What is this talk about?

Aim:
Discuss action of Generalized Symmetries on S-matrix and derive physical consequences (Integrable examples, but conclusions more general!)
What is this talk about?

Generalized Symmetries

Aim:
Discuss action of Generalized Symmetries on S-matrix and derive physical consequences (Integrable examples, but conclusions more general!).
What is this talk about?

Aim:
Discuss action of Generalized Symmetries on S-matrix and derive physical consequences (Integrable examples, but conclusions more general!).

Generalized Symmetries

Scattering Amplitudes
What is this talk about?

Generalized Symmetries

Integrability

Scattering Amplitudes

Aim:
Discuss action of Generalized Symmetries on S-matrix and derive physical consequences (Integrable examples, but conclusions more general!).
What is this talk about?

Generalized Symmetries

Integrability

Scattering Amplitudes

This Talk

Aim:
Discuss action of Generalized Symmetries on S-matrix and derive physical consequences (Integrable examples, but conclusions more general!)

Aim: Discuss action of Generalized Symmetries on S-matrix and derive physical consequences (Integrable examples, but conclusions more general!).
Categorical Symmetries act on (massive) kinks and lead to Ward identities for the $2 \rightarrow 2$ S-Matrix:

$$L_S = L_S(\star) = (\star \star) = (\star \star \star)$$

Imposing Symmetry (\star), Unitarity ($\star \star$) and YBE ($\star \star \star$) is incompatible with standard Crossing. Instead:

$$S_{ab}^d c d(\theta) = s_d a d c d S_{bc}^a d(\pi - \theta)$$

Categorical symmetries can be used efficiently in the Bootstrap program. (See Lucia's Lectures!)
Summary

- Categorical Symmetries act on (massive) kinks and lead to Ward identities for the $2 \rightarrow 2$ S-Matrix:
Categorical Symmetries act on (massive) kinks and lead to Ward identities for the 2 → 2 S-Matrix:

\[L_1 S \xrightarrow{\star} L_2 S \xrightarrow{\star \star} L_3 = L_4 \xrightarrow{\star \star \star} \]

Imposing Symmetry (\(\star \)), Unitarity (\(\star \star \)) and YBE (\(\star \star \star \)) is incompatible with standard Crossing.

Instead:

\[S_{ab\,dc}(\theta) = s_{da\,dc} d_{bd\,db} S_{bc\,ad}(i\pi - \theta) \]

Categorical symmetries can be used efficiently in the Bootstrap program. (See Lucia's Lectures!)
○ Categorical Symmetries act on (massive) kinks and lead to Ward identities for the $2 \to 2$ S-Matrix:

\[\mathcal{L} \mathcal{S} = \mathcal{S}^{\star \star} = \mathcal{S}^{\star \star \star} \]

○ Imposing Symmetry (\star), Unitarity ($\star \star$) and YBE ($\star \star \star$) is incompatible with standard Crossing.

Instead:

\[S_{ab}^{\prime} \equiv S_{ab} - i \pi \theta \]
Categorical Symmetries act on (massive) kinks and lead to Ward identities for the 2 → 2 S-Matrix:

\[\mathcal{L} \mathcal{S} = \mathcal{S} \mathcal{L} = \mathcal{S} \mathcal{S} \]

Imposing Symmetry (\(\star \)), Unitarity (\(\star \star \)) and YBE (\(\star \star \star \)) is incompatible with standard Crossing.

Instead:

\[S_{ab}^{\text{dc}}(\theta) = S_{\text{dc}}^{\text{ab}}(\pi - \theta) \]

Categorical symmetries can be used efficiently in the Bootstrap program. (See Lucia's Lectures!)
Categorical Symmetries act on (massive) kinks and lead to Ward identities for the $2 \rightarrow 2$ S-Matrix:

\[
L_S = L_S(\star) = (\star \star) = (\star \star \star)
\]

Imposing Symmetry (\star), Unitarity ($\star \star$) is incompatible with standard Crossing.

Instead:

\[
S_{ab\;dc}(\theta) = s_{da\;bc}(i\pi - \theta)
\]

Categorical symmetries can be used efficiently in the Bootstrap program. (See Lucia's Lectures!)
Categorical Symmetries act on (massive) kinks and lead to Ward identities for the $2 \to 2$ S-Matrix:

\[L \] \hspace{1cm} = \hspace{1cm} \star \hspace{1cm} = \hspace{1cm} \star \star \hspace{1cm} = \hspace{1cm} \star \star \star \]

Imposing Symmetry (\star), Unitarity ($\star \star$) and YBE ($\star \star \star$)
Categorical Symmetries act on (massive) kinks and lead to Ward identities for the 2 → 2 S-Matrix:

\[L \mathcal{S} = \mathcal{S} (\star) = (\star \star) = (\star \star \star) \]

- Imposing Symmetry (\(\star \)), Unitarity (\(\star \star \)) and YBE (\(\star \star \star \)) is incompatible with standard Crossing.

Categorical symmetries can be used efficiently in the Bootstrap program. (See Lucia's Lectures!)
Categorical Symmetries act on (massive) kinks and lead to Ward identities for the 2 \(\rightarrow \) 2 S-Matrix:

\[
L_S = L_S (\ast) = (\ast \ast) = (\ast \ast \ast)
\]

Imposing Symmetry (\ast), Unitarity (\ast \ast) and YBE (\ast \ast \ast) is incompatible with standard Crossing. Instead:

\[
S_{ab}^{dc}(\theta) = \sqrt{\frac{d_a d_c}{d_b d_d}} S_{bc}^{ad}(i\pi - \theta)
\]
Categorical Symmetries act on (massive) kinks and lead to Ward identities for the $2 \rightarrow 2$ S-Matrix:

$$L_S = L_S^*(\star) = 1^{\star\star} = 1^{\star\star\star}$$

Imposing **Symmetry** (\star), **Unitarity** $(\star\star)$ and **YBE** $(\star\star\star)$ is incompatible with standard **Crossing**. Instead:

$$S_{ab}^{dc}(\theta) = \sqrt{\frac{d_a d_c}{d_b d_d}} S_{bc}^{ad}(i\pi - \theta)$$

Categorical symmetries can be used efficiently in the **Bootstrap** program. (See Lucia’s Lectures!)
Philosophy

IR \rightarrow UV

IR Vacua

Symmetric TQFT

$M \rightarrow$ Massive Kinks

$K^{ab} \rightarrow$

UV CFT

Relevant Pert.

