On a Rainbow Extremal Number in the Hypercube

Kenny Adeogun¹ Luke Hawranick² Muchen Ju³ Henry Zhan⁴

¹Carnegie Mellon University

²West Virginia University

³Fudan University

⁴Middlebury College

July 22, 2025

Definition (Hypercube Q_k)

The **hypercube** is a graph with vertex set $\{0,1\}^k$ such that two k-tuples are adjacent if and only if they differ in exactly one position.

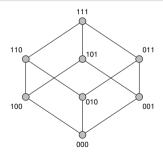


Figure: Q₃.

Definition (Proper Edge-coloring)

A **proper edge-coloring** of a graph is a labeling of its edges such that incident edges receive different colors.

Definition (Proper Edge-coloring)

A **proper edge-coloring** of a graph is a labeling of its edges such that incident edges receive different colors.

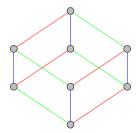


Figure: Proper Edge-coloring of Q_3 .

Definition (Rainbow Edge-coloring)

A **rainbow edge-coloring** of a graph is a labeling of its edges such that each edge receives a different color.

Definition (Rainbow Edge-coloring)

A **rainbow edge-coloring** of a graph is a labeling of its edges such that each edge receives a different color.

Figure: Rainbow Edge-colored P_4 .

Definition (The Rainbow Extremal Number of *F*)

Given a graph H, let $ex^*(n, F)$ be maximum number of edges in an n-vertex graph which admits a proper edge coloring with no rainbow copy of F.

Definition (The Rainbow Extremal Number of *F*)

Given a graph H, let $ex^*(n, F)$ be maximum number of edges in an n-vertex graph which admits a proper edge coloring with no rainbow copy of F.

Theorem (Keevash–Mubayi–Sudakov–Verstraëte, 2007)

Let G be a fixed graph. Then,

$$\operatorname{ex}(n,G) \leq \operatorname{ex}^*(n,G) \leq \operatorname{ex}(n,G) + o(n^2).$$

Relative Rainbow Extremal Numbers

Definition (The Rainbow Extremal Number of *F* with respect to *G*)

Given a graph F, let $ex^*(G, F)$ be the maximum number of edges in a subgraph of G which admits a proper coloring with no rainbow copy of F.

Relative Rainbow Extremal Numbers

Definition (The Rainbow Extremal Number of F with respect to G)

Given a graph F, let $ex^*(G, F)$ be the maximum number of edges in a subgraph of G which admits a proper coloring with no rainbow copy of F.

Question

Determine $ex^*(Q_n, P_{n+1})$.

Theorem (Rombach, unpublished)

$$ex^*(Q_n, P_{n+1}) < n2^{n-1} = |E(Q_n)|.$$

Theorem (Rombach, unpublished)

$$ex^*(Q_n, P_{n+1}) < n2^{n-1} = |E(Q_n)|.$$

• Let
$$s(v_i, v_j) = v_i + v_j \in \{e_i\}_{i \in [n]}$$
 for $(v_i, v_j) \in E(Q_n)$.

Theorem (Rombach, unpublished)

$$ex^*(Q_n, P_{n+1}) < n2^{n-1} = |E(Q_n)|.$$

- Let $s(v_i, v_j) = v_i + v_j \in \{e_i\}_{i \in [n]}$ for $(v_i, v_j) \in E(Q_n)$.
- Greedily build a rainbow path with an arbitrary start v_0v_1 .

Theorem (Rombach, unpublished)

$$ex^*(Q_n, P_{n+1}) < n2^{n-1} = |E(Q_n)|.$$

- Let $s(v_i, v_j) = v_i + v_j \in \{e_i\}_{i \in [n]}$ for $(v_i, v_j) \in E(Q_n)$.
- Greedily build a rainbow path with an arbitrary start v_0v_1 .
- At v_k , there are at least n-k incident colors not on the path. Choose v_{k+1} such that $s(v_k, v_{k+1})$ is distinct from the previous $\leq (n-k)$ -many choices.

Theorem (Rombach, unpublished)

$$ex^*(Q_n, P_{n+1}) < n2^{n-1} = |E(Q_n)|.$$

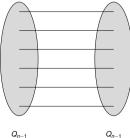
- Let $s(v_i, v_j) = v_i + v_j \in \{e_i\}_{i \in [n]}$ for $(v_i, v_j) \in E(Q_n)$.
- Greedily build a rainbow path with an arbitrary start v_0v_1 .
- At v_k , there are at least n-k incident colors not on the path. Choose v_{k+1} such that $s(v_k, v_{k+1})$ is distinct from the previous $\leq (n-k)$ -many choices.
- Greedy choice does not induce a cycle.

Theorem (Quail, unpublished)

$$ex^*(Q_n, P_{n+1}) \ge (n-1)2^{n-1}$$
.

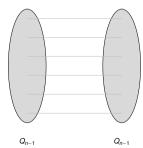
Theorem (Quail, unpublished)

$$ex^*(Q_n, P_{n+1}) \ge (n-1)2^{n-1}$$
.



Theorem (Quail, unpublished)

$$ex^*(Q_n, P_{n+1}) \ge (n-1)2^{n-1}$$
.



Theorem

$$ex^*(Q_n, P_{n+1}) < n2^{n-1} - 1.$$

Theorem

$$ex^*(Q_n, P_{n+1}) < n2^{n-1} - 1.$$

Proof.

• Suppose uv is deleted from $E(Q_n)$.

Theorem

$$ex^*(Q_n, P_{n+1}) < n2^{n-1} - 1.$$

- Suppose uv is deleted from $E(Q_n)$.
- Restore the edge and assign it a color not used in the coloring. This yields a properly edge-colored Q_n .

Theorem

$$ex^*(Q_n, P_{n+1}) < n2^{n-1} - 1.$$

- Suppose uv is deleted from $E(Q_n)$.
- Restore the edge and assign it a color not used in the coloring. This yields a properly edge-colored Q_n .
- Find a rainbow P_{n+1} using Rombach's Algorithm starting from uv' for $v' \neq v$.

Theorem

$$ex^*(Q_n, P_{n+1}) < n2^{n-1} - 1.$$

- Suppose uv is deleted from $E(Q_n)$.
- Restore the edge and assign it a color not used in the coloring. This yields a properly edge-colored Q_n .
- Find a rainbow P_{n+1} using Rombach's Algorithm starting from uv' for $v' \neq v$.
- The path will not include the edge uv, as the algorithm doesn't create a cycle by construction.

Open Problems

Conjecture

$$ex^*(Q_n, P_{n+1}) = (n-1)2^{n-1}$$
.

• Verified for n = 3, 4. Confirmed independently by Crawford, King, and Spiro (2025).

Open Problems

Conjecture

$$ex^*(Q_n, P_{n+1}) = (n-1)2^{n-1}$$
.

• Verified for n = 3, 4. Confirmed independently by Crawford, King, and Spiro (2025).

Thank You