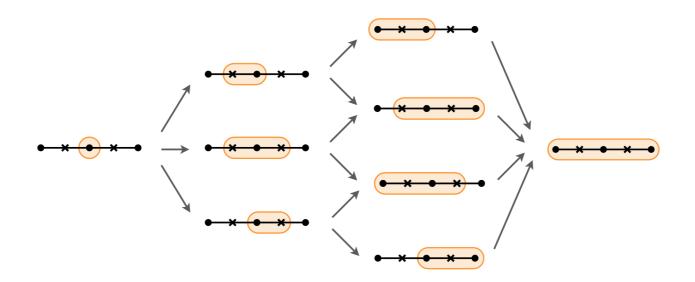
Kinematic Flow and the Emergence of Time

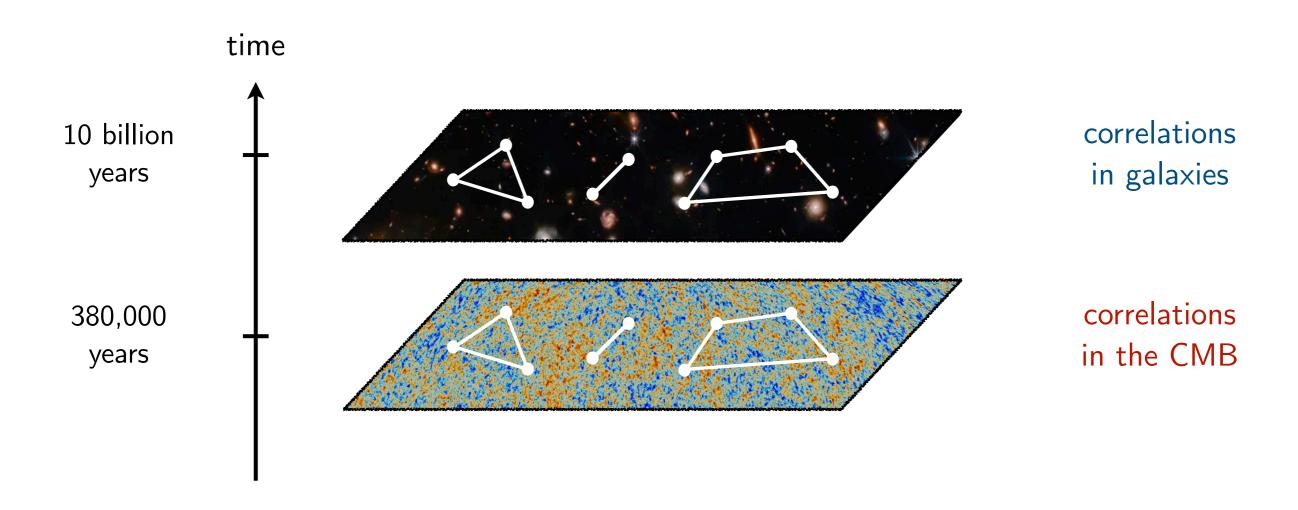


Hayden Lee

University of Chicago

w/ N. Arkani-Hamed, D. Baumann, A. Hillman, A. Joyce, G. Pimentel [2312.05300, 2312.05303]

