Transformers for bootstrapped amplitudes

François CHARTON, Meta AI
Maths as a translation task

- Train models to translate problems, encoded as sentences in some language, into their solutions
 - $7 + 9 \Rightarrow 16$
 - $x^2 - x - 1 \Rightarrow \frac{1 + \sqrt{5}}{2}, \frac{1 - \sqrt{5}}{2}$
The recipe

- Generate a lot of examples of problems and solutions
- Encode them as “sentences” in some language
- Train a transformer model from problems and solutions
 - By minimizing the correctness (X-entropy) of the solution predicted by the model
 - No maths are involved at this stage
- Test it on a held-out test set
 - Not seen during training
 - Using a mathematical criterion
Maths as translation: learning GCD

- Two integers $a=10$, $b=32$, and their GCD $\gcd(a,b)=2$
- Can be encoded as sequences of digits (in base 10):
 - ‘+’, ‘1’, ‘0’
 - ‘+’, ‘3’, ‘2’
 - ‘+’, ‘2’
 - from examples only
 - as a “pure language” problem: the model knows no maths
This works!

- **Symbolic integration / Solving ODE:**
 - Deep learning for symbolic mathematics (2020): Lample & Charton (ArXiv 1912.01412)

- **Dynamical systems:**
 - Learning advanced computations from examples (2021): Charton, Hayat & Lample (ArXiv 2006.06462)
 - Discovering Lyapunov functions with transformers (2023): Alfarano, Charton, Hayat (3rd MATH&AI workshop, NeurIPS)

- **Symbolic regression:**
 - Deep symbolic regression for recurrent sequences (2022): d'Ascoli, Kamienny, Lample, Charton (ArXiv 2201.04600)
 - End-to-end symbolic regression with transformers (2022): Kamienny, d'Ascoli, Lample, Charton (ArXiv 2204.10532)

- **Cryptanalysis of post-quantum cryptography:**
 - SALSA: attacking lattice cryptography with transformers (2022): Wenger, Chen, Charton, Lauter (ArXiv 2207.04785)
 - SALSA PICANTE (2023) Li, Sotakova, Wenger, Mahlou, Garceland, Charton, Lauter (ArXiv 2303.0478)
 - SALSA VERDE (2023) Li, Wenger, Zhu, Charton, Lauter (ArXiv 2306.11641)

- **Theoretical physics**
 - Transformers for scattering amplitudes (2023): Merz, Cai, Charton, Nolte, Wilhelm, Cranmer, Dixon (ML4PS Workshop, NeurIPS)

- **Quantum computing**
 - Using transformer to simplify ZX diagrams (2023) (3rd MATH&AI Workshop, NeurIPS)
Deep symbolic regression for recurrent sequences (d’Ascoli, Kamienny, Lample, Charton 2022)

- Given the sequence 1, 2, 4, 7, 11, 16, what is the next term?
- 2 approaches:
 - Numeric regression: direct prediction of the next term
 - Symbolic regression: finding a formula for the sequence
 - a closed formula: \(u_n = n(n+1)/2 + 1 \)
 - or a recurrence relation: \(u_n = u_{n-1} + n \)
Deep symbolic regression for recurrent sequences (d’Ascoli, Kamienny, Lample, Charton 2022)

• 2 tasks:
 • Numeric regression : from the p first terms, predict the q next
 • Symbolic regression : from the p first terms, find a function

• 2 settings:
 • Integer sequences
 • Real (floating point) sequences

• One evaluation criterion: how good is the model at predicting the next q terms?
Generating data

• Generate a random function \(f(n, u_{n-1}, \ldots u_{n-k}) : n + u_{n-1} \)
• Sample \(k \) initial points \(u_0, u_1, \ldots u_{k-1} : u_0 = 1 \)
• Use function \(f \) to compute the next terms of the sequence
 • 1, 2, 4, 7, 11, 16, 22, 29, 37 ...

• Symbolic regression: predict \(f \) from \((u_0, \ldots u_{p-1}) \)
 • from \((1,2,4,7,11) \) predict \(f(n) = n + u_{n-1} \)
• Numeric regression: predict \((u_p, \ldots u_{p+q-1}) \) from \((u_0, \ldots u_{p-1}) \)
 • from \((1,2,4,7,11) \) predict \((16,22,29,37) \)
Representing expressions

\[2 + 3 \times (5 + 2)\]

\[3x^2 + \cos(2x) - 1\]

\[\frac{\partial^2 \psi}{\partial x^2} - \frac{1}{\nu^2} \frac{\partial^2 \psi}{\partial t^2}\]
Generating random formulas

