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CHARACTERIZING PRINCIPAL MINORS OF SYMMETRIC MATRICES

VIA DETERMINANTAL MULTIAFFINE POLYNOMIALS

ABEER AL AHMADIEH AND CYNTHIA VINZANT

Abstract. Here we consider the image of the principal minor map of symmetric matrices
over an arbitrary unique factorization domain R. By exploiting a connection with symmetric
determinantal representations, we characterize the image of the principal minor map through
the condition that certain polynomials coming from so-called Rayleigh differences are squares
in the polynomial ring over R. In almost all cases, one can characterize the image of
the principal minor map using the orbit of Cayley’s hyperdeterminant under the action
of (SL2(R))n ⋊ Sn. Over C, this recovers a characterization of Oeding from 2011, and
over R, the orbit of a single additional quadratic inequality suffices to cut out the image.
Applications to other symmetric determinantal representations are also discussed.

1. Introduction

Given an n×n matrix A with entries in a commutative ring R, let AS denote the principal
minor obtained by taking the determinant of the principal submatrix of A with rows and
columns indexed by S. Let Symn(R) denote the space of symmetric n × n matrices with
entries in R. The principal minor map is the map

ϕ : Symn(R) → R2n given by ϕ(A) = (AS)S⊆[n],

where we take A∅ = 1. Here we seek to characterize the image of the principal minor map
over arbitrary unique factorization domains R, and in particular, arbitrary fields.

Over R and C, this problem was studied by Holtz and Sturmfels [HS07], who show that
the image is invariant under an action of SL2(R)

n⋊Sn and conjectured that the vanishing of
polynomials in the orbit of the hyperdeterminant under this group cuts out the image of the
principal minor map over C. This conjecture was resolved by Oeding in 2011, using tools
from representation theory [Oed11]. Here we generalize this result to hold over arbitrary
unique factorization domains, except those with exactly three elements.

We will study this problem by associating to the matrix A the multiaffine polynomial

fA = det (diag(x1, . . . , xn) + A) =
∑

S⊆[n]

AS

∏

i 6∈S

xi.

This translates the problem of characterizing the image of the principal minor map to the
problem of characterizing multiaffine polynomials in R[x1, . . . , xn] with symmetric determi-
nantal representations. Key to this characterization will be Rayleigh differences.

The Rayleigh difference of a polynomial f with respect to i, j ∈ [n] is defined to be

(1) ∆ij(f) =
∂f

∂xi

∂f

∂xj

− f
∂2f

∂xi∂xj

.

These polynomials play a prominent role in the theory of stable polynomials [Brä07]. Us-
ing Dodgson condensation [Dod67], one can see that for the determinantal polynomial fA,
all Rayleigh differences ∆ij(fA) are squares in the polynomial ring R[x1, . . . , xn]. In 2015,
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2 ABEER AL AHMADIEH AND CYNTHIA VINZANT

Kummer, Plaumann and the second author prove the converse over R [KPV15] and here we
prove it over an arbitrary unique factorization domain.

Formally, to a = (aS)S⊆[n] in R2n we associate the polynomial fa =
∑

S⊆[n] aS
∏

i 6∈S xi.

Theorem 3.5. Let R be a unique factorization domain. An element a = (aS)S⊆[n] in R2n is
in the image of Symn(R) under the principal minor map if and only if a∅ = 1 and for every
i, j ∈ [n], ∆ij(fa) is a square in R[x1, . . . , xn].

For n = 3, ∆12(fa) is a quadratic polynomial in the remaining variable x3, namely

∆12(fa) = (a1a2 − a∅a12)x
2
3 + (a1a23 + a2a13 − a3a12 − a∅a123)x3 + (a13a23 − a3a123).

For this polynomial to be a square, its discriminant must vanish, giving us a necessary
equation on the coefficients of fa. The discriminant of ∆12(fa) with respect to x3 equals the
well-known Cayley 2× 2× 2 hyperdeterminant,

HypDet(a) = (a1a23 + a2a13 − a3a12 − a∅a123)
2 − 4(a1a2 − a∅a12)(a13a23 − a3a123)

= a2∅a
2
123 + a21a

2
23 + a22a

2
13 + a23a

2
12 − 2a∅a1a23a123 − 2a∅a2a13a123 − 2a∅a3a12a123

− 2a1a2a13a23 − 2a1a3a12a23 − 2a2a3a12a13 + 4a∅a23a13a12 + 4a123a1a2a3.

The coefficients of 1 and x2
3 in ∆12(fa) are a13a23− a3a123 and a1a2− a∅a12, respectively. We

see that ∆12(fa) is a square if and only if these two coefficients are squares in R and the
discriminant, HypDet(a), is zero. One can check that Discrx3∆12(fa), Discrx2∆13(fa) and
Discrx1∆23(fa) are all the same and equal to HypDet(a). Therefore a vector a ∈ R23 with
a∅ = 1 is in the image of the principal minor map if and only if HypDet(a) = 0 and for every
i, j ∈ [3] with {k} = [3]\{i, j}, both aikajk − akaijk and aiaj − a∅aij are squares in R.

Our main result is that, under the action of SL2(R)n ⋊ Sn, these conditions characterize
the image of the principal minor map for general n.

Theorem 5.1. Let R be a unique factorization domain with |R| 6= 3 and a = (aS)S⊆[n] ∈ R2n

with a∅ = 1. There exists a symmetric matrix over R with principal minors a if and only if

(i) for every i, j ∈ [n], aiaj − aij is a square in R, and
(ii) for every γ ∈ SL2(R)n ⋊ Sn, (γ · HypDet)(a) = 0.

While the description in (ii) involves a potentially infinite set of quartic polynomials, we
give an explicit set of

(
n

3

)
5n−3 elements γ ∈ SL2(R)n ⋊ Sn that are necessary and sufficient

in this characterization (see Remark 5.2). As observed in [Oed09, Observation III.15], when
R is a field of characteristic zero, this is precisely the dimension of the linear space in
R[aS : S ⊆ [n]] spanned by the polynomials (γ · HypDet)(a).

As a corollary of Theorem 5.1, we obtain another proof of Oeding’s result over C:

Corollary 5.3. Let a = (aS)S⊆[n] ∈ C2n with a∅ = 1. Then a belongs to the image of the
principal minor map over C if and only if for every γ ∈ SL2(C)

n ⋊ Sn, (γ · HypDet)(a) = 0.

We also get a semialgebraic description of the image of the principal minor map over R.

Corollary 5.4. Let a = (aS)S⊆[n] ∈ R
2n with a∅ = 1. Then a belongs to the image of the

principal minor map over R if and only if for every i, j ∈ [n], aiaj − aij ≥ 0 and for every
γ ∈ SL2(R)

n ⋊ Sn, (γ ·HypDet)(a) = 0.

For real symmetric matrices, the inequalities AiAj − Aij ≥ 0 are a subset of the well-
known Hadamard-Fischer inequalities AS∪iAS∪j − ASAS∪ij ≥ 0, which were also used by
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Holtz and Sturmfels in a partial characterization of the image of the principal minor map
over R, [HS07, Theorem 6]. Corollary 5.4 states that these inequalities and the equations
given by the images of the 2 × 2 × 2 hyperdeterminant under SL2(R)

n ⋊ Sn cut out the
image of the principal minor map over R. The image of the principal minor map over R is
of special interest, as for positive semidefinite matrices A, the discrete probability measure
on 2[n] given by Prob(S) ∝ AS forms a determinantal point process. These distributions
have several nice properties, such as negative association, and appear in a wide range of
applications [BBL09, KT12].

Over fields of characteristic two, the discriminant of a univariate quadratic is a square.
From Theorem 5.1, we then recover the results of van Geeman and Marrani [vGM19] that
the image is cut out by quadratic equations:

Corollary 5.5. Let a = (aS)S⊆[n] ∈ R2n with a∅ = 1 where R has characteristic two. There
exists a symmetric matrix over R with principal minors a if and only if

(i) for every i, j ∈ [n], aiaj − aij is a square in R, and
(ii) for every γ ∈ SL2(F2)

n ⋊ Sn, γ · (a∅a123 + a1a23 + a2a13 + a3a12) = 0.

In particular, for R = F2, (i) is always satisfied and the image of the principal minor map is
cut out by the quadratic equations in (ii).