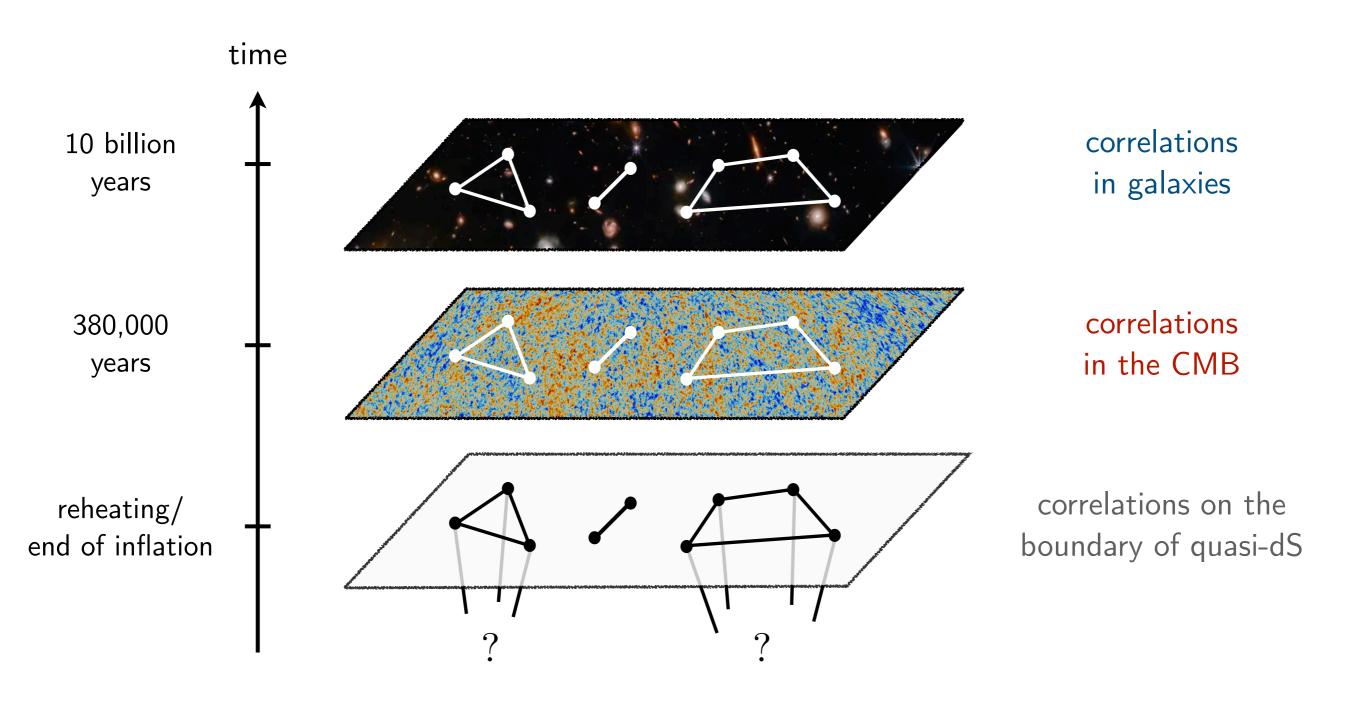
Cosmological Correlators



Structures in the universe are correlated over large distances.

Cosmological correlators encode the physics of the primordial universe.

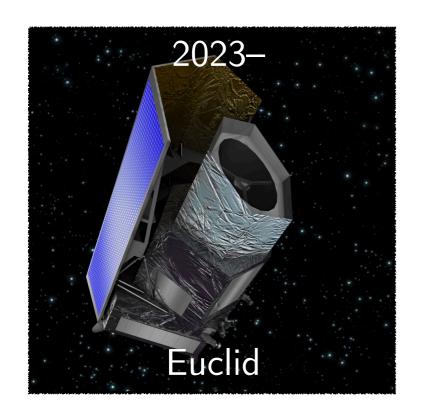
Cosmological Correlators



Dynamical information of inflation is encoded in higher-point functions.

Observational Frontier

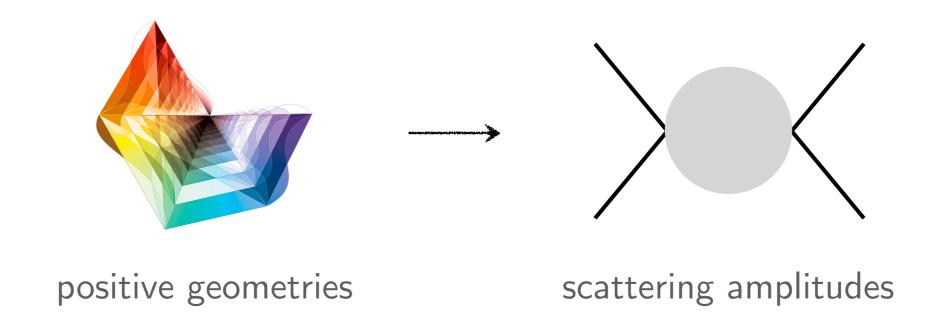
An exciting era awaits for observational cosmology in the next decade.



What governs the patterns we observe in cosmological correlators?

Emergence of Spacetime

Over the past decade, we have seen scattering amplitudes emerge from new mathematical structures in boundary kinematic space.