1. Build a random tree
2. Sample operators as internal nodes
3. Sample integers, n, or past terms as leaves
4. Enumerate as a sequence

<table>
<thead>
<tr>
<th></th>
<th>Integer</th>
<th>Float</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unary</td>
<td>abs, sqr,</td>
<td>abs, sqr, sqrt, inv, log,</td>
</tr>
<tr>
<td></td>
<td>sign, step</td>
<td>exp sin, cos, tan, atan</td>
</tr>
<tr>
<td>Binary</td>
<td>sum, sub, mul, intdiv, mod</td>
<td>sum, sub, mul, div</td>
</tr>
</tbody>
</table>
Evaluating performance

• Model performance is defined as its ability to predict the next n_{pred} terms (1 to 10)
 • Directly or using the symbolic formula

• All predicted term must be predicted up to some tolerance τ (10^{-10})

\[
\text{acc}(n_{pred}, \tau) = \mathbb{P} \left(\max_{1 \leq i \leq n_{pred}} \left| \frac{\hat{u}_i - u_i}{u_i} \right| < \tau \right)
\]

• Accuracy is evaluated on a test set of 10 000 held-out examples
In domain results

<table>
<thead>
<tr>
<th>Model</th>
<th>Integer</th>
<th></th>
<th>Float</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$n_{op} \leq 5$</td>
<td>$n_{op} \leq 10$</td>
<td>$n_{op} \leq 5$</td>
<td>$n_{op} \leq 10$</td>
</tr>
<tr>
<td>Symbolic</td>
<td>92.7</td>
<td>78.4</td>
<td>74.2</td>
<td>43.3</td>
</tr>
<tr>
<td>Numeric</td>
<td>83.6</td>
<td>70.3</td>
<td>45.6</td>
<td>29.0</td>
</tr>
</tbody>
</table>

Table 6: Average in-distribution accuracies of our models. We set $\tau = 10^{-10}$ and $n_{pred} = 10$.

![Graphs showing accuracy across different parameters](image-url)
Success and failure cases

(a) Integer, success
(b) Integer, failure
Out-of-domain generalization-integers

<table>
<thead>
<tr>
<th>Model</th>
<th>$n_{\text{input}} = 15$</th>
<th>$n_{\text{input}} = 25$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$n_{\text{pred}} = 1$</td>
<td>$n_{\text{pred}} = 10$</td>
</tr>
<tr>
<td></td>
<td>$n_{\text{pred}} = 10$</td>
<td>$n_{\text{pred}} = 10$</td>
</tr>
<tr>
<td>Symbolic (ours)</td>
<td>33.4</td>
<td>34.5</td>
</tr>
<tr>
<td>Numeric (ours)</td>
<td>53.1</td>
<td>54.9</td>
</tr>
<tr>
<td>FindSequenceFunction</td>
<td>17.1</td>
<td>8.1</td>
</tr>
<tr>
<td>FindLinearRecurrence</td>
<td>17.4</td>
<td>21.2</td>
</tr>
</tbody>
</table>

Table 7: **Accuracy of our integer models and Mathematica functions on OEIS sequences.** We use as input the first $n_{\text{input}} = \{15, 25\}$ first terms of OEIS sequences and ask each model to predict the next $n_{\text{pred}} = \{1, 10\}$ terms. We set the tolerance $\tau = 10^{-10}$.
Out-of-domain generalization - integers

<table>
<thead>
<tr>
<th>OEIS</th>
<th>Description</th>
<th>First terms</th>
<th>Predicted recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A000792</td>
<td>$a(n) = \max{(n - i)a(i), i < n}$</td>
<td>1, 1, 2, 3, 4, 6, 9, 12, 18, 27</td>
<td>$u_n = u_{n-1} + u_{n-3} - u_{n-1}%u_{n-3}$</td>
</tr>
<tr>
<td>A000855</td>
<td>Final two digits of 2^n</td>
<td>1, 2, 4, 8, 16, 32, 64, 28, 56, 12</td>
<td>$u_n = (2u_{n-1})%100$</td>
</tr>
<tr>
<td>A006257</td>
<td>Josephus sequence</td>
<td>0, 1, 1, 3, 1, 3, 5, 7, 1, 3</td>
<td>$u_n = (u_{n-1} + n)%(n - 1) - 1$</td>
</tr>
<tr>
<td>A008954</td>
<td>Final digit of triangular number $n(n+1)/2$</td>
<td>0, 1, 3, 6, 0, 5, 1, 8, 6, 5</td>
<td>$u_n = (u_{n-1} + n)%10$</td>
</tr>
<tr>
<td>A026741</td>
<td>$a(n) = n$ if n odd, $n/2$ if n even</td>
<td>0, 1, 1, 3, 2, 5, 3, 7, 4, 9</td>
<td>$u_n = u_{n-2} + n/(u_{n-1} + 1)$</td>
</tr>
<tr>
<td>A035327</td>
<td>n in binary, switch 0’s and 1’s, back to decimal</td>
<td>1, 0, 1, 0, 3, 2, 1, 0, 7, 6</td>
<td>$u_n = (u_{n-1} - n)%(n - 1)$</td>
</tr>
<tr>
<td>A062050</td>
<td>n-th chunk consists of the numbers $1, \ldots, 2^n$</td>
<td>1, 1, 2, 1, 2, 3, 4, 1, 2, 3</td>
<td>$u_n = (n%(n - u_{n-1})) + 1$</td>
</tr>
<tr>
<td>A074062</td>
<td>Reflected Pentanacci numbers</td>
<td>5, -1, -1, -1, -1, 9, -7, -1, -1</td>
<td>$u_n = 2u_{n-5} - u_{n-6}$</td>
</tr>
</tbody>
</table>
Fun facts

