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I met Michael Atiyah in the spring of 1977 when he was lecturing
at Harvard. He invited me to visit in Oxford at the end of 1977.

During that visit, Michael was lecturing about gauge theory
instantons in four dimensions. With Vladimir Drinfeld, Nigel
Hitchin, and Yuri Manin, he had just discovered the ADHM
construction of instantons via twistor theory and algebraic
geometry. Instantons were an exciting topic in physics at the time,
largely because of the work of Gerard ’t Hooft in using instantons
to solve the “U(1) problem” of the nuclear force. By the end of
1977, we also knew - from an observation by Albert Schwarz - that
’t Hooft’s work on the U(1) problem could be understood as an
application of the Atiyah-Singer index theorem.



So for most of that month, there were very lively discussions about
instantons. But toward the end of the month, Atiyah changed the
subject. He drew my attention to two physics papers that I had
not seen, one by Peter Goddard, Jean Nuyts, and David Olive, and
one by Olive with Claus Montonen. He said that he thought there
was something deep here and I should go to London to discuss the
matter with Olive.



Here is the abstract of the paper of Goddard, Nuyts, and Olive:



And here is the Montonen-Olive abstract:



Atiyah explained to me that what Goddard, Nuyts, and Olive
(GNO) were defining as the “magnetic gauge group” was actually
the same as the Langlands dual group in the context of the
Langlands program of number theory. I am pretty sure that Atiyah
is the one who made this connection, though as far as I know he
never wrote anything about it. Like other physicists of the time, I
had never heard of the Langlands program, or of the name Robert
Langlands. But Atiyah assured me that the Langlands program of
number theory was something very deep and that he thought the
physicists must likewise be on to something important.



Let me first explain a little of what Goddard, Nuyts and Olive had
said. Let us consider gauge theory, first for the case of abelian
gauge group G = U(1) – in the real world, the gauge group of
electromagnetism. There are “electrically charged particles” such
as the electron. The most fundamental definition of the electric
charge of a particle is that it is a representation of G associated to
the particle, although, since every representation of U(1) is the nth

power of a fundamental representation, for some integer n, you can
think of electric charge as just being an integer. A less abstract
way to describe this is to say that electric charge is “quantized”
and the charge of any particle is an integer multiple of the charge
of an electron.



In U(1) gauge theory, the “gauge field” is a connection A on a
unitary complex line bundle L over spacetime. We write F = dA
for the curvature of A. The quantum wavefunction of the electron
is a section ψ of L. Dirac in the 1930’s had introduced the idea of
a magnetic monopole (as a quantum object; in classical physics the
idea was older). Dirac’s concept of the monopole was that the
position of the monopole is a singularity p in space at which the
line bundle L and connection A are undefined; the complement in
R3 of the point p is contractible to a two-sphere S

and the magnetic charge is

m =

∫
S
c1(L),

an integer.



If we ask that the connection A should satisfy Maxwell’s equations,
we can determine what the connection must be for a monopole at
rest. The curvature is

F =
m

2
? d

1

|~x |
.

If and only if m is an integer, there is a line bundle L with
connection A over R3\p such that the curvature F = dA is what I
have written; L and A are unique up to isomorphism.



Now let us discuss nonabelian gauge theory, say with a simple
nonabelian gauge group G . Over spacetime, there is now a
G -bundle E , with connection A and curvature F = dA + A ∧ A.
Electric charge is easy to define. The electric charge of any particle
is a representation R of G . What we should mean by magnetic
charge is more subtle. The most direct analog of what I said for
G = U(1) is to again say that a monopole is a point (or a small
region) in space at which E and A are not defined and that
magnetic charge classifies the choice of a G -bundle over the
surrounding two-sphere S

With this interpretation (which is appropriate in the right context),
magnetic charge of G takes values in π1(G ).