Several other incarnations of the principal minor map have been studied. Lin and Sturmfels
[LS09] prove that the ideal of the image of the space of general 4×4 complex matrices under
the principal minor map is minimally generated by 65 polynomials of degree 12 and they
conjecture that the image of the space of general square complex matrices is cut out by
equations of degree 12. Huang and Oeding [HO17] solve this conjecture in the special case
where all principal minors of same size are equal (the symmetrized principal minor assignment
problem). They provide a minimal parametrization of the respective varieties in the cases
of symmetric, skew symmetric and square complex matrices. Kenyon and Pemantle [KP14]
adjust the principal minor map by adding the almost principal minors to the vector in the
image and they showed that the ideal of the variety in this case is generated by translations
of a single relation. In future work, we intend to extend the techniques in this paper to other
spaces of (non-symmetric) matrices.

Griffin and Tsatsomeros [GT06a, GT06b] examine the complexity of computing the vector
of the principal minors of an n× n matrix and give a numerical algorithm that reconstructs
a preimage matrix, if it exists over C, from such a vector. Rising, Kulesza and Taskarc
[RKT15] provide an efficient algorithm for reconstruction in the symmetric case.

The paper is organized as follows. In Section 2, we establish notation and introduce the
action of SL2(R)n⋊Sn. In Section 3, we establish the connection between square Rayleigh dif-
ferences and determinantal representations and prove Theorem 3.5. In Section 4, we use the
group action of SL2(R)n ⋊Sn to characterize the set multiquadratic squares in R[x1, . . . , xn]
and use this to characterize the image of the principal minor map in Section 5. To conclude,
in Section 6, we discuss some consequences for other determinantal representations as well
as connections to the Grassmannian GrF(d, n) over arbitrary fields.

Acknowledgements. Both authors were partially supported by the National Science
Foundation Grant No. DMS-1620014 and DMS-1943363. This material is based upon work
directly supported by the National Science Foundation Grant No. DMS-1926686, and indi-
rectly supported by the National Science Foundation Grant No. CCF-1900460.
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2. Background and notation

Throughout the paper, we take R to be a unique factorization domain. Let R[x] denote
the polynomial ring R[x1, . . . , xn]. For α = (α1, . . . , αn) ∈ N

n and S ⊆ [n], we use the
notation xα for

∏n

i=1 x
αi

i and xS for
∏

i∈S xi. For f ∈ R[x], let degi(f) denote the degree of
f in the variable xi. Given d = (d1, . . . ,dn) ∈ Zn

≥0, let R[x]≤d denote the set of polynomials
with degree at most di in xi for each i = 1, . . . , n. These form an R-module of rank∏n

i=1(di + 1). When d1 = . . . = dn = m, we abbreviate R[x]≤(m,...m) by R[x]≤m. Of
particular interest are multiaffine polynomials, R[x]≤1, with degree ≤ 1 in each variable, and
multiquadratic polynomials, R[x]≤2, with degree ≤ 2 in each variable. We will often consider
multi-homogenezations of these polynomials. Let R[x,y]d denote the set of polynomials in
the variables x1, . . . , xn and y1, . . . , yn that are homogeneous of degree di in each pair of
variables xi, yi. For f =

∑
α cαx

α, let fd−hom in R[x,y]d denote the polynomial

fd−hom =

n∏

i=1

ydi

i · f (x1/y1, . . . , xn/yn) =
∑

α

cαx
αyd−α.

To a polynomial f ∈ R[x]≤2, its discriminant with respect to any variable xk, denoted
Discrxk

(f), equals b2−4ac where f = ax2
k+ bxk+ c and a, b, c do not involve the variable xk.

Similarly, for a multiquadratic polynomial f ∈ R[x,y]2, we can write f = ax2
k + bxkyk + cy2k

and define its discriminant with respect to (xk, yk) to be Discr(xk,yk)(f) = b2 − 4ac.
The symmetric group acts on R[x] by permuting the variables. That is, for π ∈ Sn,

π · f equals f(xπ(1), . . . , xπ(n)). The action of SL2(R)n on R[x]≤d is defined as follows. Let

γ = (γi)i∈[n] in SL2(R)n where γi =
(
ai bi
ci di

)
. Then for f ∈ R[x]≤d,

γ · f =
n∏

i=1

(cixi + di)
di · f

(
a1x1 + b1
c1x1 + d1

, . . . ,
anxn + bn
cnxn + dn

)
.

One way to interpret this action is via the multi-homogenezation of f . The induced action
of γ on fd−hom is just an R-linear change of coordinates:

γ · fd−hom = fd−hom

(
γ1 ·

(
x1

y1

)
, . . . , γn ·

(
xn

yn

))
.

Restricting to y1 = . . . = yn = 1 gives back γ · f . Similarly, we can extend the action
of Sn to R[x,y]d by simultaneous permutations of the xi and yi coordinates, i.e. π · f =
f(xπ(1), . . . , xπ(n), yπ(1), . . . , yπ(n)).

Note that R[x]≤1 and R2n are isomorphic R-modules, and so the action of SL2(R)n⋊Sn on
R[x]≤1 also gives one on R2n . Specifically, to an element a = (aS)S⊆[n] in R2n we associate the

multiaffine polynomial fa =
∑

S⊆[n] aSx
[n]\S and to any polynomial f ∈ R[x]≤1 we associate

the point a = (aS)S⊆[n] in R2n with aS = coeff(f,x[n]\S). Note that if A is a symmetric
matrix with aS = AS, then fa = det (diag(x1, . . . , xn) + A). For any γ ∈ SL2(R)n ⋊ Sn, we
define γ · a by the relation fγ·a = γ · fa. Similarly, we define the action of SL2(R)n ⋊ Sn on
the polynomial ring R[aS : S ⊆ [n]] by γ · F (a) = F (γ · a).
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Example 2.1. For n = 3, consider γ =
((

0 −1
1 0

)
, Id2, Id2

)
in SL2(R)3. For any point

a = (aS)S⊆[3] ∈ R23 ,

γ ·fa = x1fa(−x−1
1 , x2, x3) =

∑

T∋1

aTx
[3]\(T\1)−

∑

T 6∋1

aTx
[3]\(T∪1) =

∑

S 6∋1

aS∪1x
[3]\S−

∑

S∋1

aS\1x
[3]\S.

Taking coefficients of γ · fa shows that (γ · a)S equals aS∪1 if 1 6∈ S and −aS\1 if 1 ∈ S. For
F (a) = a2a3 − a∅a23, we see that γ · F (a) = F (γ · a) = a12a13 − a1a123. From this we see
that the image of F under the group SL2(R)3 ⋊ S3 includes all six polynomials of the form
aiaj − a∅aij and aikajk − akaijk for {i, j, k} = {1, 2, 3}.

Proposition 2.2. Consider an element γ ∈ SL2(R)n that acts by
(
a b

c d

)
in the k-th coordi-

nate and the identity in all others. For any f ∈ R[x]≤1,

∆ij(γ · f) =

{
∆ij(f) if k = i, j

γ ·∆ij(f) otherwise.

Proof. For each k ∈ [n], let fk denote the derivative of f with respect to xk and let fk denote
its specialization to xk = 0. We can then write f = xkfk + fk. Then

γ · f = (axk + b)fk + (cxk + d)fk = xk(afk + cfk) + (bfk + dfk).

In particular, ∂
∂xk

(γ · f) = (afk + cfk) and (γ · f)|xk=0 = bfk + dfk.

To see how this action affects Rayleigh differences, we write the polynomial ∆ij(f) as

∆ij(f) = fifj − ffij = f j
i f

i
j − f ijfij ,

where f j
i for example denotes ∂f

∂xi
|xj=0. If k = i, applying γ then gives

∆ij(γ · f) = (af j
i + cf ij)(bfij + df i

j)− (bf j
i + df ij)(afij + cf i

j) = (ad− bc)(f j
i f

i
j − f ijfij),

showing that ∆ij(f) is invariant. Another way to see this is to view ∆ij(f) as the resultant of
fj and f j with respect to xi. Note that for k 6= i, j, γ commutes with taking the derivatives
with respect to xi, xj and restricting xi, xj to zero. Therefore ∆ij(γ · f) = γ ·∆ij(f). �

Corollary 2.3. The set of polynomials f ∈ R[x]≤1 such that ∆ij(f) is a square for all
i, j ∈ [n] is invariant under the action of SL2(R)n ⋊ Sn.