ϕ

Action on vacua of M

Action on Kinks

Preserved by ϕ

Symmetry C is present at all steps.
IR \longrightarrow UV
IR \rightarrow UV

Symmetric TQFT \mathcal{M}

IR Vacua

Relevant Pert. ϕ

Action on vacua of \mathcal{M}

Action on Kinks K_{ab}

Preserved by Symmetry C is present at all steps.
IR \rightarrow UV

IR Vacua
Symmetric TQFT \mathcal{M}

Massive Kinks
K_{ab}

Relevant Pert. ϕ
IR \rightarrow UV

IR Vacua
Symmetric TQFT \mathcal{M}

Massive Kinks K_{ab}

UV CFT
Relevant Pert. ϕ

Action on vacua of \mathcal{M}
Action on K_{ab}
Preserved by ϕ
Symmetry \mathcal{C} is present at all steps.
IR \rightarrow UV

IR Vacua
Symmetric TQFT \mathcal{M}

Massive Kinks K_{ab}

UV CFT
Relevant Pert. ϕ

Symmetry C is present at all steps.
IR \rightarrow UV

IR Vacua
Symmetric TQFT \mathcal{M}

Massive Kinks
K_{ab}

UV CFT
Relevant Pert. ϕ

Symmetry C is present at all steps.
Philosophy

IR \rightarrow UV

IR Vacua
Symmetric TQFT \mathcal{M}

Massive Kinks
K_{ab}

UV CFT
Relevant Pert. ϕ

Symmetry C is present at all steps.
IR \rightarrow UV

IR Vacua \rightarrow Massive Kinks \rightarrow UV CFT

Symmetric TQFT \mathcal{M}

K_{ab}

Relevant Pert. ϕ

Action on vacua of \mathcal{M}
Action on Kinks

Preserved by ϕ

Symmetry \mathcal{C} is present at all steps.
Categorical symmetries (Review)

Implemented by topological lines:

\[\text{[Petkova, Zuber '02; Gaiotto, Kapustin, Seiberg, Willett '14; Chang, Lin, Shao, Wang, Yin '18; ...]} \]

Associativity (F-symbols):

\[L \cdot L' \cdot L'' = X L v L' L'' L'' L'' L' L'' L'' \]

Fusion structure:

\[L \cdot L' = X L 3 N L' L'' L' L'' L'' N L' L'' N L' \in N \]
Categorical symmetries (Review)

Implemented by topological lines:

[Petkova, Zuber '02; Gaiotto, Kapustin, Seiberg, Willett '14; Chang, Lin, Shao, Wang, Yin '18; ...]
Categorical symmetries (Review)

Implemented by topological lines:

[Petkova, Zuber '02; Gaiotto, Kapustin, Seiberg, Willett '14; Chang, Lin, Shao, Wang, Yin '18; ...]

\[
\mathcal{L} = \mathcal{L} \quad \rightarrow \quad \mathcal{L}
\]
Categorical symmetries (Review)

Implemented by topological lines:

\[\text{[Petkova, Zuber '02; Gaiotto, Kapustin, Seiberg, Willett '14; Chang, Lin, Shao, Wang, Yin '18; ...]} \]

\[\mathcal{L} \mathcal{L} \mathcal{L}' = \mathcal{L} \mathcal{L}' \mathcal{L}'' \]

Fusion structure

\[\sum_{\mathcal{L}_3} N_{\mathcal{L} \mathcal{L} \mathcal{L}'}^{\mathcal{L}'} = \sum_{\mathcal{L}_3} N_{\mathcal{L} \mathcal{L} \mathcal{L}'}^{\mathcal{L}''} \in \mathbb{N} \]
Categorical symmetries (Review)

Implemented by topological lines:

\[[\text{Petkova, Zuber '02; Gaiotto, Kapustin, Seiberg, Willett '14; Chang, Lin, Shao, Wang, Yin '18; ...}] \]

\[L = L' = L'' = L''' \]

Fusion structure:

\[= \sum_{L_3} N^{L''}_{L L'} \]

\[N^{L''}_{L L'} \in \mathbb{N} \]

Topological junctions (vector space):

\[x \in V^{L''}_{L L'} : \]
Categorical symmetries (Review)

Implemented by topological lines:

\[\text{[Petkova, Zuber '02; Gaiotto, Kapustin, Seiberg, Willett '14; Chang, Lin, Shao, Wang, Yin '18; ...]} \]

Fusion structure

\[= \sum_{L_3} N_{L L L'} \]

\[N_{L L L'} \in \mathbb{N} \]

Associativity (F-symbols):

\[= \sum_{L_3} N_{L L L'} \]

Topological junctions (vector space):

\[x \in \mathcal{V}_{L L L'} : \]
Categorical symmetries (Review)

Implemented by topological lines:

\[\text{[Petkova, Zuber '02; Gaiotto, Kapustin, Seiberg, Willett '14; Chang, Lin, Shao, Wang, Yin '18; ...]} \]

\[\mathcal{L} = \mathcal{L} \]

Fusion structure

\[\mathcal{L} \mathcal{L}' = \sum_{\mathcal{L}_3} N_{\mathcal{L}, \mathcal{L}, \mathcal{L}'} \]

\[N_{\mathcal{L}, \mathcal{L}, \mathcal{L}'} \in \mathbb{N} \]

Associativity (F-symbols):

\[\mathcal{L}_{x'} \mathcal{L}_v \mathcal{L}_u = \sum_{\mathcal{L}_v} \left[\mathcal{L}_{x'} \mathcal{L}_v \mathcal{L}_u \right]_{x'yv} \]

Quantum dimension:

\[d_{\mathcal{L}} = d_{\mathcal{L}} \geq 1 \]
Example: Ising Symmetry

Consider the 1+1d Ising phase diagram:

\[Z^2 \text{ ordered} \]
\[Z^2 \text{ disordered} \]

Ising CFT

KW duality exchanges high and low T

\[\text{KW} \iff \]

At critical point this becomes a symmetry \(N \).

Ising Symmetry:

\[\text{Ising} = \{ 1, \eta, N \} \]

Fusion algebra:

\[\eta^2 = 1, \quad \eta^N = N \eta = N \]
\[N^2 = 1 + \eta^d, \quad \eta^d = 1, \quad \eta^N = \sqrt{2} \]

The KW defect line \(N \) is non-invertible!
Example: Ising Symmetry

Consider the 1+1d Ising phase diagram:
Consider the 1+1d Ising phase diagram:

\begin{align*}
\mathbb{Z}_2 \text{ ordered} & \quad \mathbb{Z}_2 \text{ disordered} \\
\text{Ising} & \quad \text{CFT} \\
T & \quad
\end{align*}
Consider the 1+1d Ising phase diagram:

\[\mathbb{Z}_2 \text{ ordered} \quad \mathbb{Z}_2 \text{ disordered} \]

KW duality exchanges high and low T.

Ising Symmetry:

\[\text{Ising} = \{1, \eta, N\} \]

Fusion algebra:

\[\eta^2 = 1, \eta N = N \eta, N^2 = 1 + \eta, d = \sqrt{2} \]

The KW defect line \(N\) is non-invertible!
Example: Ising Symmetry

Consider the 1+1d Ising phase diagram:

\[\mathbb{Z}_2 \] ordered \quad \Rightarrow \quad \mathbb{Z}_2 \] disordered

KW duality exchanges high and low T

KW

√2

The KW defect line is non-invertible!
Example: Ising Symmetry

Consider the 1+1d Ising phase diagram:

\[\mathbb{Z}_2 \text{ ordered} \quad \mathbb{Z}_2 \text{ disordered} \]

KW duality exchanges high and low T

At critical point \(\circ \) this becomes a symmetry \(\mathcal{N} \).
Consider the 1+1d Ising phase diagram: Ising Symmetry:

```
\[\mathbb{Z}_2\] ordered \quad \mathbb{Z}_2 \quad \text{disordered}
```

KW duality exchanges high and low T

At critical point \circ this becomes a symmetry \mathcal{N}.