Approximating constants

<table>
<thead>
<tr>
<th>Constant</th>
<th>Approximation</th>
<th>Rel. error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.33333</td>
<td>$(3 + \exp(-6))^{-1}$</td>
<td>10^{-5}</td>
</tr>
<tr>
<td>0.33333</td>
<td>$1/3$</td>
<td>10^{-5}</td>
</tr>
<tr>
<td>3.1415</td>
<td>$2 \arctan(\exp(10))$</td>
<td>10^{-7}</td>
</tr>
<tr>
<td>3.14159</td>
<td>π</td>
<td>10^{-7}</td>
</tr>
<tr>
<td>1.6449</td>
<td>$\frac{1}{\arctan(\exp(4))}$</td>
<td>10^{-7}</td>
</tr>
<tr>
<td>1.64493</td>
<td>$\frac{\pi^2}{6}$</td>
<td>10^{-7}</td>
</tr>
<tr>
<td>0.123456789</td>
<td>$10/9^2$</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>0.987654321</td>
<td>$1 - (1/9)^2$</td>
<td>10^{-11}</td>
</tr>
</tbody>
</table>

Approximating functions

<table>
<thead>
<tr>
<th>Expression u_n</th>
<th>Approximation \hat{u}_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{arcsinh}(n)$</td>
<td>$\log(n + \sqrt{n^2 + 1})$</td>
</tr>
<tr>
<td>$\text{arccosh}(n)$</td>
<td>$\log(n + \sqrt{n^2 - 1})$</td>
</tr>
<tr>
<td>$\text{arctanh}(1/n)$</td>
<td>$\frac{1}{2} \log(1 + 2/n)$</td>
</tr>
<tr>
<td>$\text{catalan}(n)$</td>
<td>$u_{n-1}(4 - 6/n)$</td>
</tr>
<tr>
<td>$\text{dawson}(n)$</td>
<td>$\frac{n}{2n^2 - u_{n-1} - 1}$</td>
</tr>
<tr>
<td>$j_0(n)$ (Bessel)</td>
<td>$\frac{\sqrt{\pi n}}{\sin(n) + \cos(n)}$</td>
</tr>
<tr>
<td>$i_0(n)$ (mod. Bessel)</td>
<td>$\frac{e^n}{\sqrt{2\pi n}}$</td>
</tr>
</tbody>
</table>
Fun facts - embeddings

- Integer
- Floating point exponents
• Scattering amplitudes: complex functions predicting the outcome of particle interactions
• Computed by summing Feynman diagrams of increasing complexity
 • loops: virtual particles created and destroyed in the process
• A hard problem: each loop introduces two latent variables, their integration give rise to generalized polylogarithms
 • For the standard model the best computational techniques only reach loop 3
• Polylogarithms have many algebraic properties
 • Leverage them to predict the structure of the solution, up to some coefficients
 • Compute the coefficients from symmetry consideration, known limit values, etc.

