Higher Teichmüller spaces and Higgs bundles

Brian Collier University of California Riverside

Character varieties

- ▶ S a closed oriented smooth surface of genus $g \ge 2$
- ▶ G a real or complex connected **simple** Lie group (e.g. $SL_n\mathbb{C}$)

Define the G-character variety of S by

$$\mathcal{X}(S,\mathsf{G}) = \mathrm{Hom}^+(\pi_1 S,\mathsf{G})/\mathsf{G}$$

conjugacy classes of completely reducible reps $\rho:\pi_1\mathcal{S}\to\mathsf{G}.$

Questions for today:

- ▶ How many components does $\mathcal{X}(S, G)$ have?
- Are some components more interesting than others?

Example: For $PSL_2\mathbb{R} = Isom^+(\mathbb{H}^2)$,

- $|\pi_0(\mathcal{X}(S,\mathsf{PSL}_2\mathbb{R}))| = 4g 3 \text{ (Goldman 88)}$
- two of them consist entirely of "discrete and faithful reps."
- ightharpoonup Teich $(S) \cup$ Teich $(\overline{S}) \subset \mathcal{X}(S,\mathsf{PSL}_2\mathbb{R})$ open and closed subset

Some known results on components

Given a representation $\rho: \pi_1 S \to G$, we can build a flat G-bundle

$$E_{
ho} = \widetilde{S} imes_{
ho} \mathsf{G} o \mathsf{S}$$
 $\leadsto au: \pi_0(\mathcal{X}(\mathsf{S},\mathsf{G})) \longrightarrow H^2(\mathsf{S},\pi_1\mathsf{G}) \cong \pi_1\mathsf{G}.$

- ▶ If G is **compact**, then τ is a bijection. (Narasimhan-Sheshadri '65, Ramanathan '75)
- ▶ If G is **complex** then τ is a bijection. (J. Li '94) **Corollary:** If K < G is maximal compact, then every $\rho: \pi_1S \to G$ can be deformed to $\rho': \pi_1S \to K \hookrightarrow G$.
- ▶ If G is a **split real** Lie group (e.g. $PSL_n\mathbb{R}$), then there exists $\rho \in \mathcal{X}(\pi_1 S, G)$ which cannot be deformed to a compact representation. (Hitchin '91)

Picture of components of K < G

Definition

A higher rank Teichmüller space is a connected component of $\mathcal{X}(S,\mathsf{G})$ consisting entirely of discrete and faithful representations.

Higgs bundles and Nonabelian Hodge

Let X be a Riemann surface structure on S. Fixing this data, we get a moduli space $\mathcal{M}(X,\mathsf{G})$ of polystable G-Higgs bundles on X.

Theorem (Hitchin, Donaldson, Simpson, Corlette)

There is a real analytic isomorphism

$$\mathcal{T}:\mathcal{M}(X,\mathsf{G})\to\mathcal{X}(S,\mathsf{G})$$
.

So, these spaces have the same number of components. Provides more tools to study topology, but breaks symmetry.

Works by relating stability to existence of a special metric.

- ► (Hitchin, Simpson) On Higgs bundle side, a metric that solves a gauge theoretic equations $F_h + [\Phi, \Phi^{*_h}] = 0$.
- (Corlette, Donaldson) On character variety side, an equivariant map $h_{\rho}:\widetilde{X}\to \mathsf{G}/\mathsf{K}$ to the symmetric space which is *harmonic*.

What is a Higgs bundle

For $G = GL_n\mathbb{C}$, a Higgs bundle is a pair (\mathcal{E}, Φ) , where

- $ightharpoonup \mathcal{E} o X$ is a rank n holomorphic vector bundle of degree 0,
- $lackbox{\Phi} \in \Omega^{1,0}(X, End(\mathcal{E}))$ is holomorphic, $\Phi : \mathcal{E} \to \mathcal{E} \otimes \Omega^{1,0}_X$.

For G complex, a Higgs bundle is a pair (\mathcal{E}, Φ) , where

- $ightharpoonup \mathcal{P}_{\mathsf{G}}
 ightarrow X$ is a holomorphic principal G-bundle,
- $\Phi \in \Omega^{1,0}(X, \operatorname{ad}(\mathcal{P}_G))$ is holomorphic.

Slope stability for Φ -invariant reductions \leadsto moduli space $\mathcal{M}(X,\mathsf{G})$ of semistable G-Higgs bundles.

 (\mathcal{E},Φ) polystable if and only if there is a metric h on \mathcal{E} such that

$$F_h + [\Phi, \Phi^{*_h}] = 0$$

$$\rightarrow$$
 $A_h + \Phi + \Phi^{*_h}$ is a flat G connection

Higgs for a real group G

For G real with maximal compact K, set $\mathfrak{p}=\mathfrak{k}^\perp\cong T_KG/K$, $\leadsto K_\mathbb{C}$ and $K_\mathbb{C}$ -invariant $\mathfrak{g}_\mathbb{C}=\mathfrak{k}_\mathbb{C}\oplus\mathfrak{p}_\mathbb{C}$.