Ising Symmetry:

\[
\text{Ising} = \{1, \eta, N\}
\]

Fusion algebra:

\[
\eta^2 = 1, \quad \eta N = N \eta = N
\]

\[
N^2 = 1 + \eta d, \quad d N = \sqrt{2}
\]
Consider the 1+1d Ising phase diagram:

\[\mathbb{Z}_2 \text{ ordered} \quad \mathbb{Z}_2 \text{ disordered} \]

Ising CFT

Ising Symmetry:

\[\text{Ising} = \{1, \eta, \mathcal{N}\} \]

KW duality exchanges high and low T

\[KW \leftrightarrow \]

At critical point \(\bigcirc \) this becomes a symmetry \(\mathcal{N} \).
Consider the 1+1d Ising phase diagram:

Ising CFT

\mathbb{Z}_2 ordered \mathbb{Z}_2 disordered

T

KW duality exchanges high and low T

Ising Symmetry:

$\text{Ising} = \{1, \eta, \mathcal{N}\}$

Fusion algebra:

$\eta^2 = 1$, $\eta\mathcal{N} = \mathcal{N}\eta = \mathcal{N}$

$\mathcal{N}^2 = 1 + \eta$

At critical point \circ this becomes a symmetry \mathcal{N}.

Example: Ising Symmetry
Consider the 1+1d Ising phase diagram:

\[Z_2 \text{ ordered} \quad \xrightarrow{T} \quad Z_2 \text{ disordered} \]

Ising CFT

KW duality exchanges high and low T

At critical point \(\bigcirc \) this becomes a symmetry \(\mathcal{N} \).

Ising Symmetry:

\[\text{Ising} = \{1, \eta, \mathcal{N}\} \]

Fusion algebra:

\[\eta^2 = 1, \quad \eta \mathcal{N} = \mathcal{N} \eta = \mathcal{N} \]

\[\mathcal{N}^2 = 1 + \eta \]

\[d_\eta = 1, \quad d_\mathcal{N} = \sqrt{2}. \]
Example: Ising Symmetry

Consider the 1+1d Ising phase diagram:

\[\mathbb{Z}_2 \text{ ordered } \rightarrow T \rightarrow \mathbb{Z}_2 \text{ disordered} \]

KW duality exchanges high and low T

At critical point this becomes a symmetry \(\mathcal{N} \).

Ising Symmetry:

\[\text{Ising} = \{1, \eta, \mathcal{N}\} \]

Fusion algebra:

\[\eta^2 = 1, \quad \eta \mathcal{N} = \mathcal{N} \eta = \mathcal{N} \]
\[\mathcal{N}^2 = 1 + \eta \]
\[d_\eta = 1, \quad d_\mathcal{N} = \sqrt{2}. \]

The KW defect line \(\mathcal{N} \) is non-invertible!
C-symmetric TQFTs

We describe 1+1d TQFT M via a collection of boundary conditions (states) $a, b, c, ...$

The symmetry action is described by topological junctions.

Which satisfy associativity conditions

\[
\phi_{a \; b \; c} = \tau_{L \; L'} \phi_{a \; c \; L} \phi_{L \; L' \; b}
\]

Parallel fusion is described by an integer-valued matrix:

\[
\begin{pmatrix}
 n_L \\
 b \\
 a
\end{pmatrix}
\]

Satisfying the algebra:

\[
\phi_{b \; \left(n_{L'} \right) \; c} = \phi_{n_{L''} \; L \; L'} \phi_{a \; \left(n_{L'} \right) \; c}
\]

This endows M with the mathematical structure of a module category over C.
We describe 1+1d TQFT \mathcal{M} via a collection of boundary conditions (states) a, b, c, \ldots [Huang, Lin, Seifnashri '21, ...]
We describe 1+1d TQFT \mathcal{M} via a collection of boundary conditions (states) $a, b, c, ...$ [Huang, Lin, Seifnashri '21, ...]

The symmetry action is described by topological junctions.
We describe 1+1d TQFT \mathcal{M} via a collection of boundary conditions (states) a, b, c, \ldots [Huang, Lin, Seifnashri '21, ...]

The symmetry action is described by topological junctions. Which satisfy associativity conditions

$$L a c L' = \sum \varphi^{a b c}_{L L' L''} L'' a c$$

This endows \mathcal{M} with the mathematical structure of a module category over \mathcal{C}.
We describe 1+1d TQFT \mathcal{M} via a collection of boundary conditions (states) a, b, c, \ldots [Huang, Lin, Seifnasri '21, ...]

Parallel fusion is described by an integer-valued matrix:

$$a \xrightarrow{\mathcal{L}} b = (n_{\mathcal{L}})_a^b$$

The symmetry action is described by topological junctions. Which satisfy associativity conditions

$$\mathcal{L} \xrightarrow{\mathcal{L}'} = \sum_{\mathcal{L}''} \varphi_{\mathcal{L} \mathcal{L}'}^{a \ b \ c} \mathcal{L} \mathcal{L}'' \mathcal{L}''$$
\mathcal{C}-symmetric TQFTs

We describe 1+1d TQFT \mathcal{M} via a collection of boundary conditions (states) a, b, c, \ldots [Huang, Lin, Seifnashri '21, ...]

The symmetry action is described by topological junctions. Which satisfy associativity conditions

Parallel fusion is described by an integer-valued matrix:

$$a \quad \quad \quad = \quad (n_{\mathcal{L}})_a^b \quad b$$

Satisfying the algebra:

$$\sum_b (n_{\mathcal{L}})_a^b (n_{\mathcal{L}'}_b^c) = \sum_{\mathcal{L}''} N_{\mathcal{L} \mathcal{L}'} (n_{\mathcal{L}''})_a^c,$$

The symmetry action is described by topological junctions.
\(C\)-symmetric TQFTs

We describe 1+1d TQFT \(\mathcal{M} \) via a collection of boundary conditions (states) \(a, b, c, \ldots \) [Huang, Lin, Seifnashri '21, ...]

The symmetry action is described by topological junctions. Which satisfy associativity conditions

\[
\phi^{ab}_{L \cdot L'} = \sum_{L''} \phi^{abc}_{L \cdot L' \cdot L''} = \sum_{L''} \phi^{abc}_{L \cdot L' \cdot L''}
\]

Parallel fusion is described by an integer-valued matrix:

\[
\begin{array}{c}
\text{a} \\
\text{b} \\
\text{c}
\end{array}
= \begin{array}{c}
\sum_{L''} (n_{L})^{b}_{a} (n_{L'})^{c}_{b} \\
\sum_{L''} N_{L \cdot L' \cdot L''}^{c} (n_{L'})^{c}_{a}
\end{array}
\]

Satisfying the algebra:

\[
\sum_{b} (n_{L})^{b}_{a} (n_{L'})^{c}_{b} = \sum_{L''} N_{L \cdot L' \cdot L''}^{c} (n_{L'})^{c}_{a},
\]

This endows \(\mathcal{M} \) with the mathematical structure of a module category over \(\mathcal{C} \).
Example: Ising TQFT

As an example let us study a TQFT with Ising symmetry. We are familiar with the TQFTs with \mathbb{Z}_2 symmetry:

$$|+\rangle, |-\rangle, |0\rangle$$

The KW symmetry interchanges the two sets in a \mathbb{Z}_2-neutral way:

$$N|0\rangle = |+\rangle + |-\rangle, N|\pm\rangle = |0\rangle.$$

One can check that there are no consistent TQFTs with 1 or 2 vacua.

$$|0\rangle = |N\rangle, |+\rangle = |1\rangle, |-\rangle = |\eta\rangle.$$

This is a special case of the regular representation. One identifies

$$\{a, b, c, ...\} = \{L, L', L'' , ...\}$$

and:

$$L'L''L = 1,$$

This enforces:

$$\phi_{L_1 L_2 L_3 L L'} = h F_{L_1 L L_3 L'} i L_2 L'.$$

And describes the complete SSB of the symmetry C.