• In Planar N=4 supersymmetric Yang-Mills, solutions are “simple”
 • Calculated from symbols: homogeneous polynomials, degree 2L (L=loop), with integer coefficients
The three gluon form factor

• Three gluons and a Higgs
• Amplitudes for loop L can be computed from symbols
 • homogeneous polynomials in 6 non-commutative variables: a,b,c,d,e,f
 • with integer coefficients
 • \(-4 \, bcca + 4 \, bcbaff + 8 \, bcaff + \ldots\)
• \(6^{2L}\) possible “keys”, mapped to integers
 • Most of them zero
• Symmetries and asymptotic properties translate into constraints
 • An enormous integer programming problem
 • Could be solved up to loop 8

<table>
<thead>
<tr>
<th>(L)</th>
<th>number of terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>636</td>
</tr>
<tr>
<td>4</td>
<td>11,208</td>
</tr>
<tr>
<td>5</td>
<td>263,880</td>
</tr>
<tr>
<td>6</td>
<td>4,916,466</td>
</tr>
<tr>
<td>7</td>
<td>92,954,568</td>
</tr>
<tr>
<td>8</td>
<td>1,671,656,292</td>
</tr>
</tbody>
</table>

TABLE II. Number of terms in the symbol of \(F_3^{(L)}\) as a function of the loop order \(L\).
The six letter game

• We want to learn a mapping between “keys” (sequences of length 2L of the 6 letters, a,b,c,d,e and f) and integer coefficients

• There are obvious symmetries in the symbol
 • Coefficients are invariant by the dihedral symmetry generated by
 • a -> b->c -> a, d -> e -> f -> d, a <-> b, d <-> e
 • bccaff maps to -4, so does abbcee
 • Non zero coefficients
 • must begin with a, b or c, and end with d, e or f
 • Have no contiguous a and d, b and e, c and f, d and e, e and f and d and f
The six letter game

• And many less obvious symmetries
 • Non zero keys ending with a single letter d, e or f, must be preceded by a run of one of the letters a, b or c
 • A key ending in ecccd can be non zero, one ending in ecbcd must be zero

• And many empirical facts hold true over all symbols
 • Large absolute coefficients happen for symbols with many runs of one letter

• Can some of these relations be learned, empirically, by a language model?
 • To help calculate loops
 • To discover new facts about amplitudes in planar N=4
Experiment 1: Predicting zeroes

- For Loop 5 and 6, predict whether a term is zero or nonzero
 - afdcfdadfe is zero
 - aaaaeeceaaaf is not
- Build a 50/50 training sample of zero/nonzero terms
- Reserve 10k terms for test, these will not be seen during training
- Train the model, and measure performance on the test set (% of correct prediction)
 - For input a,f,d,c,f,d,a,d,f,e predict 0
 - For input a,a,a,e,e,c,e,a,a,f predict 1
Experiment 1: Predicting zeroes

- Loop 5: after training on 300,000 examples (57% of the non-zero keys and as many zero keys), the model predicts 99.96% of test examples (not seen during training).

- Loop 6: after training on 600,000 examples (6% of the symbol), the model predicts 99.97% of test examples.
Experiment 2 : Predicting non-zeroes

• From keys, sequences of 2L letters, predict coefficients, integers encoded in base 1000

• For loop 5, models trained on 164k examples (62% of the symbol), tested on 100k
 • 99.9% accuracy after 58 epochs of 300k examples

• For loop 6, models trained on 1M examples (20% of the symbol), tested on 100k
 • 98% accuracy after 120 epochs
 • BUT a two step learning curve
Experiment 2: Predicting non-zeroes

• full prediction, magnitude and sign
Experiment 3 : Learning with less symmetries

• Non zero coefficients
 • Must begin with a,b,c and end with d,e,f
 • Are invariant by dihedral symmetry
 • Cannot have a next to d (b next to e, c next to f)
 • Cannot have d next to e or f (e next to d or f)

• Only a few endings are possible:
 • 8 “quads” (4 letter endings, up to cyclic symmetry (a,b,c), (d,e,f))
 • 93 octuples
Experiment 3 : Learning loop 7 quads

- 7.3 million elements in the symbol (vs 93 millions in full representation)
- Models learn to predict with 98% accuracy
- Same “two step” shape
Experiment 3: Learning loop 8 octuples

- 5.6 million elements in the symbol (vs 1.7 billions in full representation)
- Models learn to predict with 94% accuracy
- Attenuated “two step” shape
- Slower learning (600 epochs, vs 200 for quads, and 70 for full representation)
Take away from experiments 1-3

- We can use transformers to complete partially calculated loops
- Coefficients are learned with high accuracy
 - Even when only a small part of the symbol is available
- A few unintuitive observations happen:
 - Hardness of learning the sign
 - Might shed new light on the underlying phenomenon
Experiment 4: predicting the next loop

• A loop L element E is a sequence of 2L letters
• Strike out 2 of the 2L letters
 - From aabd make bd, ad, ab...
 - There are L(2L-1) parents, call them P(E)
• Try to find a recurrence relation, that predicts the coefficient of E from its parents: \(E = f(P(E)) \)
 - A generalized Pascal triangle/pyramid (in 6 non-commutative variables)