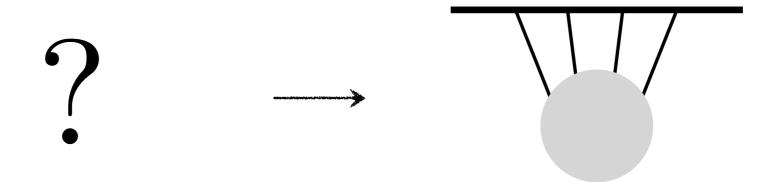


Amplitudes can be obtained from the volumes of positive geometries.

Emergence of Time?

Are there similar structures for cosmological correlators?

Is it possible for bulk time evolution to arise from boundary phenomena?

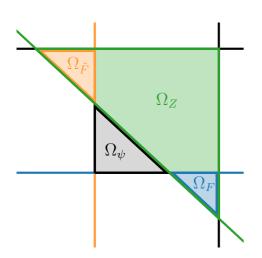


cosmological correlators

In this talk, I'll present (possibly) the first glimpses of such structures.

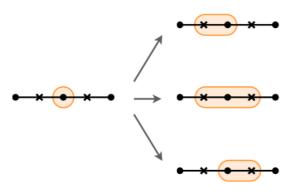
Outline

Correlators as Twisted Integrals



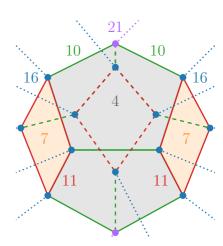
||.

A Hidden Pattern



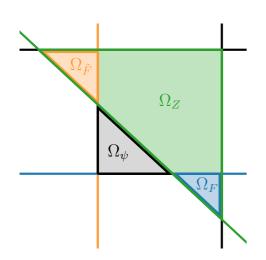
III.

Conclusion & Outlook



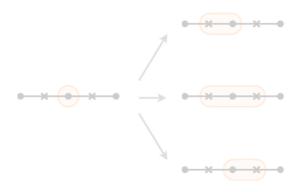
Outline

Correlators as Twisted Integrals



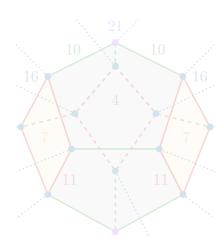
١.

A Hidden Pattern



Ш.

Conclusion & Outlook



Toy Model

Consider a conformally coupled scalar with polynomial interactions:

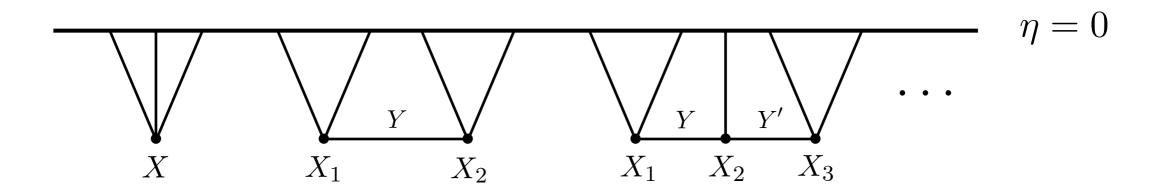
$$S = \int \mathrm{d}^4 x \sqrt{-g} \left[-\frac{1}{2} (\partial \phi)^2 - \frac{1}{12} R \phi^2 - \frac{\lambda}{3!} \phi^3 \right]$$
 conformal mass non-conformal interaction

in an FRW spacetime expanding as a power law:

$$\mathrm{d}s^2 = a^2(\eta)[-\mathrm{d}\eta^2 + \mathrm{d}\vec{x}^2] \qquad a(\eta) \propto \frac{1}{\eta^{1+\varepsilon}} \begin{cases} \varepsilon = 0 : \mathrm{dS} \\ \varepsilon = -1 : \mathrm{flat} \\ \varepsilon = -2 : \mathrm{radiation} \\ \varepsilon = -3 : \mathrm{matter} \end{cases}$$

Wavefunction in Flat Space

We will study the **tree-level wavefunction** in this theory.



In flat space, the WF is given by rational functions with simple poles.