Example: Ising TQFT

As an example let us study a TQFT with Ising symmetry.
As an example let us study a TQFT with Ising symmetry. We are familiar with the TQFTs with \mathbb{Z}_2 symmetry:

\[
|+\rangle \quad |\rangle
\]

The KW symmetry interchanges the two sets in a \mathbb{Z}_2-neutral way:

\[
N|0\rangle = |+\rangle + |\rangle,
N|\plus\rangle = |0\rangle.
\]

One can check that there are no consistent TQFTs with 1 or 2 vacua. $|0\rangle = |N\rangle$, $|+\rangle = |1\rangle$, $|\rangle = |\eta\rangle$.

This is a special case of the Regular representation. One identifies $\{a, b, c, \ldots\} = \{L, L', L''\ldots\}$ and:

\[
L' L'' \ldots = 1
\]

This enforces:

\[
\phi_{L_1 L_2 L_3} = h_{FL_1 L_3} L_2 L_4.
\]

And describes the complete SSB of the symmetry C.

Example: Ising TQFT

As an example let us study a TQFT with Ising symmetry. We are familiar with the TQFTs with \mathbb{Z}_2 symmetry:

\begin{align*}
|+\rangle & \quad |-\rangle \\
\end{align*}

The KW symmetry interchanges the two sets in a \mathbb{Z}_2-neutral way:

$$\mathcal{N}|0\rangle = |+\rangle + |-\rangle, \quad \mathcal{N}|\pm\rangle = |0\rangle.$$
As an example let us study a TQFT with Ising symmetry. We are familiar with the TQFTs with \(\mathbb{Z}_2 \) symmetry:

\[
|+\rangle | -\rangle |0\rangle
\]

The KW symmetry interchanges the two sets in a \(\mathbb{Z}_2 \)-neutral way:

\[
\mathcal{N}|0\rangle = |+\rangle + | -\rangle, \quad \mathcal{N}|\pm\rangle = |0\rangle.
\]

One can check that there are no consistent TQFTs with 1 or 2 vacua.
Example: Ising TQFT

As an example let us study a TQFT with Ising symmetry. We are familiar with the TQFTs with \mathbb{Z}_2 symmetry:

$$|+\rangle, \quad |-\rangle, \quad |0\rangle$$

The KW symmetry interchanges the two sets in a \mathbb{Z}_2-neutral way:

$$\mathcal{N}|0\rangle = |+\rangle + |-\rangle, \quad \mathcal{N}|±\rangle = |0\rangle.$$

One can check that there are no consistent TQFTs with 1 or 2 vacua.
As an example let us study a TQFT with Ising symmetry. We are familiar with the TQFTs with \(\mathbb{Z}_2 \) symmetry:

\[
|+\rangle, \quad |\pm\rangle, \quad |0\rangle
\]

The KW symmetry interchanges the two sets in a \(\mathbb{Z}_2 \)-neutral way:

\[
\mathcal{N}|0\rangle = |+\rangle + |\pm\rangle, \quad \mathcal{N}|\pm\rangle = |0\rangle.
\]

This is a special case of the Regular representation. One identifies \(\{a, b, c...\} = \{\mathcal{L}, \mathcal{L}', \mathcal{L}'' ...\} \) and:

One can check that there are no consistent TQFTs with 1 or 2 vacua.
As an example let us study a TQFT with Ising symmetry. We are familiar with the TQFTs with \(\mathbb{Z}_2 \) symmetry:

\[
|+\rangle, \quad |−\rangle, \quad |0\rangle
\]

The KW symmetry interchanges the two sets in a \(\mathbb{Z}_2 \)-neutral way:

\[
\mathcal{N}|0\rangle = |+\rangle + |−\rangle, \quad \mathcal{N}|±\rangle = |0\rangle.
\]

One can check that there are no consistent TQFTs with 1 or 2 vacua.

This is a special case of the Regular representation. One identifies \(\{a, b, c, \ldots\} = \{L, L', L''\ldots\} \) and:

\[
L' L'' = 1
\]

And describes the complete SSB of the symmetry \(C \).
Example: Ising TQFT

As an example let us study a TQFT with Ising symmetry.

We are familiar with the TQFTs with \mathbb{Z}_2 symmetry:

$|+\rangle$, $|-\rangle$, $|0\rangle$

The KW symmetry interchanges the two sets in a \mathbb{Z}_2-neutral way:

$\mathcal{N}|0\rangle = |+\rangle + |-\rangle$, $\mathcal{N}|\pm\rangle = |0\rangle$.

One can check that there are no consistent TQFTs with 1 or 2 vacua.

This is a special case of the **Regular representation**. One identifies \{a, b, c...\} = \{L, L', L'' ...\} and:

$\mathcal{N} |0\rangle = |L\rangle$, $|+\rangle = |L'\rangle$, $|-\rangle = |L''\rangle$.

This enforces:

$\mathcal{N} |0\rangle = |L\rangle$, $|+\rangle = |L'\rangle$, $|-\rangle = |L''\rangle$.

This enforces:

$\mathcal{F}_{L_1 L_2 L_3} \equiv \left[F_{L_1 L_2 L_3} \right]_{L_2 L''}$.
Example: Ising TQFT

As an example let us study a TQFT with Ising symmetry. We are familiar with the TQFTs with \mathbb{Z}_2 symmetry:

This is a special case of the **Regular** representation. One identifies $\{a, b, c...\} = \{L, L', L''...\}$ and:

The KW symmetry interchanges the two sets in a \mathbb{Z}_2-neutral way:

This enforces:

One can check that there are no consistent TQFTs with 1 or 2 vacua.

This enforces:

And describes the **complete** SSB of the symmetry C.

$$\Phi_{L_1 L_2 L_3} = \left[F_{L_1 L_2 L_3} \right]_{L_2 L_1 L_3}.$$
As an example let us study a TQFT with Ising symmetry. We are familiar with the TQFTs with \mathbb{Z}_2 symmetry:

$$|+\rangle, |-\rangle, |0\rangle$$

The KW symmetry interchanges the two sets in a \mathbb{Z}_2-neutral way:

$$\mathcal{N}|0\rangle = |+\rangle + |-\rangle, \quad \mathcal{N}|\pm\rangle = |0\rangle.$$

One can check that there are no consistent TQFTs with 1 or 2 vacua.

$$|0\rangle = |\mathcal{N}\rangle, \quad |+\rangle = |1\rangle, \quad |-\rangle = |\eta\rangle$$

This is a special case of the Regular representation. One identifies \{a, b, c...\} = \{L, L', L''...\} and:

This enforces:

$$\mathcal{F}_{L_1L_2L_3} = \left[F_{L'_1L_1L_3} \right]_{L_2L''}.$$

And describes the complete SSB of the symmetry C.

\[\text{Example: Ising TQFT}\]
Kink Multiplets ...