A G-Higgs bundle is a pair $(\mathcal{E}_{K^{\mathbb{C}}}, \Phi)$, where

- $ightharpoonup \mathcal{E}_{\mathsf{K}^{\mathbb{C}}} o X$ is a holomorphic principal $\mathsf{K}^{\mathbb{C}}$ -bundle
- $lackbox{\Phi} \in \Omega^{1,0}(\mathcal{E}_{\mathsf{K}^{\mathbb{C}}} \times_{\mathsf{K}^{\mathbb{C}}} \mathfrak{p}^{\mathbb{C}})$ which is holomorphic.
- $ightharpoonup \Phi$ is identified with $dh_{\rho}^{1,0}$ of harmonic map.

For compact groups $\Phi = 0$, hence $\rho \in \mathcal{X}(\mathsf{G})$ factors through K if and only if $\mathcal{T}(\rho) \in \mathcal{M}(\mathsf{G})$ has $\Phi = 0$.

For $G = SL_n\mathbb{R}$, we have K = SO(n) and $\mathfrak{sl}_n\mathbb{R} = \mathfrak{so}(n) \oplus sym_0(\mathbb{R}^n)$. So, an $SL_n\mathbb{R}$ -Higgs bundle is tuple (\mathcal{E}, Q, Φ) , where

- $ightharpoonup \mathcal{E}$ is a holomorphic rank n bundle equipped with a symmetric isomorphism $Q:\mathcal{E} o \mathcal{E}^*$,
- $lackbox{\Phi}: \mathcal{E}
 ightarrow \mathcal{E} \otimes \Omega_X^{1,0}$ satisfying $\Phi^T Q = Q \Phi$ and $\bar{\partial}_E \Phi = 0$.

Teichmüller space from SL₂ℝ-Higgs bundles

An $SL_n\mathbb{R}$ -Higgs bundle (\mathcal{E}, Q, Φ)

- $ightharpoonup \mathcal{E}$ is a holomorphic rank n bundle equipped with a symmetric isomorphism $Q: \mathcal{E} \to \mathcal{E}^*$,
- $lackbox{\Phi}: \mathcal{E}
 ightarrow \mathcal{E} \otimes \Omega_X^{1,0}$ satisfying $\Phi^T Q = Q \Phi$ and $\bar{\partial}_E \Phi = 0$.

When n=2, set $K=\Omega_X^{1,0}$ and consider (\mathcal{E},Q,Φ) given by

$$\mathcal{E} = \mathcal{K}^{\frac{1}{2}} \oplus \mathcal{K}^{-\frac{1}{2}} \quad Q = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} : \mathcal{E} \to \mathcal{E}^* \quad \Phi = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} : \mathcal{E} \to \mathcal{E} \otimes \mathcal{K}$$

To this example, we can add $q \in H^0(K^2) \cong \mathbb{C}^{3g-3}$

$$(\mathcal{E}, Q, \Phi) \longrightarrow (\mathcal{E}, Q, \Phi + \begin{pmatrix} 0 & q \\ 0 & 0 \end{pmatrix})$$

Theorem (Hitchin '87)

- $ightharpoonup H^0(K^2) o \mathcal{M}(\mathsf{SL}_2\mathbb{R})$ is injective, open and closed map.
- ▶ Under the identification $\mathcal{T}: \mathcal{M}(\mathsf{SL}_2\mathbb{R}) \to \mathcal{X}(\mathsf{SL}_2\mathbb{R})$, this component identifies with Teichmüller space Teich(S).

Aside on nilpotents and Slodowy Slices

Consider $\mathfrak g$ a **complex** simple Lie algebra and the nilpotent cone

$$N_{\mathfrak{g}}\subset \mathfrak{g}$$

Jacobson-Morozov Thm implies every $f \in N_{\mathfrak{g}} \setminus \{0\}$ can be completed to an \mathfrak{sl}_2 -triple $\{f, h, e\}$, where

$$[h, f] = -2f$$
 $[h, e] = 2e$ $[e, f] = h$

Slodowy slice through f is a linear slice for through $G \cdot f$ parameterized by the vector space $V_e = \ker(\operatorname{ad}_e)$.

$$S_f = f + V_e$$
.