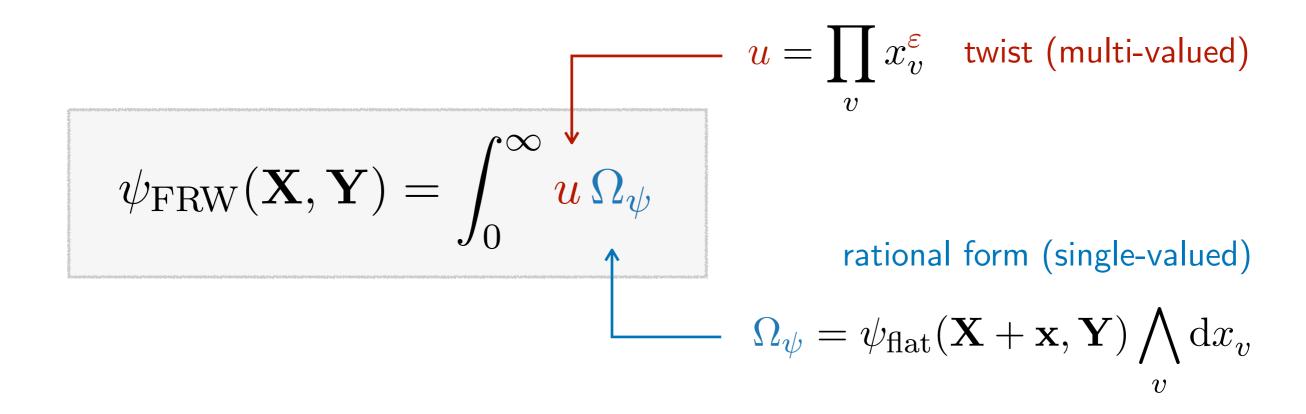
$$\psi_{\text{flat}}^{(2)} = \underbrace{\bullet \bullet \bullet} = \frac{1}{(X_1 + X_2)(X_1 + Y)(X_2 + Y)}$$

$$\psi_{\text{flat}}^{(3)} = \underbrace{\bullet \bullet \bullet} + \underbrace{\bullet \bullet \bullet}$$

$$= \frac{1}{(X_1 + X_2 + X_3)(X_1 + Y)(X_2 + Y + Y')(X_3 + Y')} \left(\frac{1}{X_1 + X_2 + Y'} + \frac{1}{X_2 + X_3 + Y}\right)$$

Wavefunction in FRW

In FRW, the wavefunction can be represented as twisted integrals:



Modern amplitude approaches to compute integrals of this type include:

- twisted cohomology
- method of differential equations

Twisted Cohomology

Two integrands differing by a total differential give the same integral.

$$0 = \int \mathbf{d}(u\,\Omega) = \int u\,\underbrace{(\mathbf{d} + \mathbf{d}\log u\,\wedge)}_{\equiv \nabla_{\omega}}\Omega \quad \Rightarrow \quad \Omega \sim \Omega + \nabla_{\omega}\xi$$

The set of equivalence classes of integrands = twisted cohomology

Basis size = # bounded regions formed by the singular hyperplanes.

 \Rightarrow satisfies a closed system of **differential equations**.

Two-Site Chain (Four-Point Function)

The integral for the two-site chain takes the form

$$\underbrace{X_1 \quad X_2} \quad = \quad \int_0^\infty \frac{(x_1 x_2)^{\varepsilon}}{(x_1 + X_1 + Y)(x_2 + X_2 + Y)(x_1 + x_2 + X_1 + X_2)}$$

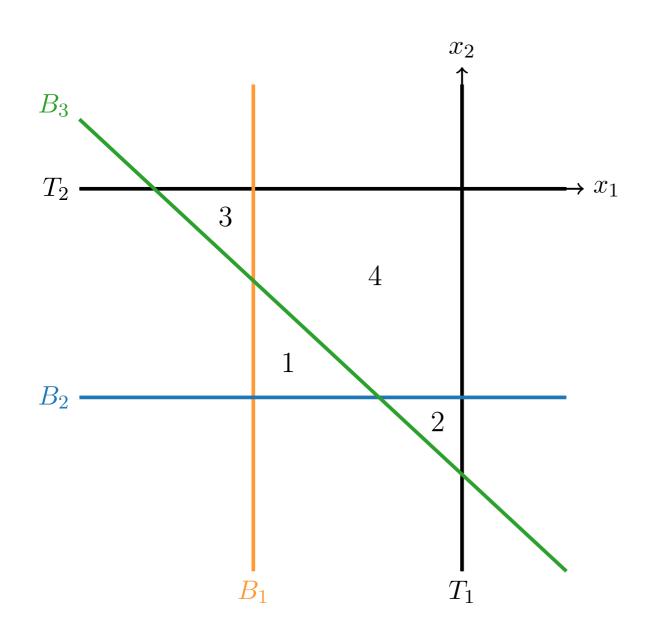
We consider a family of integrals with the same singularities:

$$\int_0^\infty (x_1 x_2)^{\varepsilon} \Omega_{\mathbf{n}}, \quad \Omega_{\mathbf{n}} = \frac{\mathrm{d}x_1 \mathrm{d}x_2}{T_1^{n_1} T_2^{n_2} B_1^{n_3} B_2^{n_4} B_3^{n_5}} \qquad (n_i \in \mathbb{Z})$$

$$T_1 = x_1$$
, $B_1 = x_1 + X_1 + Y$,
 $T_2 = x_2$, $B_2 = x_2 + X_2 + Y$, $B_3 = x_1 + x_2 + X_1 + X_2$

Master Integrals

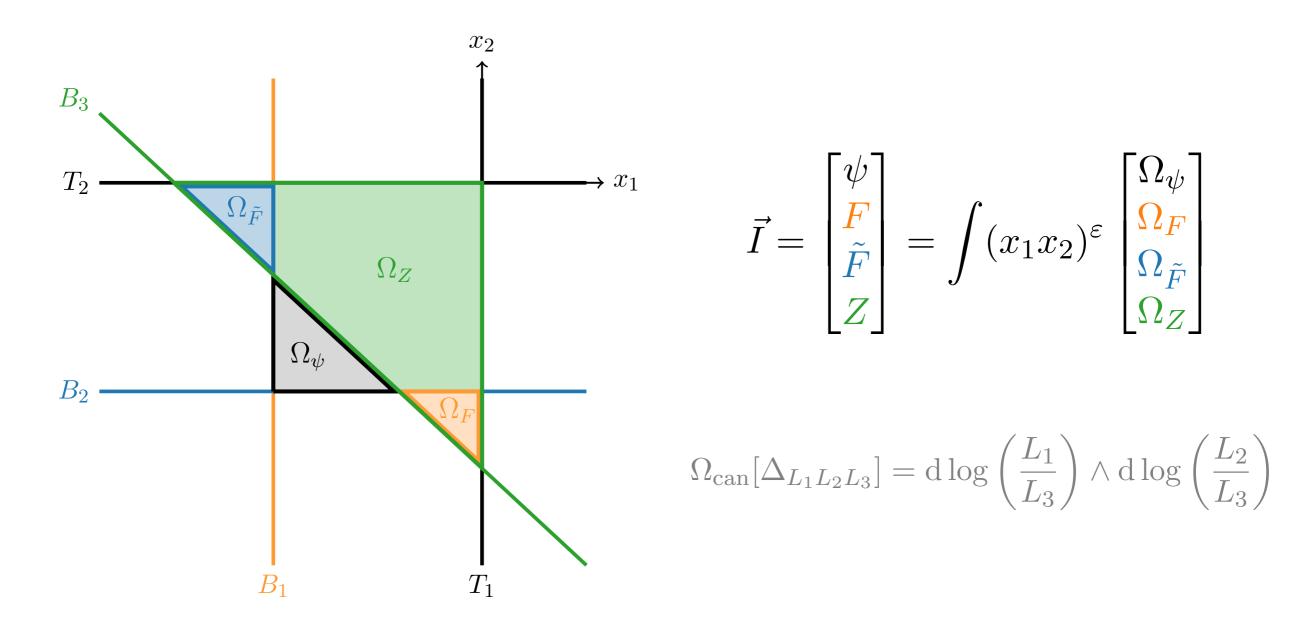
master integrals = # bounded regions formed by the singular hyperplanes.



$$T_1 = x_1$$
 $T_2 = x_2$
 $B_1 = x_1 + X_1 + Y$
 $B_2 = x_2 + X_2 + Y$
 $B_3 = x_1 + x_2 + X_1 + X_2$