To understand symmetry action on kinks we describe their Hilbert space H_{ab} as the strip Hilbert space with $L \gg 1/M_{\text{kink}}$ and TQFT b.c. [Cordova, Garcia-Sepulveda, Holfester '24]:

$H_{a}, b \cong b \cdot a \cdot L \Rightarrow H_{ab} \Rightarrow H_{cd}$

Composition of two lines $L, L' \Rightarrow \Rightarrow \Rightarrow$

Gives the algebra:

$L'_{ef} \cdot [L_{cd}]_{ab} = X_{L''_{\varphi ace LL'_{L''_{\varphi cdf}}}}$.
To understand symmetry action on kinks we describe their Hilbert space \mathcal{H}_{ab} as the strip Hilbert space with $L \gg 1/M_{\text{kin}}$ and TQFT b.c. [Cordova, Garcia-Sepulveda, Holfester '24]:
Kink Multiplets ...

To understand symmetry action on kinks we describe their Hilbert space \mathcal{H}_{ab} as the strip Hilbert space with $L \gg 1/M_{\text{kink}}$ and TQFT b.c. [Cordova, Garcia-Sepulveda, Holfester '24]:

$$\mathcal{H}_{a,b} \simeq \begin{array}{c}
\begin{array}{c}
\vdots \\
a \\
\end{array} \\
\begin{array}{c}
\vdots \\
b \\
\end{array}
\end{array}$$
Kink Multiplets ...

To understand symmetry action on kinks we describe their Hilbert space \mathcal{H}_{ab} as the strip Hilbert space with $L \gg 1/M_{\text{kink}}$ and TQFT b.c. [Cordova, Garcia-Sepulveda, Holfester '24]:

$$\mathcal{H}_{a,b} \simeq$$

\mathcal{L} maps $\mathcal{H}_{ab} \rightarrow \mathcal{H}_{cd}$ by downwards action:
To understand symmetry action on kinks we describe their Hilbert space \mathcal{H}_{ab} as the strip Hilbert space with $L \gg 1/M_{\text{kink}}$ and TQFT b.c. [Cordova, Garcia-Sepulveda, Holfester '24]:

$$\mathcal{H}_{a,b} \simeq \begin{array}{c|c}
\quad & \quad \\
\hline
a & b
\end{array}$$

\mathcal{L} maps $\mathcal{H}_{ab} \to \mathcal{H}_{cd}$ by downwards action:

$$\begin{array}{c|c|c|c}
\quad & \quad & \quad & \\
\hline
\quad & \quad & \quad & \\
\hline
a & b & c & d
\end{array} = \sqrt{d} \mathcal{L} [\mathcal{L}]_{ab}^{cd} \begin{array}{c|c}
\quad & \quad \\
\hline
\quad & \quad \\
\quad & \quad
\end{array}$$
To understand symmetry action on kinks we describe their Hilbert space \mathcal{H}_{ab} as the strip Hilbert space with $L \gg 1/M_{\text{kink}}$ and TQFT b.c. [Cordova, Garcia-Sepulveda, Hofester '24]:

$$\mathcal{H}_{a,b} \simeq$$

L maps $\mathcal{H}_{ab} \rightarrow \mathcal{H}_{cd}$ by downwards action:

Composition of two lines L, L'

$$\mathcal{L} \mathcal{L}' \mathcal{L} = \sqrt{d_L} \mathcal{L} \left[\mathcal{L} \right]_{ab}^{cd} \mathcal{L}' \mathcal{L} \mathcal{L}'$$
Kink Multiplets...

To understand symmetry action on kinks we describe their Hilbert space \mathcal{H}_{ab} as the strip Hilbert space with $L \gg 1/M_{\text{kink}}$ and TQFT b.c. [Cordova, Garcia-Sepulveda, Holfester '24]:

$$\mathcal{H}_{a,b} \simeq$$

L maps $\mathcal{H}_{ab} \to \mathcal{H}_{cd}$ by downwards action:

$$L \cdot \mathcal{H}_{ab} \Rightarrow \mathcal{H}_{cd}$$

Composition of two lines L, L'

Gives the algebra:

$$[L'][ef]_{cd} \cdot [L]_{ab} = \sum_{L''} \varphi_{L'\ell L'' \ell_1 \ell_2} \varphi_{L' \ell L' \ell_1 \ell_2} \mathcal{L}'' \cdot [L''][ef]_{ab}.$$
The irreducible representations of this algebra are labelled by lines $v \in \mathbb{C}^\ast$. For $M = \text{Reg } \mathbb{C}^\ast = \mathbb{C}$, in this case the kink creation operator descends from the v-twisted sector in the UV CFT. We call K_{ab} the kink multiplet. The fusion algebra $v \times v' = P v'' e_{N v v' v'}$ encodes the tensor product decomposition of irreps \rightarrow kink bound states!
The irreducible representations of this algebra are labelled by lines $\nu \in \mathbb{C}^\ast$.

We call K_{ab}^ν the Kink multiplet.
The irreducible representations of this algebra are labelled by lines $\nu \in \mathbb{C}^\ast$. For $\mathcal{M} = \text{Reg } \mathcal{M}^\ast = \mathbb{C}$.

We call $K^\nu_{ab}(x)$ the **Kink multiplet**.
The irreducible representations of this algebra are labelled by lines $\nu \in \mathbb{C}^*_{\mathcal{M}}$. For $\mathcal{M} = \text{Reg } \mathbb{C}^*_{\mathcal{M}} = \mathbb{C}$. In this case the kink creation operator descends from the ν-twisted sector in the UV CFT.

We call $K^\nu_{ab}(x)$ the **Kink multiplet**.
The irreducible representations of this algebra are labelled by lines $\nu \in C^*_.\text{ For } M = \text{Reg } C^*_M = C. \text{ In this case the kink creation operator descends from the } \nu\text{-twisted sector in the UV CFT.}

We call $K^\nu_{ab}(x)$ the Kink multiplet.

The fusion algebra $\nu \times \nu' = \sum_{\nu''} N^\nu_{\nu\nu'} \nu''$ encodes the tensor product decomposition of irreps \rightarrow kink bound states!
Example: Tricritical Ising \rightarrow Ising TQFT

The classical example is to study the ϕ^4, ϕ^3 deformation of the $M_{4,3}$ minimal model. [Zamolodchikov '89, ...]

This preserves an Ising symmetry and flows to three degenerate vacua $|0\rangle$, $|\pm\rangle$.

The kink multiplet is $K_{N\pm0}$, $K_{N0\pm}$.

The literature proposes the following integrable S-matrix: [Bernard, Leclair '90; Zamolodchikov '91; Fendley, Saleur, Zamolodchikov '93]

$$S_{abdc}(\theta) = \frac{1}{Z(\theta)} \left[s_{da} s_{dc} s_{db} d_{d} \right] \frac{i\theta}{2\pi} \sinh \frac{\theta}{4} \delta_{bd} + \sinh \frac{i\pi}{2} - \frac{\theta}{4} \delta_{ac} #$$

The green factor enforces crossing symmetry. Otherwise $S_{abdc}(\theta) = s_{da} s_{dc} s_{db} d_{d} S_{bcad}(i\pi - \theta)$.