Proof. Note that the set of squares in R[x]≤2 is invariant under the action of SL2(R)n ⋊ Sn.
If g = h2 where h ∈ R[x]≤1 then for π ∈ Sn, π · g = (π · h)2. Similarly for γ ∈ SL2(R)n,
γ · g = (γ · h)2. Note here that γ acts on g as an element of R[x]≤2 and acts on h as an
element of R[x]≤1, regardless of their degrees.

First we note invariance under the symmetric group. For any π ∈ Sn, ∆ij(π · f) equals
π ·∆π−1(i)π−1(j)(f). Therefore if f has the property that ∆ij(f) is a square for all i, j, then
so does π · f . Similarly, by Proposition 2.2, for any γ ∈ SL2(R)n, if ∆ij(f) ∈ R[x]≤2 is a
square, then so is ∆ij(γ · f). �

We will also use the usual homogenization of a polynomial to some total degree d, using a
single homogenizing variable y. That is, for f =

∑
α cαx

α ∈ R[x] of total degree d = deg(f),
its homogenization is

f = ydf (x1/y, . . . , xn/y) =
∑

α

cαx
αyd−|α| ∈ R[x, y].
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To end this section, we remark that the condition that ∆ij(f) is a square is robust to various
homogenizations.

Proposition 2.4. Let f ∈ R[x]≤1 and let f denote the homogenization of f in R[x, y]. Then
the following are equivalent

(a) ∆ij(f) is a square in R[x], (b) ∆ij(f) is a square in R[x, y],

(c) ∆ij(f) is a square in R[x, y], (d) (∆ij(f))
2−hom is a square in R[x,y]2.

Proof. The implications (b)⇒(a), (c)⇒(a), and (d)⇒(a) follow from restricting to y = 1
or y1 = . . . = yn = 1. For (a)⇒(c) and (a)⇒(d), we note that if ∆ij(f) = g2 for some

g ∈ R[x], then ∆ij(f) = (g)2 and (∆ij(f))
2−hom = (g1−hom)2. For (a)⇒(b), let f ∈ R[x]≤1

with total degree d and suppose that ∆ijf = g2 for some g ∈ R[x]. Let m = deg(g).

By definition, ∆ij(f) ∈ R[x, y] is homogeneous of degree 2d − 2. Its restriction to y = 1

equals ∆ijf . Therefore ∆ij(f) equals y2d−2−2m∆ij(f), showing that ∆ij(f) can be written
as (yd−1−mg)2. �

3. Squares to Determinantal Representations

In this section we prove Theorem 3.5. This relies heavily on the structure of the polyno-
mials ∆ij(f) defined in (1). If f is multiaffine, then ∆ij(f) does not involve the variables xi

and xj and has degree ≤ 2 in the other variables. In particular, if ∆ij(f) = (gij)
2 for some

gij ∈ R[x1, . . . , xn], then gij does not involve the variables xi and xj and has degree ≤ 1
in the rest. We first work with more general determinantal representations in a larger ring
R[x1, . . . , xm] = R[xn+1, . . . , xm][x] with n < m.

Theorem 3.1. Let f ∈ R[x1, . . . , xm] be a homogeneous polynomial of degree n < m. Sup-
pose f is multiaffine in the variables x1, . . . , xn and its coefficient of x1 · · ·xn equals one.
Then f = det(diag(x1, . . . , xn) +

∑m
j=n+1 xjMj) for some Mj ∈ Symn(R) if and only if ∆ijf

is a square in R[x1 . . . , xm] for all 1 ≤ i, j ≤ n.

Proof of (⇒). This follows from a classical equality on the principal minors of an n × n
matrix, used by Dodgson [Dod67] as a method for computing determinants. For subsets
S, T ⊂ [n] of equal cardinality, let M(S, T ) denote the submatrix of M obtained by dropping
rows S and columns T from M . Then for any i 6= j ∈ [n],

(2) det(M(i, i)) · det(M(j, j))− det(M) det(M({i, j}, {i, j})) = det(M(i, j)) · det(M(j, i)).

Note that for M = diag(x1, . . . , xn)+
∑m

j=n+1 xjMj and any subset S ⊆ [n], the principal mi-

nor det(M(S, S)) equals the derivative of f with respect to the variables in S,
(∏

i∈S
∂
∂xi

)
f .

The equation above then gives that ∆ij(f) equals det(M(i, j)) · det(M(j, i)). Since M is
symmetric, this shows that ∆ij(f) = (det(M(i, j)))2. �

We prove the other direction of this theorem after the following lemma.

Lemma 3.2. Let f ∈ R[x1, . . . , xm] be multiaffine in the variables x1, . . . , xn and its co-
efficient of x1 · · ·xn equal one. If f = g · h for some g, h ∈ R[x1, . . . , xm], then g and h
are multiaffine in disjoint subsets of the variables x1, . . . , xn and we can take their leading
coefficients in these variables to be one. Moreover, ∆ijf is a square if and only if ∆ijg and
∆ijh are squares.
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Proof. For any i ∈ [n], the degree of f in xi must be the sum of the degrees of g and
h in xi. Since this sum of nonnegative numbers is one for each i ∈ [n], we see that for
some subset I ⊆ [n], g is multiaffine in {xi : i ∈ I}, h is multiaffine in {xj : j 6∈ I}, and
degi(h) = degj(g) = 0 for any i ∈ I and j 6∈ I.

The highest degree term in f with respect to the variables x1, . . . , xn,
∏n

i=1 xi, is the
product of the highest degree terms in g and h. Therefore for some r, s ∈ R, these terms are
r
∏

i∈I xi and s
∏

j 6∈I xj , respectively. Since rs = 1, we can replace g with sg and h with rh
to obtain a factorization in which both have leading coefficient equal to 1.

For i ∈ I, ∂(g · h)/∂xi = h · ∂g/∂xi and similarly, for j 6∈ I, ∂(g · h)/∂xj = g · ∂h/∂xj .
From this, one can check that ∆ij(gh) equals h

2∆ij(g) for i, j ∈ I, g2∆ij(h) for i, j ∈ [n]\I
and zero otherwise. In each case, we see that ∆ij(gh) is a square in R[x1, . . . , xm] if and only
if both ∆ij(g) and ∆ij(h) are squares. �

Proof of Theorem 3.1(⇐). Let S denote the ring R[x1, . . . , xm]. Suppose that f is irreducible
in S. For each i ∈ [n], let gii =

∂f

∂xi
and for each i < j, suppose that ∆ijf equals (gij)

2 for

some gij ∈ S. This implies that ∂f

∂xi
· ∂f

∂xj
is equivalent to (gij)

2 modulo 〈f〉. For 1 < i < j,

the polynomials (g11gij)
2 and (g1jgi1)

2 are both equivalent to ( ∂f

∂x1
)2 ∂f

∂xi
· ∂f

∂xj
, showing that

(g11gij − g1jgi1)(g11gij + g1jgi1) = (g11gij)
2 − (g1jgi1)

2 ≡ 0 mod 〈f〉.

Since f is irreducible, S/〈f〉 is an integral domain. Therefore one of the two factors above
must be zero in S/〈f〉. After changing the sign of gij if necessary, we can assume that it is
the first factor, giving that g11gij − g1jgi1 ∈ 〈f〉. Let G ∈ Symn(S) be the symmetric matrix
with (i, j)th entry gij = gji. We claim that the 2 × 2 minors of G lie in 〈f〉. Note that by
construction, for any i, j, k, l ∈ [n],

g211(gijgkl−gilgkj) = (g11gij)(g11gkl)−(g11gil)(g11gkj) ≡ g1ig1jg1kg1l−g1ig1lg1kg1j = 0 mod 〈f〉.

Since f is irreducible and g11 = ∂f/∂x1 has smaller degree, g11 is not a zero-divisor in S/〈f〉.
Therefore the minor gijgkl − gilgkj belongs to 〈f〉.

From this it follows that fk−1 divides the k × k minors of G for every 2 ≤ k ≤ n, see
[PV13, Lemma 4.7]. In particular, fn−2 divides the entries of the adjugate matrix Gadj. Let

M = (1/fn−2) ·Gadj.

Also fn−1 divides det(G), and since these both have degree n(n − 1), there must be some
constant λ ∈ R for which det(G) = λ · fn−1.