That is not the answer that GNO wanted. They considered a
theory in which, by a Higgs mechanism (the same Higgs
mechanism that was famously confirmed by the LHC accelerator at
CERN in 2012) the gauge group is effectively reduced (at low
energies, or for most practical purposes) to a maximal torus
T ⊂ G . If this reduction only occurs away from the point p, then,
reasoning as before, we can define a magnetic charge that classifies
T -bundles (rather than G -bundles) over a two-sphere

so it takes values in π1(T ), which (for a torus T ) is the same as
Hom(U(1),T ).



On the other hand, once we assume that the gauge symmetry is
effectively reduced from G to a maximal torus T , we should
classify electric charge by a representation of T . Irreducible
representations of the abelian group T are 1-dimensional, so they
correspond to elements of Hom(T ,U(1)). So in the setup
considered by GNO, they had:

I Electric charge: Hom(T ,U(1)).

I Magnetic charge: Hom(U(1),T ).



GNO then went on to make the observation that had attracted the
interest of Michael Atiyah: For any simple Lie group G , there is
another simple Lie group G∨, with maximal torus T∨, such that

Hom(T ,U(1)) = Hom(U(1),T∨)

and reciprocally

Hom(U(1),T ) = Hom(T∨,U(1)).

In other words, in the GNO interpretation (at least with the gauge
symmetry reduced or “Higgsed” to a maximal torus on each side)
electric charge of G is magnetic charge of G∨, and vice-versa. Of
course, some of you will notice that, as originally observed by
Atiyah, the GNO dual group G∨ is the same as the Langlands dual
group.



The point of the second paper of Montonen and Olive

was to propose a role for all this in quantum dynamics.



Quantum gauge theory is a generalization of classical gauge theory
that depends on an extra parameter, the gauge coupling e (a single
parameter in the case of a simple gauge group). Quantum gauge
theory reduces to classical gauge theory when e is small. Quantum
gauge theory is quite difficult to understand when e is not small.



Gauge theories with different gauge groups are not equivalent
classsically. But Montonen and Olive proposed that they can be
equivalent quantum mechanically. More specifically, they proposed
a particular example of a pair of gauge theories, one with gauge
group G , one with gauge group G∨, which they suggested would
be equivalent quantum mechanically, but not classically. The
equivalence was supposed to be such that electric charge in the
first theory is mapped to magnetic charge in the second, and
vice-versa. Because of this, Montonen-Olive duality is often called
electric-magnetic duality. The duality was supposed to invert the
coupling constant

e∨ 2 =
4π

e2

(where e∨ is the gauge coupling of the G∨ theory) and since e and
e∨ cannot be simultaneously small, this would account for why the
duality is not visible classically.



It is going to be hard to properly convey how wild the
Montonen-Olive conjecture seemed at that time. Quantum gauge
theory was only understood for fairly small e, and the region of
large e where quantum effects are big was really terra incognita.
The Montonen-Olive conjecture seemed like a jump not just
beyond what we understood but beyond what we could possibly
understand. But anyway Montonen and Olive had some striking
possible evidence for their conjecture, namely they showed that
certain classical formulas for the masses of various particles –
particles with electric and/or magnetic charge – satisfied relations
which, if valid quantum mechanically, would follow from their
duality conjecture.



I took Atiyah’s advice and arranged to talk to Olive in London, but
by the time I got there, I was pretty skeptical. What bothered me
about the GNO paper was that the matching between electric and
magnetic charge only worked after Higgsing, that is, reduction to a
maximal torus. I felt a fundamental statement should not depend
on this Higgsing. What bothered me about the Montonen-Olive
paper was that their technical assumption of vanishing of the
“Higgs potential” in their theory was, by all standard logic, not
consistent quantum mechanically.



The point that bothered me in the GNO paper was not resolved
until almost 30 years later, but Olive and I actually succeeded in
resolving my technical objection to the Montonen-Olive paper.
Their technical assumptions are not valid in the ordinary or
“bosonic” gauge theory that they assumed, but they actually are
valid in a supersymmetric version of the theory. A supersymmetric
theory is roughly a theory of differential forms on a function space
rather than functions on a function space. And we showed that
with at least N = 2 supersymmetry, the classical mass formulas of
Montonen and Olive are actually valid quantum mechanically.
(Supersymmetric gauge theories in four spacetime dimensions are
classified by the amount of supersymmetry, N = 1, 2 or 4. The
N = 4 theory is unique for a given gauge group; a theory with
N = 2 is not completely determined by the gauge group but it is
highly constrained. The N = 1 theory is less highly constrained
and is closer to realistic physics. Very roughly, N = 1, 2, and 4
correspond to complex numbers, quaternions, and octonions.)