For
$$\mathfrak{sl}_2\mathbb{C}$$
, $f=\begin{pmatrix}0&0\\1&0\end{pmatrix}$, $e=\begin{pmatrix}0&1\\0&0\end{pmatrix}$ and

$$S_f = f + \begin{pmatrix} 0 & \lambda \\ 0 & 0 \end{pmatrix}$$

Hitchin component

Idea: Use principal embedding of $SL_2\mathbb{C} \to G^\mathbb{C}$ to embed Teich(S) Higgs bundles into $G^\mathbb{C}$ -Higgs and consider a "Slodowy slice"

For $SL_n\mathbb{C}$, take the irr. action of $SL_2\mathbb{C}$ on $\mathbb{C}^n = Sym^{n-1}(\mathbb{C}^2)$.

For
$$n = 3$$
, $f = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ $e = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

$$S^2(K^{\frac{1}{2}} \oplus K^{-\frac{1}{2}}), S^2\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = K \oplus \mathcal{O} \oplus K^{-1}, \begin{pmatrix} 0 & q_2 & q_3 \\ 2 & 0 & q_2 \\ 0 & 2 & 0 \end{pmatrix}$$

Now add to highest weight spaces, this is an SL₃ℝ-Higgs bundle

Hitchin '91

 $H^0(K^2) \oplus \cdots \oplus H^0(K^n) \to \mathcal{M}(SL_n\mathbb{R})$ is injective, open and closed. For general complex G, this gives an injective, open, closed map

$$igoplus_{j=1}^{\mathsf{rk}\,\mathfrak{g}} H^0(\mathsf{K}^{m_j+1}) o \mathcal{M}(\mathsf{G}^\mathbb{R}_{\mathit{split}}).$$

The idea of Labourie's Anosov condition

This component is called the **Hitchin component**. How much does the Hitchin component generalize Teich(S)?

Theorem (Labourie '06, Fock-Goncharov '06)

The Hitchin component consists entirely of discrete and faithful representations, and is hence a higher rank Teichmüller space.

Labourie developed the notion of Anosov representations.

Facts: There is a class of reps $A \subset \mathcal{X}(S, G)$ called Anosov which generalize many features of Teich(S):

- $ho \in \mathcal{A} \Rightarrow \mathsf{discrete} \ \mathsf{and} \ \mathsf{faithful}$
- ▶ $\rho \in \mathcal{A} \Rightarrow$ holonomies of geometric structures
- \triangleright \mathcal{A} is open in $\mathcal{X}(S,G)$ BUT not necessarily closed (generalization of quasi-Fuchsian reps)
- key tool given by a boundary map to a flag variety

$$\xi_{\rho}: \partial \pi_1 \mathcal{S} \to \mathsf{G/P}$$

The idea of Positivity

Key tool given by boundary map $\xi_{\rho}:\partial\pi_{1}S\to\mathsf{G}/\mathsf{P}$

Guichard-Wienhard '18

For some very special and classified pairs (G,P_{Θ}) , generic triples in G/P_{Θ} have a "cyclic order"

$$\leadsto$$
 Positive Anosov reps : $\mathcal{A}^{\Theta ext{-}pos}\subset\mathcal{X}(S,\mathsf{G})$

open and conjectured to also be closed.

Conjecture: Guichard-Labourie-Wienhard

The set $\mathcal{A}^{\Theta\text{-}pos}$ is closed and defines all higher Teichmüller spaces.

Slightly stronger and now known to be true in many cases:

- \blacktriangleright $\mathcal{A}^{\Theta-pos}$ are exactly the higher Teich spaces
- ▶ Every component of $\mathcal{X}(S,\mathsf{G}) \setminus \mathcal{A}^{\Theta\text{-}pos}$ is labeled by the topological invariant $\tau \in \pi_1\mathsf{G}$.

Possible strategy: Translate notion of positivity into the language of Higgs bundles prove closed. Too hard...

Alternative

Come up with a different Lie theory notion (magical \mathfrak{sl}_2 -triples), adapted to Higgs bundle language and prove a theorem.

Two results joint with Bradlow, Garcia-Prada, Gothen, Oliveira:

- ► Classification of magical \$12-triples, which agrees with classification of positive structures,
- ► Higgs Slodowy slice construction defines components of M(G) containing positive representations.

Using these Higgs bundles results, Guichard-Labourie-Wienhard proved the Higgs components are higher Teichmüller spaces.

What's a magical \mathfrak{sl}_2 -triple

- ▶ Let $\mathfrak{g}_{\mathbb{C}}$ be a complex simple Lie algebra, and $\{f, h, e\} \subset \mathfrak{g}_{\mathbb{C}}$ be an \mathfrak{sl}_2 -triple.
- $ightharpoonup V = \ker(\mathrm{ad}_e) \subset \mathfrak{g}_\mathbb{C}$ highest weight spaces

$$V = V_0 \oplus V_+$$

0 and positive ad_h -weight spaces.