Master Integrals

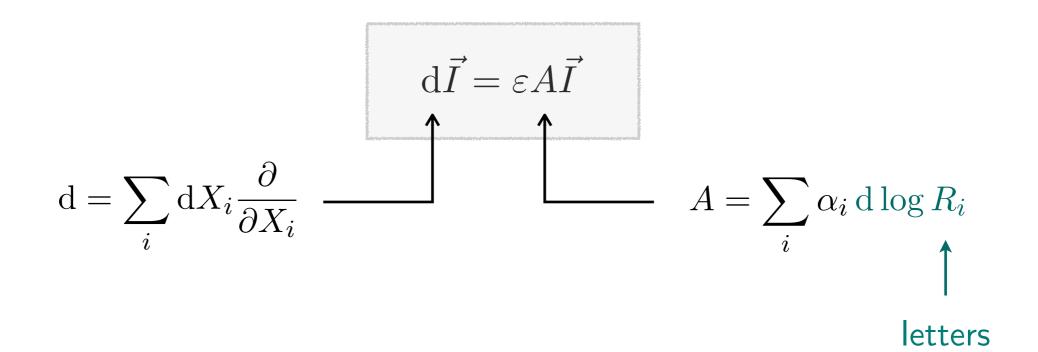
A good basis choice is given by the canonical forms of the bounded regions.



De, Pokraka [2023] Arkani-Hamed, Baumann, Hillman, Joyce, HL, Pimentel [2023]

Differential Equations

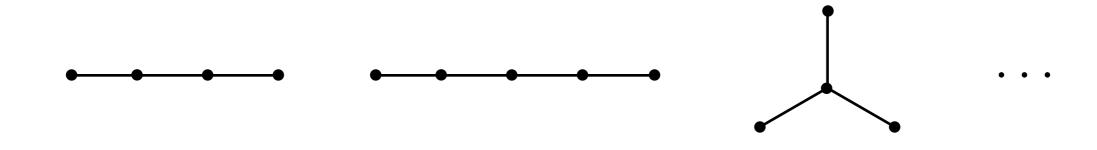
Taking the differential of the basis vector and performing IBP gives



with

General Tree Graphs

Unfortunately, this approach breaks down for more complicated graphs.

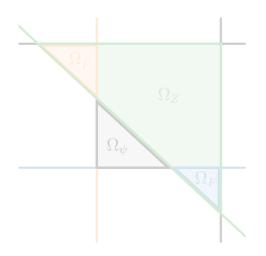


- ► Twisted cohomology gives an unphysical, over-complete basis.
- Deriving equations using IBP relations is highly challenging.

Remarkably, these are solved by simple graphical rules (kinematic flow).

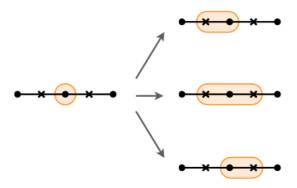
١.

Correlators as Twisted Integrals



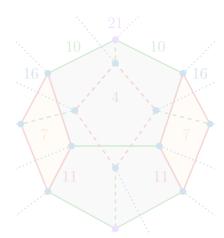
11.

A Hidden Pattern



Ш.

Conclusion & Outlook



Differential Equations

We derived the system of differential equations for the two-site chain.

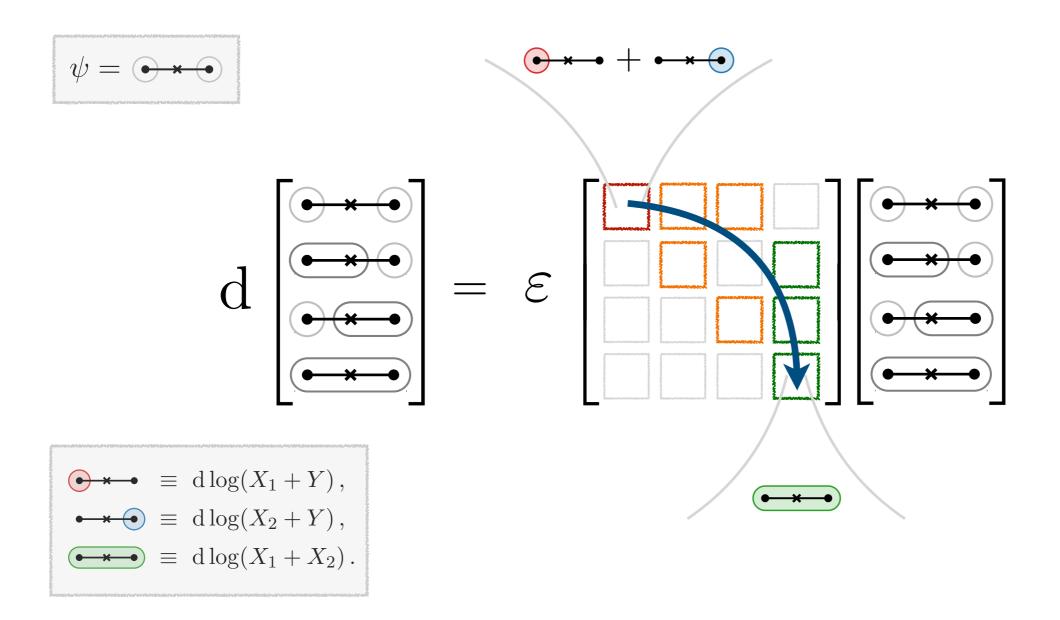
$$d\begin{bmatrix} \psi \\ F \\ \tilde{F} \\ Z \end{bmatrix} = \varepsilon \begin{bmatrix} \psi \\ F \\ \tilde{F} \\ Z \end{bmatrix}$$