The resulting paper was probably the most significant one I had
written up to that point:
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We show that in supersymmetric theories with solitons, the usual supersymmetry algebra is not valid; the algebra is modi- 
fied to include the topological quantum numbers as central charges. Using the corrected algebra, we are able to show that in 
certain four dimensional gauge theories, there are no quantum corrections to the classical mass spectrum. These are theories 
for which Bogomolny has derived a classical bound; the argument involves showing that Bogomolny's bound is valid quantum 
mechanically and that it is saturated. 

In this letter, we will describe a novel phenomenon 
which occurs in supersymmetric theories which possess 
multiple vacua and topological quantum numbers: the 
tradit ionally assumed supersymmetry algebra is not  
correct, but is modif ied by the appearance of  the topo- 
logical quantum numbers as central charges [1].  This 
seems to be a general phenomenon which always oc- 
curs in supersymmetric theories which have topologi- 
cal charges. 

One striking consequence is that,  in certain four di- 
mensional theories, we can determine the exact quan- 
tum mechanical mass spectrum. In these theories, it 
turns out that the classical approximation to the mass 
spectrum (the tree approximation for "elementary par- 
ticles"; the semiclassical approximation for solitons) is 
exact; there are no quantum corrections. For  example,  
in a certain supersymmetric form of  the G e o r g i -  
Glashow model,  with 0 (3)  broken down to U(1) by 
the Higgs phenomenon,  we can determine the exact 
mass spectrum: the mass of  any particle is the vacuum 
expectation value o f  the Higgs field times x / ~  + g2, e 
and g being the electric and magnetic charges of  that 
particle. 
1 Research supported in part by the National Science Founda- 

tion under Grant No. PHY77-22864. 

This formula was first discovered at the classical 
level for monopoles  and dyons by Prasad and 
Sommerfield; Bogomolny; Coleman et al.; and 
Sommerfield [2].  That it is true classically for all 
states was pointed out  by Montonen and Olive [3],  
who also speculated that it might be exact quantum 
mechanically. That this formula, in the supersymmet- 
ric theory,  receives no quantum corrections in the one- 
loop level has been shown in an explicit calculation by 
D'Adda et al. [4].  

Technically, in these theories the supersymmetry 
algebra is modified to include central charges because 
certain surface terms, customarily discarded in deriving 
the algebra, are actually nonvanishing. 

Let us consider first two dhnensional examples. The 
supersymmetric form of  a scalar field theory in two di- 
mensions [5] is 

L = fd2x [~(3~b) 2 + - ~ O ~ i ~  
(1) 

1 1 r - -  -- ~ V2(~b) - 2 V (~b)xIt~], 

where xp is a Majorana fermion, and V(~b) an arbitrary 
function. The conserved supersymmetry current is 
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But I drew the wrong conclusion from it. I thought that we had
explained the formulas of Montonen and Olive without the radical
assumption of their duality, so that there was no real evidence for
the duality.



Even if I had drawn the right conclusion, I don’t think the time
was ripe to understand Montonen-Olive duality, so I doubt I would
have made too much progress in that period. But a few
noteworthy things were done in those early days.



For one thing, Hugh Osborn took a closer look at the quantization
of the monopole and discovered that only the N = 4 theory (not
the more general N = 2 theories that Olive and I had considered)
has the right properties for Montonen-Olive duality:

Later I will explain what happened for N = 2.