Including the green piece turns out to be incompatible with the Ising symmetry.
The classical example is to study the $-\phi_{1,3}$ deformation of the $\mathcal{M}_{4,3}$ minimal model.

[Zamolodchikov '89, ...]
The classical example is to study the $-\phi_{1,3}$ deformation of the $\mathcal{M}_{4,3}$ minimal model.

[Zamolodchikov '89, ...]

This preserves an Ising symmetry and flows to three degenerate vacua $|0\rangle$, $|\pm\rangle$.
Example: Tricritical Ising \rightarrow Ising TQFT

The classical example is to study the $-\phi_{1,3}$ deformation of the $\mathcal{M}_{4,3}$ minimal model. [Zamolodchikov '89, ...]

This preserves an Ising symmetry and flows to three degenerate vacua $|0\rangle, |\pm\rangle$.

The kink multiplet is

$$K^N_{\pm 0}, K^N_0\pm.$$
The classical example is to study the $-\phi_{1,3}$ deformation of the $\mathcal{M}_{4,3}$ minimal model. [Zamolodchikov '89, ...]

This preserves an Ising symmetry and flows to three degenerate vacua $|0\rangle$, $|\pm\rangle$.

The kink multiplet is

$$K_{\pm 0}, \ K_{0 \pm}.$$

The literature proposes the following integrable S-matrix: [Bernard, Leclair '90; Zamolodchikov '91; Fendley, Saleur, Zamolodchikov '93]
The classical example is to study the $-\phi_{1,3}$ deformation of the $\mathcal{M}_{4,3}$ minimal model. [Zamolodchikov '89, ...]

This preserves an Ising symmetry and flows to three degenerate vacua $|0\rangle, |\pm\rangle$.

The kink multiplet is

$$K^N_{\pm 0}, K^N_{0\pm}.$$

The literature proposes the following integrable S-matrix: [Bernard, Leclair '90; Zamolodchikov '91; Fendley, Saleur, Zamolodchikov '93]

$$S_{dc}^{ab}(\theta) = Z(\theta) \left[\sqrt{\frac{d_ad_c}{d_bd_d}} \sinh \left(\frac{\theta}{4} \right) \delta_{bd} + \sinh \left(\frac{i\pi - \theta}{4} \right) \delta_{ac} \right]$$
Example: Tricritical Ising \rightarrow Ising TQFT

The classical example is to study the $-\phi_{1,3}$ deformation of the $\mathcal{M}_{4,3}$ minimal model. [Zamolodchikov '89, ...]

This preserves an Ising symmetry and flows to three degenerate vacua $|0\rangle$, $|\pm\rangle$.

The kink multiplet is

$$K_{\pm 0}, K_{0 \pm}.$$

The literature proposes the following integrable S-matrix: [Bernard, Leclair '90; Zamolodchikov '91; Fendley, Saleur, Zamolodchikov '93]

$$S_{dc}^{ab}(\theta) = \left(\frac{d_a d_c}{d_b d_d}\right)^{i\theta/2\pi} Z(\theta) \left[\sqrt{\frac{d_a d_c}{d_b d_d}} \sinh \left(\frac{\theta}{4} \right) \delta_{bd} + \sinh \left(\frac{i\pi - \theta}{4} \right) \delta_{ac} \right]$$

The green factor enforces crossing symmetry.
The classical example is to study the $-\phi_{1,3}$ deformation of the $\mathcal{M}_{4,3}$ minimal model.

[Zamolodchikov '89, ...]

This preserves an Ising symmetry and flows to three degenerate vacua $|0\rangle$, $|\pm\rangle$.

The kink multiplet is

$$K_{\pm 0}, K_{0 \pm}.$$

The literature proposes the following integrable S-matrix: [Bernard, Leclair '90; Zamolodchikov '91; Fendley, Saleur, Zamolodchikov '93]

$$S_{dc}^{ab}(\theta) = \left(\frac{d_a d_c}{d_b d_d}\right)^{i\theta/2\pi} Z(\theta) \left[\sqrt{\frac{d_a d_c}{d_b d_d}} \sinh \left(\frac{\theta}{4} \right) \delta_{bd} + \sinh \left(\frac{i\pi - \theta}{4} \right) \delta_{ac} \right]$$

The green factor enforces crossing symmetry. Otherwise

$$S_{dc}^{ab}(\theta) = \sqrt{\frac{d_a d_c}{d_b d_d}} S_{ad}^{bc}(i\pi - \theta).$$
Example: Tricritical Ising \rightarrow Ising TQFT

The classical example is to study the $-\phi_{1,3}$ deformation of the $\mathcal{M}_{4,3}$ minimal model. [Zamolodchikov '89, ...]

This preserves an Ising symmetry and flows to three degenerate vacua $|0\rangle$, $|\pm\rangle$.

The kink multiplet is

$$K_{\pm 0}^N, K_{0 \pm}^N.$$

The literature proposes the following integrable S-matrix: [Bernard, Leclair '90; Zamolodchikov '91; Fendley, Saleur, Zamolodchikov '93]

$$S_{dc}^{ab}(\theta) = \left(\frac{d_ad_c}{d_bd_d}\right)^{i\theta/2\pi} Z(\theta) \left[\sqrt{\frac{d_ad_c}{d bd_d}} \sinh\left(\frac{\theta}{4}\right) \delta_{bd} + \sinh\left(\frac{i\pi - \theta}{4}\right) \delta_{ac}\right]$$

The green factor enforces crossing symmetry. Otherwise

$$S_{dc}^{ab}(\theta) = \sqrt{\frac{d_ad_c}{d bd_d}} S_{ad}^{bc}(i\pi - \theta).$$

Including the green piece turns out to be incompatible with the Ising symmetry.
Ward identities and the S-matrix

To derive the symmetry action we construct the S-matrix by analytic continuation from a large disk:
To derive the symmetry action we construct the S-matrix by analytic continuation from a large disk:
To derive the symmetry action we construct the S-matrix by analytic continuation from a large disk:
To derive the symmetry action we construct the S-matrix by analytic continuation from a large disk:

\[A.C. \sim S \]
To derive the symmetry action we construct the S-matrix by analytic continuation from a large disk:
Ward identities and the S-matrix

To derive the symmetry action we construct the S-matrix by analytic continuation from a large disk:

\[
\begin{array}{c}
\text{A.C.} \\
\begin{array}{c}
\text{v} \\
\text{v} \\
\text{v} \\
\text{v}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\text{S} \\
\begin{array}{c}
\text{v} \\
\text{v} \\
\text{v} \\
\text{v}
\end{array}
\end{array}
\]

We insert a symmetry line on the disk and deform it either upwards or downwards:
Ward identities and the S-matrix

To derive the symmetry action we construct the S-matrix by analytic continuation from a large disk:

\[\approx \]

We insert a symmetry line on the disk and deform it either upwards or downwards:
Ward identities and the S-matrix

To derive the symmetry action we construct the S-matrix by analytic continuation from a large disk:

![Diagram showing symmetry action](image)

We insert a symmetry line on the disk and deform it either upwards or downwards:
Ward identities and the S-matrix