We can see that λ = 1 by specializing xℓ to 0 for all ℓ > n. For any polynomial h ∈ S, let
h(x, 0) denote the specialization of h with xℓ = 0 for ℓ = n+ 1, . . . , m. Then f(x, 0) equals
x1 · · ·xn and gii(x, 0) =

∏
j 6=i xj . Recall that gij ∈ R[xk : k 6= i, j] has total degree n − 1

and degree at most one in each variable xk for k ∈ [n]\{i, j}. Therefore every monomial
appearing in gij with non-zero coefficient must involve a variable xℓ for ℓ > n, giving that
gij(x, 0) = 0. Specializing all entries of G to xℓ = 0 for ℓ > n, gives the diagonal matrix

G(x, 0) = diag

(
∏

j 6=1

xj , . . . ,
∏

j 6=n

xj

)
=

n∏

j=1

xj · diag

(
1

x1
, . . . ,

1

xn

)
.
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Its determinant is
∏n

i=1 x
n−1
i which equals f(x, 0)n−1, showing that λ = 1. From this and

the equation G ·Gadj = det(G) · Idn, it follows that

det(M) =
1

fn(n−2)
· det(Gadj) =

1

fn(n−2)
det(G)n−1 =

1

fn(n−2)
f (n−1)2 = f.

Note that the entries of M have degree ≤ (n − 1)2 − n(n − 2) = 1, so we can write M as∑m
i=1 xiMi for some matrices Mi ∈ Symn(R). To finish the proof it suffices to show that∑n
i=1 xiMi = diag(x1, . . . , xn). Indeed, using the previous formula for G(x, 0) we see that

M(x, 0) =
1

(∏n
j=1 xj

)n−2 ·

(
n∏

j=1

xj · diag

(
1

x1
, . . . ,

1

xn

))adj

=

(∏n
j=1 xj

)n−1

(∏n
j=1 xj

)n−2 ·

(
diag

(
1

x1
, . . . ,

1

xn

))adj

=

n∏

j=1

xj · diag

(
∏

j 6=1

1

xj

, . . . ,
∏

j 6=n

1

xj

)

= diag (x1, . . . , xn) .

For general f , we take a factorization of f into irreducible polynomials f =
∏

k fk. By
Lemma 3.2, ∆ij(fk) is a square for each i, j, k and so by the arguments above, fk has a
determinantal representation of the correct form. Taking a block diagonal representation of
these representations (and permuting the rows and columns if necessary to reorder x1, . . . , xn)
gives a determinantal representation for f . �

Example 3.3. For n = 4 and R = Z, we apply this algorithm to the symmetric quartic

f = x1x2x3x4 − (x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4) + 2(x1 + x2 + x3 + x4)− 3.

For each i ∈ [4], we take gii to be ∂f

∂xi
=
∏

j 6=i xj −
∑

j 6=i xj + 2. For every i 6= j, we find

that ∆ij(f) = ∂f

∂xi

∂f

∂xj
− f ∂2f

∂xi∂xj
equals (xk − 1)2(xℓ − 1)2 where {k, ℓ} = [4]\{i, j}. For

each j = 2, 3, 4, we can choose g1j = (1 − xk)(xℓ − 1) with {k, ℓ} = [4]\{1, j}. Then for
{j, k, ℓ} = {2, 3, 4}, we find that g11(1− x1)(xj − 1)− g1kg1ℓ equals (1− xj)f and so we also
take gkℓ = (1− x1)(xj − 1). We then construct the 4× 4 matrix G = (gij)1≤i,j≤4 =




x2x3x4 − x2 − x3 − x4 + 2 −x3x4 + x3 + x4 − 1 −x2x4 + x2 + x4 − 1 −x2x3 + x2 + x3 − 1
−x3x4 + x3 + x4 − 1 x1x3x4 − x1 − x3 − x4 + 2 −x1x4 + x1 + x4 − 1 −x1x3 + x1 + x3 − 1
−x2x4 + x2 + x4 − 1 −x1x4 + x1 + x4 − 1 x1x2x4 − x1 − x2 − x4 + 2 −x1x2 + x1 + x2 − 1
−x2x3 + x2 + x3 − 1 −x1x3 + x1 + x3 − 1 −x1x2 + x1 + x2 − 1 x1x2x4 − x1 − x2 − x4 + 2


 .

Note that only the diagonal entries of this matrix have degree three, so if we homogenize all
entries to have degree three and then set the homogenizing variable equal to zero, the result
is the diagonal matrix G(x, 0) = x1x2x3x4diag(x

−1
1 , x−1

2 , x−1
3 , x−1

4 ) appearing in the proof of
Theorem 3.1(⇐). Moreover, the 2 × 2 minors of this matrix are divisible by f and so its
3 × 3 minors are divisible by f 2. Taking the adjugate of G and dividing by f 2, we find the
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desired symmetric matrix whose determinant gives the polynomial f :

M =
1

f 2
Gadj =



x1 1 1 1
1 x2 1 1
1 1 x3 1
1 1 1 x4


 .

Before moving on to applications to the principal minor problem, we remark that the
rank of the matrices Mj can be recovered from f . Here we define the rank of a matrix
M ∈ Symn(R) to be the maximum r ∈ N so that there is a non-zero r× r minor of M . Note
that the rank of M over R is the same as its rank over the field of fractions of R.

Lemma 3.4. Let R be an integral domain. If f = det(diag(x1, . . . , xn) +
∑m

j=n+1 xjMj)

where Mj ∈ Symn(R), then the rank of Mj equals the degree f in the variable xj.

Proof. The bound degj(f) ≤ rank(Mj) follows from the Laplace expansion of the determi-
nant. To see equality, it suffices to take j = m = n + 1. Let f = det(diag(x1, . . . , xn) + yA)
where A ∈ Symn(R). Then f =

∑
S⊆[n]ASx

[n]\Sy|S| equals the homogenization of fA. From
this we see that the degree of f in the variable y equals the size of the largest nonzero
principal minor of A. By the so-called Principal Minor Theorem [KLS08, Strong PMT 2.9],
this coincides with the size of the largest nonzero minor of A, i.e. rank(A). �

Recall that to an element a = (aS)S⊆[n] in R2n we associate the multiaffine polynomial

fa =
∑

S⊆[n]

aSx
[n]\S.

Theorem 3.5. Let R be a unique factorization domain. An element a = (aS)S⊆[n] in R2n is
in the image of Symn(R) under the principal minor map if and only if a∅ = 1 and for every
i, j ∈ [n], ∆ij(fa) is a square in R[x].

Proof. By Corollary 2.3, ∆ij(fa) is a square in R[x] if and only if ∆ij(fa) is a square in

R[x, y]. Furthermore, by Theorem 3.1, ∆ij(fa) is a square in R[x, y] if and only if there

exists a symmetric matrix A ∈ Symn(R) for which fa = det(diag(x1, . . . , xn) + yA). �

Corollary 3.6. Let R be a unique factorization domain. Then the image of Symn(R) under
the principal minor map is invariant under the action of Gn ⋊ Sn, where G is the subgroup

of SL2(R) defined by G =

{(
1 r
0 1

)
| r ∈ R

}
.

Proof. Let a = (aS)S⊆[n] be an element in the image of the principal minor map and let
fa be the associated multiaffine polynomial. Consider b = (bS)S⊆[n] with b = γ · a where
γ ∈ Gn⋊Sn. Theorem 3.1 implies that a∅ = 1 and for every i, j, ∆ij(fa) is a square in R[x].
Corollary 2.3 implies that for every i, j, ∆ij(fb) is a square in R[x]. Using Theorem 3.1 again,
it is enough to show that b∅, the coefficient of x1 · · ·xn in fb, equals one. It is clear that this
coefficient is invariant under the action of Sn, and so it suffices to take γ = (γ1, . . . , γn) ∈ Gn

where γi =
(
1 ri
0 1

)
, for which

fb = γ · fa = fa(x1 + r1, . . . , xn + rn).

From this, we see that coefficient of x1 · · ·xn in fb is equal to one. �
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The subgroup G is the maximal subgroup that preserves the leading coefficients of poly-

nomials fA. Consider an element of γ =
(
a b

c d

)
∈ SL2(R) acting on the first coordinate x1

of fA. Then

coeff(γ · fA, x1 · · ·xn) = coeff

(
(ax1 + b)

∂fA
∂x1

+ (cx1 + d)(fA|x1=0), x1 · · ·xn

)
= aA∅ + cA1.

In order to preserve the coefficient of x1 · · ·xn, γ must satisfy 1 = a+ cA1 for every value of
A1. This implies that c = 0 and a = 1. The condition ad− bc = 1 then implies that d = 1.