At the time, I remained skeptical about Montonen-Olive duality,
but in any event it also seemed clear – and on this I was surely
correct – that even if this duality is correct, it was not going to be
possible to make significant progress in understanding it using
methods available at the time. However, before going on, I should
point out one basic fact that was important later. For the case of
an abelian theory with gauge group U(1) – to be precise, a “free”
theory without charged fields – the duality actually is correct, and
in this case supersymmetry is not required. For U(1),
Montonen-Olive duality is a quantum version of Hodge duality for
harmonic forms. In other words, Maxwell’s equations
dF = d ? F = 0 in vacuum say that the curvature F of a U(1)
gauge field is a harmonic form. This condition is invariant under
Hodge duality

F → ?F

and for gauge group U(1), Montonen-Olive duality is a quantum
version of this.



But anyway, for a number of years there was not much progress
with Montonen-Olive duality. During this period, Atiyah was
working – among other things – on monopoles. I would like to
explain a little about that work.



Dirac had considered a monopole in U(1) gauge theory, and in
that description the monopole is a singularity:

The equations we know in physics are not complete and usually, a
“singularity” in some description of a physics problem is really a
region in space or spacetime where the given level of description
breaks down and a more complete description is needed. For
example, electromagnetism is described classically – and even in
Quantum Electrodynamics – as a U(1) gauge theory, but in the
Standard Model it turns out that a more complete description
requires the gauge group U(2) – with a “Higgs mechanism” that
accounts for why the theory can be approximated for many
purposes as a U(1) gauge theory.



In the early 1970’s, ’t Hooft and A. M. Polyakov had shown that if
one replaces U(1) gauge theory by an SU(2) gauge theory with
“Higgsing” to U(1) – meaning that in low energy observations, the
gauge group is effectively reduced to U(1) – then a completely
smooth description of the monopole is possible. In this description
(and for small e!), the monopole corresponds to a solution of a
nonlinear partial differential equation.



The simplest equation describing monopoles is the “Bogomolny
equation” (introduced by E. B. Bogomolny) which is an equation
for a connection A on a G -bundle E → R3 and a zero-form φ (the
“Higgs field”) with values in the adjoint bundle ad(E ). The
equation is

F = ?dAφ.

This equation is a sort of three-dimensional cousin of the instanton
equation in four dimensions. It has many fascinating properties,
many of which were explored by Atiyah and Hitchin in their book
The Geometry and Dynamics of Magnetic Monopoles (1988).
Among other things, the moduli spaces of solutions of the
Bogomolny equations are hyper-Kahler manifolds. For magnetic
charge 2, the “reduced” moduli space (factoring out trivial
symmetries) is four-dimensional and Atiyah and Hitchin described
it explicitly. This is the Atiyah-Hitchin manifold, a
four-dimensional hyper-Kahler manifold with SO(3) symmetry.



Another development of the same period, also influenced by
Atiyah, was Donaldson theory of smooth four-manifolds,
constructed using instantons of nonabelian gauge theory. Atiyah
recommended understanding Donaldson theory as a problem for
physicists. By 1988, it was clear that Donaldson theory could be
understood as a “twisted version” of N = 2 super Yang-Mills
theory. Remember that N = 2 super Yang-Mills theory is almost a
candidate for a theory that could have Montonen-Olive duality. It
satisfies the criterion of Olive and me, but not the more refined
criterion of Osborn. The relation of N = 2 super Yang-Mills theory
to Donaldson theory raised the question of whether progress with
the N = 2 theory would lead to progress with four-manifolds. I was
pessimistic about this, however.



By the early 1990’s, the landscape concerning Montonen-Olive
duality was changing. The main change, to me, was that
colleagues – Ashoke Sen, John Schwarz, Mike Duff, Paul
Townsend, Chris Hull, and unfortunately too many others to
properly credit here – were developing conjectures analogous to
Montonen-Olive duality, but for string theory rather than quantum
field theory. The arguments were highly suggestive. To me, there
was no smoking gun, and I did not see how one could hope to make
solid progress. But I was not as skeptical as I had been in 1977.



