Soc.
2022], we significantly reduced the test set of matrices used in Schoenberg’s characterization
of dimension-free positivity preservers, in one and several variables:

Theorem 1. Let I := (−ρ, ρ), (0, ρ), or [0, ρ), where 0 < ρ 6 ∞, and let m be a positive
integer. The following are equivalent for a function f : Im → R.

(1) For each N > 1, and all tuples of N×N positive semidefinite matrices (A(1), . . . , A(m))
with all entries in I, the matrix

f [A(1), . . . , A(m)] ∈ RN×N with (j, k) entry f(a
(1)
jk , . . . , a

(m)
jk )

is positive semidefinite.
(2) The previous statement holds, but restricted (for each N > 1) to tuples of Hankel

N ×N matrices of rank at most 3.
(3) The function f is the restriction to Im of a real-analytic function on (−ρ, ρ)m, with

non-negative Maclaurin coefficients:

f(x) =
∑

α∈Zm
+

cαxα for all cα > 0, where xα :=
m∏
i=1

xαi
i .

Such convergent power series F are also said to be absolutely monotone functions on the
non-negative part of the domain, [0,∞)m.
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For our Summer Collaborators project we explored a broader setting, wherein the matrices
are allowed to have negative eigenvalues. We considered two kinds of test sets:

• S(k)N (I), the set of real symmetric N × N matrices with entries in I and exactly k
negative eigenvalues, counted with multiplicity; and

• S(k)N (I), the set of real symmetric N × N matrices with entries in I (not I) and at
most k negative eigenvalues, counted with multiplicity. That is,

S(k)N (I) =

k⊔
j=0

S(j)N (I).

If k = 0 then both test sets coincide, and equal the (previously studied) sets of positive
semidefinite matrices.

We show in forthcoming work that the preservers of the sets
⋃
N>1 S

(k)
N and of

⋃
N>1 S

(k)
N

are far more restrictive when k > 0 – in contrast to the richer class of absolutely monotone
functions (power series) above. The several-variables situation is also similar, as we show:

Theorem 2. Let I := (−ρ, ρ), (0, ρ), or [0, ρ), where 0 < ρ 6 ∞, let k and m be positive
integers, and suppose f : Im → R.

(1) The entrywise transform f [−] sends S(k)N (I)m to S(k)N for all N > k if and only if
f(x) = cxp0 for a constant c > 0 and some p0 ∈ [1,m], or, when k = 1, we may also
have f(x) ≡ −c for some c > 0.

(2) The transform f [−] sends S(k)N (I)m to S(k)N for all N > k if and only if f(x) = cxp0 +d
for some p0 ∈ [1,m], with either c = 0 and d ∈ R, or c > 0 and d > 0.

These characterizations follow from a stronger result that isolates the transforms such that

S(k1)N (I)× · · · × S(km)
N (I)→ S(l)N (1)

for every dimension N . Here the multiplicities of negative eigenvalues k1, . . . , km > 0 are
allowed to differ. By permuting variables, we may assume that all zero ki are promoted to
the initial indices; thus,

k1 = · · · = km0 = 0 < km0+1, . . . , km for some 0 6 m0 6 m. (2)

In forthcoming work, carried out in part at the IAS, we have obtained the classification of
the transforms (1) (which was used to prove Theorem 2). The following result covers most
cases of this classification:

Theorem 3. Let I := (−ρ, ρ), (0, ρ), or [0, ρ), where 0 < ρ 6∞. Also let k1, . . . , km > 0 be
integers, not all zero, and satisfying (2) for some integer m0 < m.

Suppose l = 1 if kp = 1 for some p ∈ [1,m] and l ∈ [1, 2K − 2] otherwise, where K =
min{kp : p ∈ [1,m], kp > 0}. Given a function f : Im → R, the following are equivalent.

(1) The map f [−] sends S(k1)N (I)× · · · × S(km)
N (I) → S(l)N for all N > max{ki}.

(2) There exist an index p0 ∈ [m0 + 1,m], a function F : (−ρ, ρ)m0 → R, and a constant
c > 0 such that
(a) we have the representation

f(x) = F (x1, . . . , xm0) + cxp0 for all x ∈ Im, (3)

(b) the function x′ 7→ F (x′)− F (0) is absolutely monotone on [0, ρ)m0,
(c) if c > 0 then p0 is unique and l > kp0, and
(d) if c > 0 and l = kp0 then F (0) > 0.
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Thus, the characterization reveals a combination of the rich class of preservers in Theorem 1
with the restricted, rigid class in Theorem 2.