• Predict loop 6 from loop 5:
 - From 66 integers: loop 5 coefficients
 - Predict 1 integer: the loop 6 coefficient
 - (NOT the keys: we already know the model can predict coefficients from keys)
• 98.1% accuracy, no difference between sign (98.4) and magnitude (99.6) accuracy
• A function f certainly exists (but we have no idea what it is)
Experiment 4: understanding the recurrence

• To collect information on f, the unknown recurrence, we could
 • Remove information about the parents
 • See if the model still learns

• Can we use less parents?
 • Only strike letters at most k tokens apart; e.g. k=1 only consecutive tokens
 • k=2: 21 parents, k=1: 11 parents

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th>Magnitude accuracy</th>
<th>Sign accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strike two, all parents</td>
<td>98.1</td>
<td>98.4</td>
<td>99.6</td>
</tr>
<tr>
<td>Strike two, k=5</td>
<td>98.3</td>
<td>98.6</td>
<td>99.7</td>
</tr>
<tr>
<td>Strike two, k=3</td>
<td>98.4</td>
<td>98.7</td>
<td>99.7</td>
</tr>
<tr>
<td>Strike two, k=2</td>
<td>98.1</td>
<td>98.3</td>
<td>99.5</td>
</tr>
<tr>
<td>Strike two, k=1</td>
<td>94.3</td>
<td>95.2</td>
<td>98.5</td>
</tr>
</tbody>
</table>
Experiment 4: understanding the recurrence

- Shuffling/sorting the parents do not prevent learning
- Coupling between parent/children signs, and magnitudes

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th>Magnitude accuracy</th>
<th>Sign accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strike two, all parents</td>
<td>98.1</td>
<td>98.4</td>
<td>99.6</td>
</tr>
<tr>
<td>Strike two, k=5</td>
<td>98.3</td>
<td>98.6</td>
<td>99.7</td>
</tr>
<tr>
<td>Strike two, k=3</td>
<td>98.4</td>
<td>98.7</td>
<td>99.7</td>
</tr>
<tr>
<td>Strike two, k=2</td>
<td>98.1</td>
<td>98.3</td>
<td>99.5</td>
</tr>
<tr>
<td>Strike two, k=1</td>
<td>94.3</td>
<td>95.2</td>
<td>98.5</td>
</tr>
<tr>
<td>Shuffled parents</td>
<td>95.2</td>
<td>99.1</td>
<td>96.3</td>
</tr>
<tr>
<td>Shuffled parents, k=2</td>
<td>93.5</td>
<td>98.1</td>
<td>95.0</td>
</tr>
<tr>
<td>Sorted parents, k=5</td>
<td>93.9</td>
<td>95.4</td>
<td>97.9</td>
</tr>
<tr>
<td>Parent signs only</td>
<td>93.3</td>
<td>93.5</td>
<td>99.0</td>
</tr>
<tr>
<td>Parent magnitudes only</td>
<td>81.8</td>
<td>98.4</td>
<td>83.2</td>
</tr>
</tbody>
</table>

Table 2: **Global, magnitude and sign accuracy.** Best of four models, trained for about 500 epochs
Next steps

• Better understanding the recurrence relation
 • Try building loop 9, or loops for related problems

• Discovering local properties/symmetries in the symbol
 • Symbols were calculated by exploiting known symmetries in nature
 • If we discover new regularities in the symbols, what does is tell us about nature?
 • Antipodal symmetries
Fun facts: learning the dihedral symmetry
Fun facts: learning relations between coefficients

\[\mathcal{E}^{b,f} - \mathcal{E}^{b,d} = 0, \]

\[\mathcal{E}^{d,d,b,d} - \mathcal{E}^{d,b,d,d} = 0. \]
Next steps

• We have a proof of concept:
 • Models can predict coefficients from key
 • Or discover recurrences from one loop to the next

• Can we go for loop 9? Or other problems?

• Can we reverse engineer the models?
 • By looking at their weights?
 • By looking at the representations they learn?
 • By looking at the way they train?

• If we train a language model on “all we know” about the symbol (like we train ChatGPT on all we know about language), will it learn new, emerging, properties of the symbols?
A growing area of research

In symbolic mathematics, we are beginning to use transformers to help solve longstanding open problems.

• Current projects in symbolic mathematics

 • Discovering the (symbolic) Lyapunov functions that control the global stability of dynamical systems (e.g. the N-body problem)
 • Discovering yet unknown kernel elements in the Burau representation of braid groups

• Could we use transformers in theoretical physics?