▶ Define a **vector space** involution $\sigma_e : \mathfrak{g} \to \mathfrak{g}$ by

$$\sigma_e(f) = -f$$
 $\sigma_e|_{V_0} = +\mathrm{Id}$

and
$$\sigma_e(\operatorname{ad}_f^j(v)) = (-1)^{j+1} \operatorname{ad}_f^j(v)$$
 for $v \in V_+$.

Definition

 $\{f,h,e\}\subset \mathfrak{g}$ is magical if σ_e is a Lie algebra homomorphism.

Note, magical defines a real form $\mathfrak{g}\subset\mathfrak{g}_\mathbb{C}$ with $\mathfrak{g}_\mathbb{C}=\mathfrak{k}_\mathbb{C}\oplus\mathfrak{p}_\mathbb{C}$

$$f+V_+\subset \mathfrak{p}_\mathbb{C}$$
 and $V_0\subset \mathfrak{k}_\mathbb{C}$.

Theorems

Theorem (Bradlow, C, Garcia-Prada, Gothen, Oliveira '21)

For each magical \mathfrak{sl}_2 -triple $\{f,h,e\}\subset \mathfrak{g}_\mathbb{C}$ with associated real form G, there are components $\mathcal{P}_e(G)\subset \mathcal{X}(S,G)$, such that

- 1. $\mathcal{P}_e(\mathsf{G})$ contains positive representations.
- 2. $\mathcal{P}_e(G)$ does not contain compact representations.
- 3. $\mathcal{P}_e(G)$ does not contain representations factoring through proper parabolic subgroups.

The components are constructed via a Higgs bundle 'Slodowy slice' through magical \mathfrak{sl}_2 -triples. Proofs are harder because the parameter space is itself a moduli space.

Theorem (Guichard, Labourie, Wienhard '21)

Properties 1. and 3. above imply the spaces $\mathcal{P}_e(G^\mathbb{R})$ are higher Teichmüller spaces.

Classification of magical \mathfrak{sl}_2

Theorem (BCGGO '21)

There are four families of magical \mathfrak{sl}_2 -triples, the associated real groups are

- 1. G is a split real group (e.g, $SL_n\mathbb{R}$)
- 2. G is a Hermitian group of tube type (e.g. SU(n, n))
- 3. $G \cong SO(p,q)$ for 1
- 4. G is a quaternionic real form of F₄, E₆, E₇, E₈.

This is the same as Guichard-Wienhard's list of groups which have a notion of positivity.

The $\mathfrak{sl}_2's$

- 1. Principal \mathfrak{sl}_2 in \mathfrak{g}
- 2. \mathfrak{sl}_2 given holomorphic $\mathbb{D} \to \mathsf{G}/\mathsf{K}$ with maximal holomorphic sectional curvature.
- 3. Principal \mathfrak{sl}_2 in $\mathfrak{so}(2p+1,\mathbb{C})\subset\mathfrak{so}(p+q,\mathbb{C})$
- 4. Principal in $\mathfrak{g}_2 \subset \mathfrak{f}_4 \subset \mathfrak{e}_6 \subset \mathfrak{e}_7 \subset \mathfrak{e}_8$.

Example:
$$e = \begin{pmatrix} 0 & \mathrm{Id}_n \\ 0 & 0 \end{pmatrix} \in \mathfrak{sl}_{2n}\mathbb{C}$$

$$\leadsto \{f,h,e\} = \{ \begin{pmatrix} 0 & 0 \\ \mathrm{Id}_n & 0 \end{pmatrix}, \ \begin{pmatrix} \mathrm{Id}_n & \\ & -\mathrm{Id}_n \end{pmatrix}, \ \begin{pmatrix} 0 & \mathrm{Id}_n \\ 0 & 0 \end{pmatrix} \}$$

	\mathfrak{g}_{-2}	g 0	\mathfrak{g}_2
W_2	$\begin{pmatrix} 0 & 0 \\ C & 0 \end{pmatrix}$	$\begin{pmatrix} B & 0 \\ 0 & -B \end{pmatrix}$	$\begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix} = V_{+}$
$n_2 = n^2$	_	+	_
W_0		$\begin{pmatrix} D & 0 \\ 0 & D \end{pmatrix}$	
$n_0 = n^2 - 1$		+	
		V_0	

$$\sigma_e: \mathfrak{sl}_{2n}\mathbb{C} \to \mathfrak{sl}_{2n}\mathbb{C} \leadsto \mathfrak{h}^{\mathbb{C}} \oplus \mathfrak{m}^{\mathbb{C}}$$

$$\dim(\mathfrak{h}^{\mathbb{C}}) = 2n^2 - 1 \quad \Rightarrow \quad \mathfrak{g} = \mathfrak{su}_{n,n}.$$