Corollary 3.7. Let R be a unique factorization domain and let a be the vector of principal
minors of a matrix in Symn(R). Fix γ ∈ SL2(R)n ⋊ Sn and let λ denote the coefficient of∏n

i=1 xi in γ · fa. If λ 6= 0, then for some A ∈ Symn(R),

γ · fa = λ · det

(
diag(x1, . . . , xn) +

1

λ
A

)
.

That is, 1
λ
γ · a belongs the image of the principal minor map over 1

λ
R.

Proof. Let b = 1
λ
γ · a and let fb be the multiaffine polynomial associated to b. Then

coeff (fb,
∏

i xi) =
1
λ
λ = 1 and by Corollary 2.3, ∆ijfb = 1

λ2∆ij(γ · fa) is a square for every

i, j. Hence, by Theorem 3.1, there exists a symmetric matrix B with entries in R( 1
λ
) with

fb = det (diag(x1, . . . , xn) +B) .

We claim that λB has entries in R. To see this, note that b = 1
λ
γ ·a is the vector of principal

minors of B and that the entries of γ · a belong to R. So all principal minors of B belong to
λ−1R. This immediately shows that the diagonal elements of λB belong to R.

For the off-diagonal elements, fix i 6= j ∈ [n] and let z denote the (i, j)th entry of B.
Then bibj − bij = z2, where b = (bS)S⊆[n], which implies that λ2z2 = (λbi)(λbj)− λ2bij ∈ R.
By construction, z ∈ R(1/λ) so we can take the minimal m ∈ N for which λmz ∈ R. So
λmz = r ∈ R where either m = 0 or λ does not divide r. Then λ2m−2(λ2z2) = (λmz)2 = r2.
Since λ2z2 ∈ R, we see that λ2m−2 divides r2. If m > 1, this contradicts the assumption that
λ does not divide r. Therefore A = λB ∈ Symn(R), as desired. �

Example 3.8. For R = Z and n = 2 consider the matrix A =
(
2 1
1 1

)
and its vector of

principal minors a = (1, 2, 1, 1), giving fa = x1x2 + x1 + 2x2 + 1. The image of fa under the

action of γ =
((

2 −1
1 0

)
,
(
1 0
0 1

))
∈ SL2(R)2 is

γ · fa = 4x1x2 + 3x1 − x2 − 1.

Since 4 6= 1, the vector (4,−1, 3,−1) is not the vector of principal minors of any symmetric
matrix over Z. However, as promised by Corollary 3.7, the vector 1

4
γ · a =

(
1, −1

4
, 3
4
, −1

4

)
is

the vector of principal minors of the matrix B = 1
4

(
−1 1
1 3

)
over 1

4
Z.

Corollary 3.9. Let R = F be an infinite field. The Zariski closure of the image of the
principal minor map in P2n−1(F) is invariant under the action of SL2(F)

n ⋊ Sn.

Proof. The image is immediately invariant under the action of Sn, so it suffices to show
invariance under SL2(F)

n. Using the action of Sn, it suffices to show this by acting with
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SL2(F) on the first coordinate. Let A ∈ Symn(F), giving a point ϕ(A) = (AS)S in the image
of the principal minor map. Consider the open subset

U = {γ ∈ SL2(F) : coeff(γ · fA, x1 · · ·xn) 6= 0}

=

{(
a b
c d

)
∈ F

2×2 : ad− bc = 1 and aA∅ + cA1 6= 0

}
.

By Corollary 3.7, for every γ ∈ U , γ · ϕ(A) belongs to the image of the principal minor
map, up to scaling. The parametrization (a, b, c) 799K (a, b, c, (1 + bc)/a) shows that SL2(F)
is a rational variety over F. Since F is infinite, the set of (a, b, c) ∈ F3 such that a 6= 0 and
aA∅ + cA1 6= 0 is Zariski-dense in F

3. It follows that U is Zariski-dense in SL2(F). Since
γ 7→ γ · ϕ(A) defines a rational map SL2(F) → P2n−1(F), it follows that for any γ ∈ SL2(F),
γ · ϕ(A) belongs to the Zariski-closure of the image of ϕ in P2n−1(F). �

4. Defining the set of multiquadratic squares

The polynomials ∆ij(f) appearing in Theorem 3.5 have degree ≤ two in each variable. In
order to make use of this characterization, in this section we find algebraic conditions charac-
terizing the set of squares in R[x]≤2. In fact, to simplify the notation used in the arguments
below we consider the multihomogenezations, as in Proposition 2.4, and characterize the set
of squares in R[x,y]2.

In a slight abuse of notation, we define P1(R) to be the following subset of R2:

P
1(R) = {(r, 1) : r ∈ R} ∪ {(1, 0)}.

Lemma 4.1. Let g ∈ R[x,y]d where d = (d1, . . . , dn) ∈ Nn. Let Pi ⊆ P1(R) be a set of size
di + 1. Then g is the zero polynomial if and only if g(p) = 0 for all p ∈ P1 × · · · × Pn.

Proof. We prove this by induction on n. Note that for n = 1, a polynomial g ∈ R[x, y]d
vanishes at (a, b) ∈ P

1(R) if and only if bx − ay divides g. Therefore a bivariate form
g ∈ R[x, y]d cannot have more than d roots in P1(R). Now suppose that n ≥ 1. Fix
(a, b) ∈ Pn+1. The polynomial g(x, a,y, b) vanishes on P1×· · ·×Pn and is therefore identically
zero by induction. This means that, considered as a bivariate form in xn+1, yn+1 over the
ring R[x,y], g vanishes at the dn+1 + 1 points in Pn+1 and it is therefore identically zero in
R[x,y][xn+1, yn+1] = R[x, xn+1,y, yn+1]. �

Lemma 4.2. A polynomial g(x, s,y, t) = g2(x,y)s
2 + g1(x,y)st + g0(x,y)t

2 ∈ R[x, s,y, t]2
is a square in R[x, s,y, t] if and only if g0(x,y) and g2(x,y) are squares in R[x,y] and
Discr(s,t)(g) = 0.

Proof. Suppose that g2 = (h2)
2 and g0 = (h0)

2, where h2, h0 ∈ R[x,y] and

Discr(s,t)(g) = g21 − 4g0g2 = 0 in R[x,y].

Then 4g0g2 = (2h0h2)
2 = g21, giving that (2h0h2)

2 − g21 = (2h0h2 − g1)(2h0h2 + g1) = 0 in
R[x,y]. It follows that g1 = ±2h0h2. Changing the sign of h0 if necessary, we can assume
that g1 = 2h0h2. Then

g = (h2)
2s2 + 2h0h2st+ (h0)

2t2 = (sh2 + th0)
2

is a square, as desired. Conversely, if g = (sh2+ th0)
2, we see that g0 = (h0)

2 and g2 = (h2)
2

and Discr(s,t)(g) = 0. �
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Theorem 4.3. Let R be a unique factorization domain with |R| 6= 3. A multiquadratic
polynomial g =

∑
α∈{0,1,2}n cαx

αy2−α is a square, i.e. g = h2 with h ∈ R[x,y]1, if and only

if for every β ∈ {0, 1}n, c2β is a square in R and c = (cα)α∈{0,1,2}n satisfies the images of

(3) (c(1,0))
2 − 4c(0,0)c(2,0) = 0

under the action of SL2(R
′)n⋊Sn where R′ is any nontrivial subring of R with 1R = 1R′ and

size ≥ 4 whenever char(R) 6= 2.

Proof. (⇒) If g = h2, then for every γ ∈ SL2(R)n ⋊ Sn, γ · g = (γ · h)2. Note here that the
action on g comes from the action on R[x,y]2 and the action on h comes from the action
on R[x,y]1. The specialization of γ · g to (x,y) = (x1, 0, y1, 1) will be a square in R[x1, y1].
Moreover, the coefficient cβ of x2βy2−2β in g is the square of the coefficient xβy1−β in h, and
in particular the square of an element in the ring R.

(⇐) We prove this by induction on n. This holds immediately for n = 1 by Lemma 4.2.
Now suppose n ≥ 1 and take g = g2s

2 + g1st+ g0t
2 ∈ R[x, s,y, t]. Fixing n+ 1 in Sn+1 and(

1 0
0 1

)
or
(
0 −1
1 0

)
for the (n + 1)st coordinate in (SL2(R))n+1, we see that both g0 and g2

satisfy the hypothesis of the theorem and so, by induction, are squares in R[x,y]. Here 1
denotes the common multiplicative identity of R and R′.