2. Fixed-dimension setting: strict positive definiteness and strict monotonicity
of Schur polynomial ratios. When restricted to a fixed dimension, the study of positivity
preservers is more challenging: to date, a complete characterization of the preservers of
positive semidefiniteness on 3 × 3 matrices remains unknown. When restricted to power
series, those with non-negative Maclaurin coefficients preserve positive semidefiniteness in all
dimensions, by the Schur product theorem, but no other examples were found until recently.
In [Adv. Math. 2016], we discovered the first entrywise polynomial positivity preservers with
negative coefficients. This work revealed quite unexpected connections between analysis and
symmetric function theory. It was taken forward for larger classes of functions by one of
us with Tao in [Amer. J. Math. 2021]; this latter work also showed a Schur-polynomial
characterization of weak majorization of real tuples. Both of these facts relied upon the
following “Schur monotonicity lemma” from loc. cit.:

Theorem 4. Fix tuples m = (m0, . . . ,mN−1) and n = (n0, . . . , nN−1) in ZN+ with strictly
increasing entries such that mj 6 nj for all j. The ratio of Schur polynomials

(0,∞)N → (0,∞); u 7→ sn(u)

sm(u)

is coordinatewise non-decreasing.

(Here, the Schur polynomial sn(u) is defined to be det(u
nj−1

i )Ni,j=1/ det(uj−1i )Ni,j=1 when u has

distinct coordinates, and extended by continuity to (0,∞)N . While this is an algebraic object
from representation theory, it is being studied in this setting as a function on the positive
orthant.) In turn, Theorem 4 helped show the following preserver result in loc. cit.:

Theorem 5. Fix a dimension N > 1 and integer exponents 0 6 n0 < · · · < nN−1 < M . For
real coefficients c0, . . . , cN−1 and c′, let

h(x) := c0x
n0 + · · ·+ cN−1x

nN−1 and fc′(x) := h(x) + c′xM .

Given ρ ∈ (0,∞], the following are equivalent.

(1) The entrywise map f [−] preserves positive semidefiniteness on the set PN
(
[0, ρ]

)
of

all n× n positive matrices with entries in [0, ρ].
(2) The map f [−] preserves positive semidefiniteness on the subset of PN

(
[0, ρ]

)
consist-

ing of rank-one matrices.
(3) Either c0, . . . , cN−1 and c′ are non-negative, or c0, . . . , cN−1 > 0 and c′ > −C−1,

where

C =

N−1∑
j=0

V (nj)
2

V (n)2
ρM−nj

cj

and the Vandermonde determinant

V (m) :=
∏

06k<l6N−1
(ml −mk) for any m = (m0, . . . ,mN−1),

with N -tuples

nj := (n0, . . . , n̂j , . . . , nN−1,M) and n := (n0, . . . , nN−1),

where n̂j indicates that nj is omitted.

http://dx.doi.org/10.1016/j.aim.2016.04.016
http://dx.doi.org/10.1353/ajm.2021.0049


4 ALEXANDER BELTON, DOMINIQUE GUILLOT, APOORVA KHARE, AND MIHAI PUTINAR

In particular, Theorem 5 identified a sharp negative threshold −C−1, above which every
value of c′ yields a positivity preserver. Such fixed-dimension polynomial preservers with
negative coefficients were not previously known.

We now describe two results from another forthcoming work – also partly carried out at the
IAS – in which we took a closer look at the two preceding results. First, we have shown that
the entrywise polynomial map fc′ for c′ > −C−1, which preserves positive semidefiniteness, in
fact yields strict positive definiteness (that is, all eigenvalues positive instead of non-negative):

Theorem 6. With notation as in Theorem 5, let n0 = 0, c1, . . . , cN−1 > 0, and c′ > −C−1.
If all rows of A ∈ PN ([0, ρ]) are distinct then fc′ [A] is positive definite.

That A has distinct rows is an obvious necessary condition for fc′ [A] to be non-singular.
Theorem 6 says that this condition is also sufficient.

Akin to the above results, Theorem 6 is proved using a Schur-monotonicity phenomenon
which we have now shown, and which similarly enhances Theorem 4 to strict monotonicity:

Theorem 7. The function u 7→ sn(u)/sm(u) from Theorem 4 is coordinatewise strictly
increasing on (0,∞)N .

More strongly, this strict monotonicity is now shown over parts of the boundary of the
orthant.

Remark 8. Given previous works (cited above), we have also shown “strict” counterparts
of both Theorems 6 and 7 for non-integer powers.

In order to obtain the results above, we used two techniques which may be of independent
interest. The latter was proved during our IAS visit.

(1) Compression and inflation of matrices with isogenic block structure. A real symmetric
matrix A = (aij)

N
i,j=1 respects the block structure associated to a partition π =

{I1, . . . , Im} of {1, . . . , N} if the entry aij is independent of i, j ∈ Ik for some k. The
compression map collapses each cell Ik (and hence each Ij × Ik) to a single entry,
sending the matrix A to the m×m matrix with entries given by the constant values
along the fibres of the projection. The reverse inflation map restores the repetitions
of matrix entries in A. These are linear, mutually inverse maps that preserve rank,
positive semidefiniteness, and the entrywise product.

(2) Rank-one lower bounds with positive and distinct entries. If A ∈ PN
(
[0,∞)

)
has

distinct rows, then there exists u ∈ [0,∞)N with distinct entries such that A > uuT

and u has a zero entry if and only if A has a zero row.
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