To derive the symmetry action we construct the S-matrix by analytic continuation from a large disk:

\[
\begin{align*}
S & \simeq \begin{pmatrix}
 L & v \\
 v & v \\
 v & v \\
 v & v
\end{pmatrix} \\
& \quad \simeq \begin{pmatrix}
 a & \ast \\
 \ast & b \\
 c & \ast \\
 \ast & d
\end{pmatrix}
\end{align*}
\]

The symmetry action is given by:

\[
\left[\mathcal{L} ; v \right]_{c b}^{e} \left[\mathcal{L} ; v \right]_{b a}^{e a'} \sqrt{\frac{d_a}{d_c}} S_{a' c}^{b'} (\theta) = \sum_{e'} \left[\mathcal{L} ; v \right]_{b' c'}^{e' c} \left[\mathcal{L} ; v \right]_{a' b'}^{3 e'} \sqrt{\frac{d_{a'}}{d_{c'}}} S_{a b}^{c e'} (\theta).
\]
To derive the symmetry action we construct the S-matrix by analytic continuation from a large disk:

\[\mathcal{M}_{4,3} \rightarrow \text{Ising:} \]

\[\mathcal{N} : \quad S_{0+}^{0+}(\theta) = S_{0+}^{+0}(\theta) + S_{0-}^{+0}(\theta). \]
To analyze crossing symmetry we assume that the Disk 4pf is crossing invariant. We then introduce the in and out states:

\[|\psi\rangle_{\text{in}} = d_b c v v \langle \psi | \rangle_{\text{out}} = d_b a v v \]

Their norms are schematically:

\[\langle \psi | \psi \rangle_{\text{in}} = v v v v = d_v \sqrt{d_b d \cdot d_a c} \]

Using the normalized states in both channels the Disk crossing is continued to:

\[S_{ab} d c (\theta) = S_{bc} a d (\iota \pi - \theta) \]
Modified Crossing

To analyze crossing symmetry we assume that the Disk 4pf is crossing invariant.
To analyze crossing symmetry we assume that the Disk 4pf is crossing invariant. We then introduce the in and out states:

\[|\psi\rangle_{\text{in}} = \begin{array}{c}
 d \\
 c \\
 v \\
 v
\end{array} \quad \begin{array}{c}
 b \\
 v
\end{array} \]

\[\langle \psi |_{\text{out}} = \begin{array}{c}
 a \\
 d \\
 b \\
 v \\
 v
\end{array} \]

Their norms are schematically:

\[\langle \psi |_{\text{in}} \langle \psi | = \langle d | v \rangle^2 \langle b | v \rangle^2 = d_b \]

Using the normalized states in both channels the Disk crossing is continued to:

\[S_{ab\ dc} (\theta) = S_{bc\ ad} (i\pi - \theta) \]
To analyze crossing symmetry we assume that the Disk 4pf is crossing invariant. We then introduce the in and out states:

\[|\psi\rangle_{in} = \langle \psi |_{out} = \]

Their norms are schematically

\[\langle \psi | \psi \rangle_{in} = d \]

\[b = d_v \sqrt{d_b d_d} \]
To analyze crossing symmetry we assume that the Disk 4pf is crossing invariant. We then introduce the in and out states:

\[
|\psi\rangle_{\text{in}} = d_b \begin{array}{c} \text{a} \\ \text{c} \end{array} v \\
\langle\psi|_{\text{out}} = d_b \begin{array}{c} \text{a} \\ \text{c} \end{array} v
\]

Their norms are schematically

\[
\text{in}\langle\psi|\psi\rangle_{\text{in}} = d_v \sqrt{d_b d_d}
\]

Using the normalized states in both channels the Disk crossing is continued to:
To analyze crossing symmetry we assume that the Disk 4pf is crossing invariant. We then introduce the in and out states:

\[|\psi\rangle_{in} = |d \ b \ c \ v \rangle \quad \text{and} \quad \langle \psi|_{out} = \langle d \ b | a \ v \ v \rangle \]

Their norms are schematically:

\[\langle \psi | \psi \rangle_{in} = d \ v \ v \ v \ a \ b \ c \ d \ v \ v \ v \ v \]

Using the normalized states in both channels the Disk crossing is continued to:

\[S_{ab}^{dc}(\theta) = \sqrt{S_{ad}^{bc}(i\pi - \theta)} \]
To analyze crossing symmetry we assume that the Disk 4pf is crossing invariant. We then introduce the in and out states:

\[|\psi\rangle_{in} = \begin{array}{c}
\nu \\
d \quad b \\
c \\
\nu
\end{array} \]

\[\langle \psi |_{out} = \begin{array}{c}
\nu \\
d \quad b \\
x \\
\nu
\end{array} \]

Their norms are schematically:

\[\langle \psi |_{in} = d \quad \langle \psi |_{out} = d_{\nu} \sqrt{d_{b}d_{d}} \]

Using the normalized states in both channels the Disk crossing is continued to:

\[S_{ab}^{dc}(\theta) = \sqrt{d_{a}d_{c}} \cdot S_{bc}^{ab}(i\pi - \theta) \]
Bootstrap for Fibonacci symmetry

To conclude let me flash some results coming from the S-matrix Bootstrap.

Unitarity + Analiticity + Modified Crossing + Symmetry

$C = \text{Fibonacci (two vacua)}$

$W_2 = 1 + W$.

g^2: cubic coupling $K \bar{K} \rightarrow B$.

Fat dot: integrable flow M_4, ϕ_2, ϕ_1 [Smirnov '91; Colomo, Koubek, Mussardo '92; ...]

Other integrable point: cusp at $g = 0$, Potts $S + S^*$-deformation

Symmetry $Z_2 \times \text{Fib}$, \{1, W, W' $\equiv \eta W, \eta$\}. Kink is in W' multiplet. But now: $W' \times W' = 1 + W = B W, W \not\in K W, 1 \times K W, W$.

Bootstrap for Fibonacci symmetry

To conclude let me flash some results coming from the S-matrix Bootstrap.
Bootstrap for Fibonacci symmetry

To conclude let me flash some results coming from the S-matrix Bootstrap.

Unitarity + Analyticity + Modified Crossing + Symmetry
Bootstrap for Fibonacci symmetry

To conclude let me flash some results coming from the S-matrix Bootstrap.

Unitarity + Analyticity + Modified Crossing + Symmetry

\[C = \text{Fibonacci (two vacua)} \]

\[W_1 W_2 = 1 + W \]

\[g^2 : \text{cubic coupling} \]

\[K \bar{K} \rightarrow B \]

Fat dot: integrable flow

\[M_{4,3} + \phi_{2,1} \]

[Smirnov '91; Colomo, Koubek, Mussardo '92; ...]

Other integrable point: cusp at \(g = 0 \), Potts \(S + S^* \)-deformation

Symmetry \(Z_2 \times \text{Fib}, \{1, W, W' \equiv \eta W, \eta\} \). Kink is in \(W' \) multiplet. But now:

\[W' \times W' = 1 + W = \Rightarrow B \]

\[W, W \not\in K \]

\[W_{1,2} \times K_{1,2} \]
Bootstrap for Fibonacci symmetry

To conclude let me flash some results coming from the S-matrix Bootstrap.

Unitarity + Analiticity + Modified Crossing + Symmetry

$\mathbf{C} = \text{Fibonacci (two vacua)}$

$1, W \quad W^2 = 1 + W$.
To conclude let me flash some results coming from the S-matrix Bootstrap.