If char(R) 6= 2 then |R′| ≥ 4 and we can take a set P ⊂ P1(R′) of size five. Define a map

ϕ : P1(R′) → SL2(R
′) by ϕ((1, 0)) =

(
0 1
−1 0

)
and for r ∈ R′, ϕ((r, 1)) =

(
1 r

0 1

)
. Then to

(p1, . . . , pn) ∈ P n, we associate the element γ = (ϕ(p1), . . . , ϕ(pn), Id2) of SL2(R
′)n+1. Acting

on g by γ and then specializing to x1 = . . . = xn = 0 and y1 = . . . = yn = 1 gives

(4)
(
γ · g

)
|x=0,y=1 = g(a, s,b, t) and

(
Discr(s,t)(γ · g)

)
|x=0,y=1 =

(
Discr(s,t)g

)
|x=a,y=b

where pi = (ai, bi) and a = (a1, . . . , an), b = (b1, . . . , bn). Transposing (x1, y1) and (s, t)
using the action of Sn+1, we see that by assumption, this evaluation of the discriminant of
γ ·g must be zero. Since the discriminant has degree ≤ 4 in each variable, Lemma 4.1 implies
that it is identically zero. Then by Lemma 4.2, g is a square in R[x, s,y, t].

If char(R) = 2, the discriminant Discr(s,t)g simplifies to a square, g21, which by (4), must
vanish at the points {(1, 0), (1, 1), (0, 1)}n ⊆ (P1(R))n. Since g1 has degree 2 in each variable
and must vanish at these points, Lemma 4.1 implies that g1 is identically zero. Therefore by
Lemma 4.2, g is a square. �

Remark 4.4. The proof of Theorem 4.3 reveals that only a small subset of SL2(R) is needed
in each coordinate to characterize multiquadratic squares, specifically a set of size five.

Up to isomorphism, there is only one ring of size three, namely F3. The exclusion of F3

in the statement of Theorem 4.3 is a necessary one, as the following example demonstrates.

Example 4.5. For R = F3 and n = 3 consider the multiquadratic form

g = x2
1(x2y3 − x3y2)

2 − 2x1y1(x2y3 + x3y2)(x2x3 − y2y3) + y21(x2x3 + y2y3)
2

= x2
1x

2
2y

2
3 + x2

1x
2
3y

2
2 + x2

2x
2
3y

2
1 − 2x2

1x2x3y2y3 − 2x1x
2
2x3y1y3 − 2x1x2x

2
3y1y2

+ 2x1x2y1y2y
2
3 + 2x1x3y1y

2
2y3 + 2x2x3y

2
1y2y3 + y21y

2
2y

2
3.

The discriminant of g with respect to (x1, y1) is given by

Discr(x1,y1)g = 16x2y2(x2 + y2)(x2 − y2)x3y3(x3 + y3)(x3 − y3).
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This polynomial is non-zero in F3[x,y]4 but vanishes on all points in (P1(F3))
2. The poly-

nomial g is invariant under permutations of indices, so the discriminants Discr(x2,y2)g and
Discr(x3,y3)g have the same property.

Before using this result to characterize the image of the principal minor map, we record
a few of the notable special cases of Theorem 4.3. In particular, over C, the set of mul-
tiquadratic squares is defined by the orbit of a single polynomial and the only additional
constraint over R is the nonnegativity of the orbit of one other polynomial.

Corollary 4.6. Let g =
∑

α∈{0,1,2}n cαx
α ∈ C[x]. The polynomial g is a square, g = h2 with

h ∈ C[x]≤1 if and only if c = (cα)α∈{0,1,2}n satisfies the images of

(5) (c(1,0))
2 − 4c(0,0)c(2,0) = 0

under the action of SL2(C)
n ⋊ Sn. Moreover, g is a square over R, g = h2 with h ∈ R[x]≤1,

if and only if its coefficients c = (cα)α∈{0,1,2}n satisfy the images of

(6) (c(1,0))
2 − 4c(0,0)c(2,0) = 0 and c(0,0) ≥ 0.

under the action of SL2(R)
n
⋊ Sn.

As seen in the proof of Theorem 4.3, in characteristic two, linear equations in the coeffi-
cients suffice to cut out of the set of squares in R[x]≤2.

Corollary 4.7. Let g =
∑

α∈{0,1,2}n cαx
α ∈ R[x] where R is a UFD of characteristic two.

The polynomial g is a square, g = h2 with h ∈ R[x]≤1 if and only if c = (cα)α∈{0,1,2}n satisfy

(i) for every β ∈ {0, 1}n, c2β is a square in R, and
(ii) for every γ ∈ SL2(F2)

n ⋊ Sn, (γ · c)(1,0) = 0.

5. Characterizing the image of the principal minor map

We can now combine the characterization of multiaffine determinantal polynomials from
Section 3 and the characterization of multiquadratic squares in Section 4 to give a complete
description of the principal minor map over any unique factorization domain of size 6= 3.

Theorem 5.1. Let R be an UFD with |R| 6= 3 and let a = (aS)S⊆[n] ∈ R2n with a∅ = 1.
There exists a symmetric matrix over R with principal minors a if and only if

(i) for every i, j ∈ [n], aiaj − aij is a square in R, and
(ii) for every γ ∈ SL2(R)n ⋊ Sn, (γ · HypDet)(a) = 0.

Proof. (⇒) If a belongs to the image of the principal minor map over R, then aiaj − aij
is the square of the (i, j)th entry of the representing matrix A, and so is a square in R.
Also, by Theorem 3.1 ∆ijfa is a square for all i, j ∈ [n]. Then, by Corollary 2.3, for any
γ ∈ SL2(R)n ⋊ Sn, ∆ij(γ · fa) is square. In particular,

HypDet(γ · a) = Discrx3(∆12(γ · fa))|x4=...=xn=0 = 0.

(⇐) First, we show that a belongs to the image of the principal minor map over the

algebraic closure of the fraction field of R, F = (frac(R))
alg

. Then R is a subring of F
and has size ≥ 4 if char(R) = char(F) 6= 2. Let f = fa. Every element of R is a square
over F. Then by Theorem 4.3, ∆ijf =

∑
α∈{0,1,2}n cαx

α is a square in F[x] if and only if

c = (cα)α∈{0,1,2}n and its images under SL2(R)n ⋊ Sn satisfy (c(1,0))
2 − 4c(0,0)c(2,0) = 0. This

condition for all i, j ∈ [n] is equivalent to the condition that (γ · HypDet)(a) = 0 for all
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γ ∈ SL2(R)n ⋊ Sn. Therefore ∆ijf is a square in F[x] for all i, j. By Theorem 3.5, a is the
vector of principal minors of some matrix A with entries in F. The diagonal entries of A are
entries ai in this vector and therefore belong to R. Let z denote the (i, j)th entry of A for
some i 6= j. By assumption z2 = aiaj − aij = r2 for some r ∈ R. Then (z + r)(z − r) = 0
implying that z = ±r ∈ R. Therefore A ∈ Symn(R). �

Remark 5.2. Note that in part (ii) of the characterization in Theorem 5.1, it suffices to
take

(
n

3

)
· 5n−3 elements γ ∈ SL2(R)n⋊Sn. Specifically, let P ⊆ R be a set of size 5. For any

subset {i, j, k} ⊆ [n] and point p ∈ P n−3, we get an equation

Discrxk
(∆ij(fa))|x=p = 0.

This is enough to ensure that Discrxk
(∆ij(fa)) is identically zero. More generally, we can

take evaluations of Discr(xk,yk)(∆ij(fa))
2−hom at 5n−3 points in P1(R), as in Section 4. While

this expression appears to depend on the ordering of i, j, k, one can check that for any
f ∈ R[x]≤1, Discrxk

(∆ij(f)) = Discrxj
(∆ik(f)) = Discrxi

(∆jk(f)). See, for example, the
proof of Theorem 3.1 in [Wag11]. When R is a ring of characteristic 2, it suffices to take P
to have size 3, giving a total of

(
n

3

)
· 3n−3 equations.

Applying this to R = C, R, and F2, we find the following immediate consequences.

Corollary 5.3. Let a = (aS)S⊆[n] ∈ C2n with a∅ = 1. There exists a symmetric matrix over
C with principal minors a if and only if a and all its images under the action of SL2(C)

n⋊Sn

satisfy the 2× 2× 2 hyperdeterminant HypDet(a) = 0.