The smoking gun was submitted to the arXiv on February 7, 1994:



Sen had understood that Montonen-Olive dualty of N = 4 super
Yang-Mills theory implies the existence of multi-monopole bound
states. He showed that such bound states would correspond to L2

harmonic forms of middle dimension on the reduced monopole
moduli spaces – the hyper-Kahler manifolds that had been studied
by Atiyah and Hitchin. For the two-monopole case, Atiyah and
Hitchin had described the reduced moduli space explicitly, and
their description was simple enough that Sen could explicitly
demonstrate the existence of the requisite L2 harmonic form.



This paper had an electrifying impact for me. For one thing, I
viewed it as the first fundamentally new test of Montonen-Olive
duality since the early days. After it passed this test, I really did
not seriously doubt any more whether it was true. Moreover, Sen
had shown that the tools at hand really were sufficient to make
real progress. This inspired us all to try harder.



In roughly the preceeding year, Nati Seiberg had made significant
progress on the “dynamics” (the quantum behavior) of N = 1
super Yang-Mills theory. N = 1 super Yang-Mills is closer to
physics, but farther from Montonen-Olive duality, than N = 2.
Nati invited me to become involved in trying to understand the
quantum behavior for N = 2. Remember, N = 2 is the theory
which is almost correct for Montonen-Olive duality. The Sen paper
and certain qualitative considerations focused our attention on the
possible role of electric-magnetic duality for understanding the
dynamics of N = 2. What we eventually discovered (about five
months after Sen’s paper) is that N = 2 is governed by a sort of
effective field theory version of Montonen-Olive duality. Because of
a Higgs mechanism, the N = 2 theory can be generically described
at low energies by an effective U(1) theory. U(1) gauge theory
does have electric-magnetic duality, as I explained before.
Combining these statements with some qualitative considerations
and some known facts about N = 2 super Yang-Mills theory,
Seiberg and I arrived at a description of this theory.



From a physical point of view, the main insight in our work is that
although the theory can be generically described at low energies as
a free U(1) theory with massive charges and monopoles, there are
special points in field space at which the monopoles behave as
light (or even massless) elementary particles. This was rather
dramatic, and was in the spirit of Montonen and Olive: a particle –
the monopole – which for weak coupling is understood as an
extended object, a solution of the Bogomolny equations, can
behave for strong coupling like a pointlike elementary particle.



Applied to the twisted version of the N = 2 theory that is related
to Donaldson theory, our results implied that the four-manifold
information contained in the Donaldson invariants can alternatively
be obtained by counting solutions of what are now generally called
the Seiberg-Witten equations. The Seiberg-Witten equations are
equations for a U(1) connection A and a charged spinor field M:

F+ = MΓM, /DM = 0.

Here M is the massless monopole. In this description, M doesn’t
look like a solution of the Bogomolny equations, which it was in
the book of Atiyah and Hitchin.



Many other developments followed, and it became clear in the mid
1990’s that electric-magnetic duality is not just true, but is very
important in the general understanding of both quantum field
theory and string theory. However, the relation to the Langlands
correspondence remained unclear.



Before going on, I have to backtrack and explain another thread in
the story: Starting around 1990, Alexander Beilinson and Vladimir
Drinfeld had formulated a “geometric” version of the Langlands
correspondence, for an ordinary Riemann surface (rather than a
number field). From the beginning, they made heavy use of
ingredients familiar in physics, such as current algebra (affine
Kac-Moody algebras). I made many efforts to understand what
they were saying, but in those years I found it impossible. It
seemed that ingredients familiar in physics had been scrambled up
in a totally unfamiliar way.



What especially perplexed me were the geometric Hecke
transformations (originally introduced, I believe, in the 1970’s by
M. S. Narasimhan and S. Ramanan) that are completely central in
geometric Langlands. The setting is as follows. E → C is a
holomorphic GC bundle over a Riemann surface C (GC is a simple
complex Lie group). A Hecke modification of E at a point p ∈ C is
a holomorphic GC bundle E ′ → C together with an isomorphism ϕ
between E and E ′ over C\p:

ϕ : E |C\p ∼= E ′|C\p.