Unitarity + Analyticity + Modified Crossing + Symmetry

- \(C = \text{Fibonacci (two vacua)} \)

 \[1, W \quad W^2 = 1 + W. \]

- \(g^2: \) cubic coupling \(K \bar{K} \to B. \)
To conclude let me flash some results coming from the S-matrix Bootstrap.

Unitarity + Analiticity + Modified Crossing + Symmetry

- $C = \text{Fibonacci (two vacua)}$

 $1, W \quad W^2 = 1 + W$

- g^2: cubic coupling $K\bar{K} \rightarrow B$.

- **Fat dot**: integrable flow $\mathcal{M}_{4,3} + \phi_{2,1}$

 [Smirnov '91; Colomo, Koubek, Mussardo '92; ...]
To conclude let me flash some results coming from the S-matrix Bootstrap.

Unitarity + Ananliticity + Modified Crossing + Symmetry

- $\mathcal{C} = \text{Fibonacci (two vacua)}$

 $1, W \quad W^2 = 1 + W$

- g^2: cubic coupling $K\bar{K} \rightarrow B$.

- Fat dot: integrable flow $\mathcal{M}_{4,3} + \phi_{2,1}$

 [Smirnov '91; Colomo, Koubek, Mussardo '92; ...]

- Other integrable point: cusp at $g = 0$, Potts $S + S^*$-deformation
To conclude let me flash some results coming from the S-matrix Bootstrap.

\textbf{Unitarity} + \textbf{Analiticity} + Modified Crossing + Symmetry

- $C = \text{Fibonacci (two vacua)}$
\quad \begin{align*}
1, W \quad W^2 &= 1 + W.
\end{align*}

- g^2: cubic coupling $K \bar{K} \rightarrow B$.

- Fat dot: integrable flow $\mathcal{M}_{4,3} + \phi_{2,1}$
\quad [Smirnov '91; Colomo, Koubek, Mussardo '92; ...]

- Other integrable point: cusp at $g = 0$, Potts $S + S^*$-deformation

Symmetry $\mathbb{Z}_2 \times \text{Fib}$, $\{1, W, W' \equiv \eta W, \eta\}$. Kink is in W' multiplet. But now:
Bootstrap for Fibonacci symmetry

To conclude let me flash some results coming from the S-matrix Bootstrap.

Unitarity + Analyticity + Modified Crossing + Symmetry

- \(C = \text{Fibonacci (two vacua)} \)
 \[
 1, W \quad W^2 = 1 + W .
 \]

- \(g^2 \): cubic coupling \(K \bar{K} \rightarrow B \).

- Fat dot: integrable flow \(\mathcal{M}_{4,3} + \phi_{2,1} \)

 [Smirnov '91; Colomo, Koubek, Mussardo '92; ...]

- Other integrable point: cusp at \(g = 0 \), Potts \(S + S^* \)-deformation

Symmetry \(\mathbb{Z}_2 \times \text{Fib}, \{1, W, W' \equiv \eta W, \eta \} \). Kink is in \(W' \) multiplet. But now:

\[
W' \times W' = 1 + W \implies B_{W',W} \notin K_{W,1} \times K_{1,W} .
\]
Future Prospects

There are many avenues yet to pursue. For example:

▶ Physical observables related to modified crossing. Promising: TBA for twisted sector data along RG flow (WIP).

▶ Reconstructing UV CFT data from integrable IR. Haagerup - Double Haagerup symmetric CFTs? [Huang, Lin, Ohmori, Tachikawa, Tezuka '21; Van Hoove, Lootens, Van Damme, Wolf, Osborne '21]

▶ Applications to higher dimensions. (3d results [Mehta, Minwalla, Patel, Prakash, Sharma '22]) Monopole scattering in 4d [Van Beest, Boyle Smith, Delmastro, Komargodski, Tong '23, ...]

▶ Relationship between modified crossing and 't Hooft anomalies. ...
Future Prospects

There are many avenues yet to pursue. For example:

▶ Physical observables related to modified crossing. Promising: TBA for twisted sector data along RG flow (WIP).

▶ Reconstructing UV CFT data from integrable IR. Haagerup - Double Haagerup symmetric CFTs? [Huang, Lin, Ohmori, Tachikawa, Tezuka '21; Van Hoove, Lootens, Van Damme, Wolf, Osborne '21]

▶ Applications to higher dimensions. (3d results [Mehta, Minwalla, Patel, Prakash, Sharma '22]) Monopole scattering in 4d [Van Beest, Boyle Smith, Delmastro, Komargodski, Tong '23, ...]

▶ Relationship between modified crossing and 't Hooft anomalies.

▶ ...
Future Prospects

There are many avenues yet to pursue. For example:

- Physical observables related to **modified crossing**. Promising: **TBA** for twisted sector data along RG flow (WIP).

- ...
Future Prospects

There are many avenues yet to pursue. For example:

▶ Physical observables related to modified crossing. Promising: TBA for twisted sector data along RG flow (WIP).

▶ Reconstructing UV CFT data from integrable IR. Haagerup - Double Haagerup symmetric CFTs? [Huang, Lin, Ohmori, Tachikawa, Tezuka '21; Van Hoove, Lootens, Van Damme, Wolf, Osborne '21]
Future Prospects

There are many avenues yet to pursue. For example:

- Physical observables related to modified crossing. Promising: TBA for twisted sector data along RG flow (WIP).

- Reconstructing UV CFT data from integrable IR. Haagerup - Double Haagerup symmetric CFTs? [Huang, Lin, Ohmori, Tachikawa, Tezuka '21; Van Hoove, Lootens, Van Damme, Wolf, Osborne '21]

- Applications to higher dimensions. (3d results [Mehta, Minwalla, Patel, Prakash, Sharma '22])
 Monopole scattering in 4d [Van Beest, Boyle Smith, Delmastro, Komargodski, Tong '23, ...].
Future Prospects

There are many avenues yet to pursue. For example:

- Physical observables related to modified crossing. Promising: TBA for twisted sector data along RG flow (WIP).

- Reconstructing UV CFT data from integrable IR. Haagerup - Double Haagerup symmetric CFTs? [Huang, Lin, Ohmori, Tachikawa, Tezuka ’21; Van Hoove, Lootens, Van Damme, Wolf, Osborne ’21]

- Applications to higher dimensions. (3d results [Mehta, Minwalla, Patel, Prakash, Sharma ’22])
 Monopole scattering in 4d [Van Beest, Boyle Smith, Delmastro, Komargodski, Tong ’23, …].

- Relationship between modified crossing and ’t Hooft anomalies.
Future Prospects

There are many avenues yet to pursue. For example:

▶ Physical observables related to modified crossing. Promising: TBA for twisted sector data along RG flow (WIP).

▶ Reconstructing UV CFT data from integrable IR. Haagerup - Double Haagerup symmetric CFTs? [Huang, Lin, Ohmori, Tachikawa, Tezuka '21; Van Hoove, Lootens, Van Damme, Wolf, Osborne '21]

▶ Applications to higher dimensions. (3d results [Mehta, Minwalla, Patel, Prakash, Sharma '22])

Monopole scattering in 4d [Van Beest, Boyle Smith, Delmastro, Komargodski, Tong '23, ...].

▶ Relationship between modified crossing and 't Hooft anomalies.