Corollary 5.4. Let a = (aS)S⊆[n] ∈ R2n with a∅ = 1. There exists a symmetric matrix over
R with principal minors a if and only if a and all its images under the action of SL2(R)

n⋊Sn

satisfy
HypDet(a) = 0 and a1a2 − a∅a12 ≥ 0.

Corollary 5.5. Let a = (aS)S⊆[n] ∈ R2n with a∅ = 1 where R has characteristic two. There
exists a symmetric matrix over R with principal minors a if and only if

(i) for every i, j ∈ [n], aiaj − aij is a square in R, and
(ii) for every γ ∈ SL2(F2)

n ⋊ Sn, γ · (a∅a123 + a1a23 + a2a13 + a3a12) = 0.

In particular, for R = F2, (i) is always satisfied and the image of the principal minor map
is cut out by the quadratic equations in (ii).

It is unclear whether or not Theorem 5.1 can be extended to R = F3. Example 4.5 shows
that this would likely require a different proof technique. Interestingly, the polynomial g in
this example is of the form ∆12(f) for some f ∈ F3[x1, . . . , x5]≤1, but for all such f we have
found, the discriminant of some other ∆ij(f) fails to vanish on (P1(F3))

2.

Question 5.6. Does the equivalence in Theorem 5.1 hold for R = F3?

6. Other determinantal representations and connections to GrF(d, n)

6.1. Other multiaffine determinantal representations. In this section we restrict our-
selves to fields and consider the set of multiaffine determinantal polynomials. Formally, let
F be an arbitrary field. We call a polynomial f ∈ F[x]≤1 determinantal if it can be written
in the form

(7) f(x) = λ det
(
V diag(x1, . . . , xn)V

T +W
)
= λ det

(
n∑

i=1

xiviv
T
i +W

)



CHARACTERIZING PRINCIPAL MINORS VIA DETERMINANTAL POLYNOMIALS 15

for some λ ∈ F, some matrix V = (v1, . . . , vn) ∈ Fm×n and some W ∈ Symm(F) for some
m. Note that when we take V to be the n× n identity matrix, this is exactly the principal
minor polynomial fW . When m < n, the coefficient of x1 · · ·xn in f is necessarily zero.

Theorem 6.1. A polynomial f ∈ F[x]≤1 has a determinantal representation (7) if and only
if for all i, j ∈ [n], ∆ijf is a square in F[x]. Moreover, one can always take a representation
of size m = deg(f) in (7).

Proof. (⇒) Without loss of generality, we show that ∆12(f) is a square. First suppose v1
and v2 are linearly dependent, i.e. let v1 = αv2 for some α ∈ F. Then v1v

T
1 = α2v2v

T
2 and

f(x1, . . . , xn) = f(0, α2x1+x2, x3, . . . , xn). Taking partial derivatives shows that ∂f

∂x1
= α2 ∂f

∂x2

and that ∂2f

∂x1∂x2
= 0. Therefore ∆12(f) = α2( ∂f

∂x2
)2 and so is a square.

If v1 and v2 are linearly independent, then there is an invertible matrix U with Uv1 = e1
and Uv2 = e2. Then

det(U)2f = λ det

(
U

(
n∑

i=1

xiviv
T
i +W

)
UT

)
= λ det

(
diag(x1, x2, 0) +

n∑

i=3

xiṽiṽi
T + W̃

)
.

where ṽi = Uvi and W̃ = UWUT . These matrices are still symmetric and so by equation
(2), ∆12(f) is a square.

(⇐) Let d = deg(f). We can assume, without loss of generality, that the coefficient of
x1 · · ·xd in f is nonzero. Moreover since the set of polynomials of the form (7) is invariant
under scaling, we can assume that this coefficient equals one. Let f ∈ F[x, y] denote the
homogenezation of f to total degree d. By Theorem 3.1, there are matrices Md+1, . . . ,Mn+1

in Symd(F) so that

f = det

(
diag(x1, . . . , xd) +

n∑

i=d+1

xiMi + yMn+1

)
.

We take W = Mn+1. It remains to show that for each i = d+ 1, . . . , n, the matrix Mi has
the form viv

T
i for some vi ∈ Fd. Without loss of generality we do this for i = d + 1. Let g

denote the specialization of f to xk = 0 for k = d+ 2, . . . , n and y = 0. Note that

g =
∑

S⊆[d]

(Md+1)S(xd+1)
|S|

∏

j∈[d]\S

xj .

However f has degree ≤ 1 in xd+1, and thus so does g. Therefore by Lemma 3.4, Md+1

has rank ≤ one. To examine its diagonal entries (Md+1)i, note that for every i = 1, . . . , d,
∆i(d+1)g is a square. Moreover, the restriction of g to xi = xd+1 = 0 is identically zero,
showing that

∆i(d+1)g = gd+1
i gid+1 − gi(d+1)gi(d+1) = gd+1

i gid+1

=

(
(Md+1)∅

∏

j∈[d]\i

xj

)(
(Md+1)i

∏

j∈[d]\i

xj

)
= (Md+1)i

(
x1 · · ·xd

xi

)2

,

where we use the notation gj =
∂g

∂xj
and gj = g|xj=0. It follows that (Md+1)i is a square in

F. Since Md+1 has rank ≤ one, then for some choice of square root vi =
√
(Md+1)i ∈ F, the

matrix Md+1 equals vvT with v = (v1, . . . , vd)
T . �
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Using Corollary 2.3, this immediately gives the invariance of the set of determinantal
polynomials.

Corollary 6.2. The set of polynomials in F[x]≤1 with a determinantal representation (7) is
invariant under the action of SL2(F)

n ⋊ Sn.

Together, Theorems 4.3 and 6.1 characterize the set of determinantal polynomials in F[x].

Corollary 6.3. A polynomial f =
∑

S⊆[n] aSx
[n]\S ∈ F[x]≤1 has a determinantal represen-

tation (7) if and only if

(i) for every i, j ∈ [n] and S ⊆ [n]\{i, j}, aS∪iaS∪j − aSaS∪ij is a square over F, and
(ii) for every γ ∈ SL2(F)

n ⋊ Sn, (γ ·HypDet)(a) = 0.

Proof. By Theorem 6.1, f has a determinantal representation (7) if and only if for all i, j
∆ijf is a square in F[x]. Since ∆ijf has degree ≤ 2 in each variable, Theorem 4.3 implies
that ∆ijf =

∑
α∈{0,1,2}n cαx

α is a square if and only if for every β ∈ {0, 1}n, c2β is a square

in R and c = (cα)α∈{0,1,2}n satisfy the images of

(8) (c(1,0))
2 − 4c(0,0)c(2,0) = 0

under the action SL2(F)⋊Sn. This is in turn equivalent to the condition that for every γ in
SL2(F)

n⋊Sn, (γ·HypDet)(a) = 0 and for every i, j ∈ [n] and S ⊆ [n]\{i, j}, aS∪iaS∪j−aSaS∪ij
is a square in F.

To see this, consider S ⊆ [n]\{i, j} and let β ∈ {0, 1}n denote the indicator vector of
[n]\(S ∪ ij). We claim that that the coefficient of x2β in ∆ij(f) equals aS∪iaS∪j − aSaS∪ij .

Since f , ∂f

∂xi
, ∂f

∂xj
, and ∂2f

∂xi∂xj
have degree ≤ 1 in each variable, only the xβ terms in each of

these polynomials contribute to the x2β term in ∆ij(f) =
∂f

∂xi

∂f

∂xj
− f ∂2f

∂xi∂xj
. That is,

coeff
(
∆ij(f),x

2β
)
= coeff

(
∂f

∂xi

,xβ

)
· coeff

(
∂f

∂xj

,xβ

)
− coeff

(
f,xβ

)
· coeff

(
∂2f

∂xi∂xj

,xβ

)
.

Note that the coefficient of xβ in f is aS∪ij. The coefficient of xβ in ∂f

∂xi
equals the coefficient

of xi · x
β in f , which is aS∪j. Similarly, the coefficients of xβ in ∂f

∂xj
and ∂2f

∂xi∂xj
are aS∪i and

aS, respectively. �

6.2. Connections with the Grassmannian. Given a d× n matrix V of full-rank d, con-
sider the polynomial f from (7) with W = 0:

(9) f(x) = λ det
(
V diag(x1, . . . , xn)V

T
)
= λ det

(
n∑

i=1

xiviv
T
i

)
= λ

∑

S∈([n]
d )

(
VS

)2
xS.