For example, if GC = C∗, then E is a holomorphic line bundle
L → C , and an example of a Hecke modification of L at p is
L′ = L(p) = L ⊗O(p), which by definition is isomorphic to L
away from p. If GC = SL(2,C), we can represent E by a rank 2
holomorphic vector bundle. For any local decomposition of E as a
sum of line bundles L1 ⊕ L2, an example of a Hecke modification
of E would be E ′ = L1(p)⊕ L2(−p).



There are different types of Hecke modification possible at a given
point p. For example, for GC = C∗, instead of L → L(p), we could
have taken L → L(np) = L ⊗O(p)n, for any integer n. An
important input in the geometric Langlands program is the
geometric Satake correspondence (developed by Lusztig, Drinfeld,
Ginzburg, Mirkovic, and Vilonen, among others) which says that
the possible types of Hecke modification for G are labeled by
irreducible finite dimensional representations of the dual group G∨.
(For example, for GC = C∗, the dual group is G∨C = C∗ again.
Irreducible representations of G∨C are labeled by an integer, and
this is the integer n in L → L(np).)



For years, I puzzled over how such geometric Hecke
transformations could possibly be related to physics – as I
presumed they had to be if geometric Langlands was to have a
physical interpretation. Eventually it turned out that there is a
simple answer in terms of basic ingredients of quantum gauge
theory, namely electric-magnetic duality between Wilson and ’t
Hooft operators, and the Bogomolny equations, which had been
studied so thoroughly by Atiyah and Hitchin as well as a number of
physicists. (This answer was one of the main ideas in the paper I
wrote in 2006 with Anton Kapustin on gauge theory and geometric
Langlands. There won’t be time today to explain the other ideas.)



A “line operator” in quantum field theory, in general, is a
modification of a theory along an embedded one-manifold γ. γ
could be either a closed loop or an “open” curve with endpoints on
the boundary of spacetime:



The most simple line operator is the Wilson operator, which is
simply the holonomy of a connection, taken in some representation
R of the gauge group. For a closed loop

one defines the Wilson operator to be the trace, in the
representation R, of the holonomy of a connection A

WR(γ) = TrRHolγA

(which physicists write as TrRP exp
∮
γ A). For an open curve, the

Wilson operator needs a slightly longer discussion, which I omit.
Note that there is a Wilson operator for every irreducible
representation R.



The Wilson operator is widely used in physics to probe
confinement of quarks, and around 1980 this motivated ’t Hooft to
try to define the electric-magnetic dual of a Wilson operator. The
definition that he gave was adequate for his application, though it
turns out that for geometric Langlands, we need a more precise
definition. The original definition actually uses the naive definition
of magnetic charge that we discussed at the beginning. On a
four-manifold M, a one-manifold γ is of codimension 3. ’t Hooft
imagined doing gauge theory with a G bundle E → M\γ that is
only defined on the complement of γ. Since the “link” of a
1-manifold in four dimensions is a two-sphere S2, there is a local
invariant in this situation

which is the topological type of a G -bundle on this S2, classified
by π1(G ). The ’t Hooft operator as originally defined by ’t Hooft is
classified by this invariant.



However, Kapustin (2005) gave a more precise definition. His
discussion differed from what ’t Hooft had said in that he imposed
a more precise condition on what is happening near the singularity,
rather than just specifying the topology of the situation.



The idea is to ask that near γ, the fields are asymptotic to a
specified singular solution of the Yang-Mills equations. The
singularity considered is as follows. For a local model of a
codimension 3 singularity, we can take the behavior at the origin in
R3. For G = U(1), the charge 1 “Dirac monopole” solution is a
connection A0 with curvature

F0 =
1

2
? d

1

|~x |
.

For any G , with Lie algebra g, pick a homomorphism ρ : u(1)→ g
and ask that, near ~x = 0, the connection A should be asymptotic
to

Aρ = ρ(A0).

An ’t Hooft operator of type ρ supported on γ is defined by the
recipe “do gauge theory with this kind of singularity along γ.”



Since we only care about Aρ up to conjugation, we can think of ρ
as a homomorphism to a maximal torus t:

ρ : u(1)→ t.

Of course we only care about ρ up to a Weyl transformation.