Here
(
[n]
d

)
denotes the collection of size-d subsets of [n] and VS denotes the d × d minor of

V obtained by taking columns indexed by S. If V has full rank d, the coefficients of f are
the squares of the Plücker coordinates given by the Plücker embedding of the rowspan of V
into GrF(d, n). Otherwise f is identically zero.

Formally, consider the Plücker embedding of GrF(d, n) into P(
n

d)−1(F). Given a subspace

L ⊆ Fn of dimension d, its image in P(
n

d)−1(F) is the length-
(
n

d

)
vector of d × d minors

of any d × n matrix V whose rowspan equals L. The map [pS]S 7→ [(pS)
2]S defines a

morphism P(
n

d)−1(F) → P(
n

d)−1(F). Let Gr2
F
(d, n) denote the image of GrF(d, n) under this
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morphism. Corollary 6.3 then gives an immediate characterization of Gr2F(d, n) via the
hyperdeterminantal equations in F2n. In fact, setting xn = 1 in (9), we can study this
image via multiaffine determinantal representations in the variables x1, . . . , xn−1 and use the
hyperdeterminantal equations in F2n−1

.

Corollary 6.4. Let q = (qS)S∈([n]
d )

∈ P(
n

d)−1(F) and let a ∈ P2n−1−1(F) denote the vector

given by

aS =





qS if S ⊆ [n− 1], |S| = d

qS∪n if S ⊆ [n− 1], |S| = d− 1

0 otherwise .

The vector q belongs to Gr2F(d, n) if and only if

(i) for all i, j ∈ [n] and S ⊆ [n]\{i, j}, |S| = d− 1, qS∪iqS∪j is a square over F, and
(ii) for every γ ∈ SL2(F)

n−1
⋊ Sn−1, (γ · HypDet)(a) = 0.

Proof. (⇒) This follows from applying Corollary 6.3 to (9).
(⇐) Let f =

∑
S∈([n]

d )
qSx

S. This equals f = fb where b ∈ F2n is given by bS = qS for

|S| = d and bS = 0 otherwise. If a = (aS)S is defined as above, then fa equals the restriction
of f to xn = 1 and f is the homogenezation of fa to degree d with homogenizing variable xn.

For any i 6= j ∈ [n− 1] and S ⊆ [n− 1]\{i, j}, the sizes of S and S ∪ {i, j} differ by two,
implying that aSaS∪ij equals zero. Then aS∪iaS∪j − aSaS∪ij = aS∪iaS∪j is a square in F by
assumption (i). By Theorem 6.1 and Corollary 6.3, ∆ij(fa) is a square in F[x1, . . . , xn−1] for
all i, j ∈ [n− 1], implying that ∆ij(f) is a square in F[x] for all i, j ∈ [n− 1]. In particular,
Discrxn

(∆ij(f)) is identically zero. One can check that for any i, j, n, Discrxn
(∆ij(f)) equals

Discrxj
(∆in(f)). This shows that (γ · HypDet)(b) = 0 for all γ ∈ SL2(F)

n ⋊ Sn. Assump-
tion (i) implies that bS∪ibS∪j − bSbS∪ij is a square in F for all i, j ∈ [n] and S ⊆ [n]\{i, j},
since this is either zero or of the form qS∪iqS∪j . Corollary 6.3 then gives a representa-
tion f = λ det(

∑n
i=1 xiviv

T
i + W ) where vi ∈ Fd and W ∈ Symd(F). The polynomial

λ det(
∑n

i=1 xiviv
T
i + yW ) ∈ F[x, y] equals the homogenization of f to degree d. Since f is

already homogeneous of degree d, this equals f and belongs to F[x]. Specializing to y = 0
gives the desired representation f = λ det(

∑n

i=1 xiviv
T
i ). �

Example 6.5. (d = 2, n = 4) The Grassmannian GrF(2, 4) is cut out by one Plücker relation
p12p34 − p13p24 + p14p23 = 0 in P

5(F). Taking qij = p2ij and eliminating the variables pij gives
the defining equation

q212q
2
34 + q213q

2
24 + q214q

2
23 − 2q12q13q24q34 − 2q12q14q23q34 − 2q13q14q23q24 = 0

for Gr2F(2, 4). This is exactly the hyperdeterminant HypDet(a) where a = (aS)S⊆[3] ∈ F23 is
given by a∅ = a123 = 0, ai = qi4 and aij = qij for all i, j ∈ [3].

6.3. Determinantal representations in higher degrees. For any r ∈ Z+, let Sym
r
n(F)

denote the set of symmetric matrices over F that can be written as a sum of r rank-one
matrices over F, i.e.

Symr
n(F) =

{
r∑

i=1

viv
T
i : v1, . . . , vr ∈ F

n

}
.

If F is algebraically closed with char(F) 6= 2, this is just the set of matrices of rank ≤ r. For
F = R this is the set of positive semidefinite matrices of rank ≤ r.
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Theorem 6.6. The set of polynomials F[x]≤d with a determinantal representation

(10) f = λ det

(
n∑

i=1

xiAi +B

)
with Ai ∈ Symdi

m(F) and B ∈ Symm(F)

for some m ∈ N is invariant under the action of SL2(F)
n
⋊ Sn.

Proof. The invariance under the action of Sn is immediate. It remains to check the invariance
under SL2(F)

n. Suppose that f = det(
∑n

i=1 xiAi + B), where Ai ∈ Symdi
m(F) and B ∈

Symm(F). First, suppose that d = 1 and let γ ∈ SL2(F)
n. By Corollary 2.3, ∆ij(γ · f) is a

square for all i, j. Then by Theorem 6.1, γ · f has a determinantal representation as in (7).
Now consider arbitrary d = (d1, . . . , dn). By definition, we can write each matrix Ai as a

sum of di matrices Aij each of the form vvT for some v ∈ Fm. Then consider

F = det

(
n∑

i=1

di∑

j=1

yijAij +B

)
∈ F

[
yij : i ∈ [n], j ∈ [di]

]
.

Note that there is an inclusion φ : SL2(F)
n → SL2(F)

d1+...+dn , given by (φ(γ))ij = γi for all
i ∈ [n] and j ∈ [di]. By construction, the restriction of φ(γ) · F given by yij = xi for all i, j
gives γ · f . That is,

(φ(γ) · F ) |yij=xi
= γ · f.

By the case d = 1, φ(γ)·F is determinantal. That is, there are some matrices C11, . . . , Cndn , D

with Cij ∈ Sym1
m(F) so that φ(γ) · F equals det(

∑n
i=1

∑di
j=1 yijCij +D). Then γ · f equals

det(
∑n

i=1 xiCi +D) where Ci =
∑di

j=1Cij ∈ Symdi
m(F). �

One motivation for studying such polynomials comes from definite determinantal repre-
sentations over R and their connection with stable polynomials. A real polynomial f ∈ R[x]
is stable if it has no zeros with strictly positive imaginary parts, i.e. f(z) 6= 0 for all z ∈ Cn

with Im(z) ∈ Rn
+. Equivalently, f is stable if and only if the polynomial f(tv +w) ∈ R[t] is

real-rooted for all v ∈ Rn
+ and w ∈ Rn. Over F = R, any polynomial with a determinantal

representation of the form (10) is stable (see, e.g. [Wag11, Prop. 2.1]), but not every stable
polynomial has such a representation (see [Brä11]).

The action of SL2(R) on C given by
(
a b

c d

)
· z = az+b

cz+d
preserves the upper half plane

{z ∈ C : Im(z) > 0} and so the set of stable polynomials in R[x] is invariant under the
action of SL2(R)

n⋊Sn. One consequence of Theorem 6.6 is that the set of polynomials with
a semidefinite determinantal representation is also invariant under the action of this group.

Corollary 6.7. The set of polynomials in R[x]≤d with a determinantal representation

f = λ det

(
n∑

i=1

xiAi +B

)
with A1, . . . , An, B ∈ Symm(R) and A1, . . . , An � 0

for some m ∈ N and λ ∈ R is invariant under the action of SL2(R)
n ⋊ Sn.
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[Brä07] Petter Brändén. Polynomials with the half-plane property and matroid theory. Adv. Math.,
216(1):302–320, 2007.
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