To summarize:

(1) Wilson operators in G gauge theory are classified by
representations of G , which in turn are classified by highest
weights. A highest weight is a homomorphism ρel : T → U(1).

(2) ’t Hooft operators in G gauge theory are classified by
singularities that are labeled by homomorphisms ρmag : U(1)→ T .



Now we can state the duality between Wilson and ’t Hooft
operators: in the Montonen-Olive duality between theories with
gauge groups G or G∨, Wilson operators of G correspond to ’t
Hooft operators of G∨, and vice-versa, using the natural
correspondence between

ρ : T → U(1)

and
ρ∨ : U(1)→ T ,

and the fact that G and G∨ have the same Weyl group. This is
the same as the original GNO duality that Atiyah had pointed out
to me in 1977, except that by restating it in terms of line operators
rather than particles, it is not necessary to invoke a Higgs
mechanism.



But what does this have to do with geometric Hecke
transformations? Here we have to consider the Bogomolny
equations, roughly because they govern a time-independent
situation in a four-dimensional supersymmetric gauge theory. The
Bogomolny equations, as we discussed earlier, are in three
dimensions. In three dimensions, a codimension three singularity is
at an isolated point,

So we have to solve the Bogomolny equations with an isolated
singularity of Dirac monopole type. (The Bogomolny equations
with this type of singularity were first studied by Kronheimer,
1986, followed by Pauly, 1990.)



In describing a “spectral curve” that governs solutions of the
Bogomolny equations on R3, Atiyah and Hitchin used a
decomposition R3 = R× R2, and viewed R3 as a two-parameter
family of copies of R. Here we will instead use the same
decomposition and view R3 as a one-parameter family of copies of
R2. Actually, we can replace R2 by any Riemann surface C . So we
will study the Bogomolny equations on R× C , viewed as a
one-parameter family of copies of C . The picture is like this, where
we parametrize R with a real variable y :



As explained by Atiyah and Bott, any connection A on a G -bundle
E → C (where C is a Riemann surface) determines a holomorphic
GC bundle EC: one simply takes the (0, 1) part of A to define a
holomorphic structure on the complexification of E . So any gauge
field A on C × R determines a 1-parameter family of holomorphic
bundles Ey → C , for y ∈ R. However, if A obeys the Bogomolny
equation

F = ?dAφ

(for some φ) then Ey , as a holomorphic bundle over C , is
canonically independent of y . That is true because 2 of the 3 real
components of the Bogomolny equation can be put in the form

0 =

[
D

Dy
+ iφ,

D

Dz̄

]
.

This condition tells us the gauge transformation we have to make
to show that the complex structure of Ey is independent of y .
(The third Bogomolny equation can be viewed as a moment map
condition, similarly to what Atiyah and Bott said in discussing
two-dimensional Yang-Mills theory.)



Now suppose that there is an ’t Hooft/Dirac singularity at some
point p × y0 ∈ C × R:

Then Ey is still canonically independent of y except at y = y0.
And even when we go across y = y0, the bundle Ey is still
canonically independent of y if we restrict it to C\p. So in other
words, what is happening at y = y0 is that the bundle Ey

undergoes a Hecke modification at the point p. The “type” of
Hecke modification is determined by the particular ’t Hooft/Dirac
singularity, associated to ρ : U(1)→ T . Electric-magnetic duality
relates this to some ρ∨ : T∨ → U(1) and thus to a representation
of the dual group. This relation between geometric Hecke
modifications and representations of the dual group is the same
one that is claimed in the geometric Langlands correspondence.



The moduli space of solutions of the Bogomolny equations
coincides with the moduli space of Hecke modifications as defined
in algebraic geometry; this follows from the “moment map”
interpretation of the “third” Bogomolny equation.



In short, I have explained some of the main ideas in the gauge
theory interpretation of the geometric Langlands correspondence. I
have tried to describe how the story began with the work of
Goddard, Nuyts and Olive and then Montonen and Olive in the
1970’s. I have said something about how the story unfolded in
parallel with other developments in mathematics and physics, and I
have explained something about the influence on this process of
Michael Atiyah.