$$A = \sum_{i} \alpha_{i} d \log R_{i}$$

However, the explicit result isn't very illuminating and is hard to generalize.

A Hidden Pattern

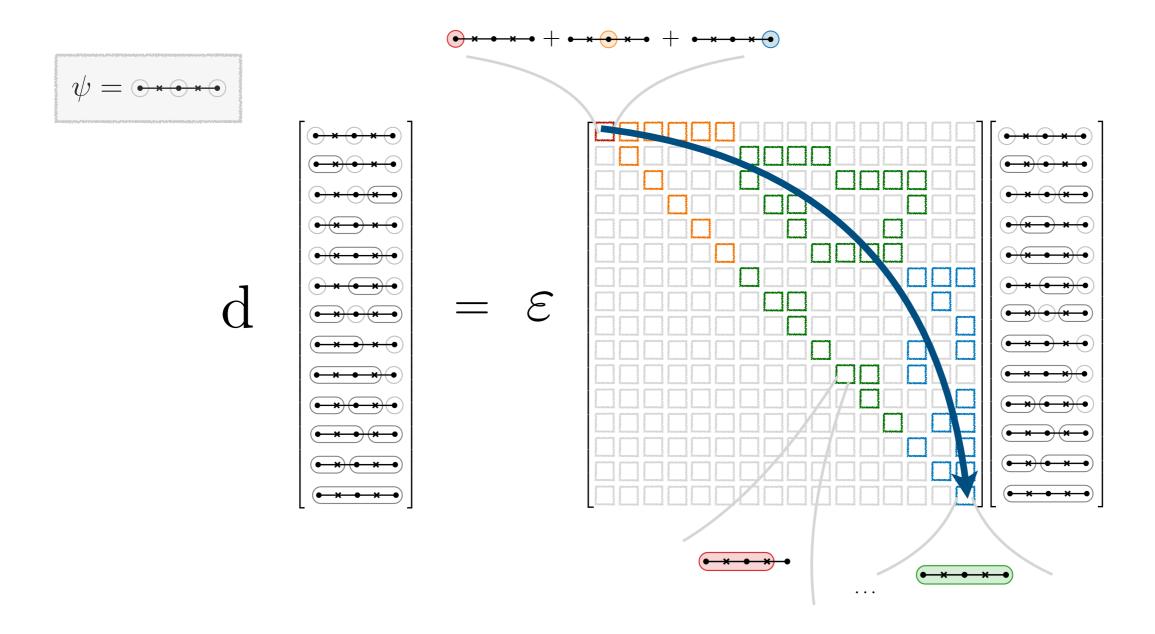
A hidden pattern was revealed when we drew pictures of the results!



The tubings grow, and the system closes when all vertices are enclosed.

A Hidden Pattern

The same pattern is found for arbitrary **n-site graphs** at tree level.



Remarkably, we can predict all entries with simple rules (kinematic flow).

Graphical Representation

Letters:

connected

(activated)

tubings

13 (**19**) letters

$$= \operatorname{d} \log(X_1 + X_2 + Y'), \qquad = \operatorname{d} \log(X_1 + X_2 - Y'),$$

$$= \operatorname{d} \log(X_2 + X_3 + Y), \qquad = \operatorname{d} \log(X_2 + X_3 - Y'),$$

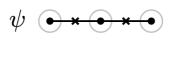
$$= \operatorname{d} \log(X_1 + X_2 + X_3).$$

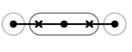
Functions:

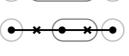
complete

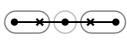
(disconnected)

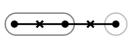
tubings

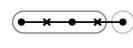


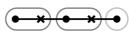


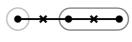










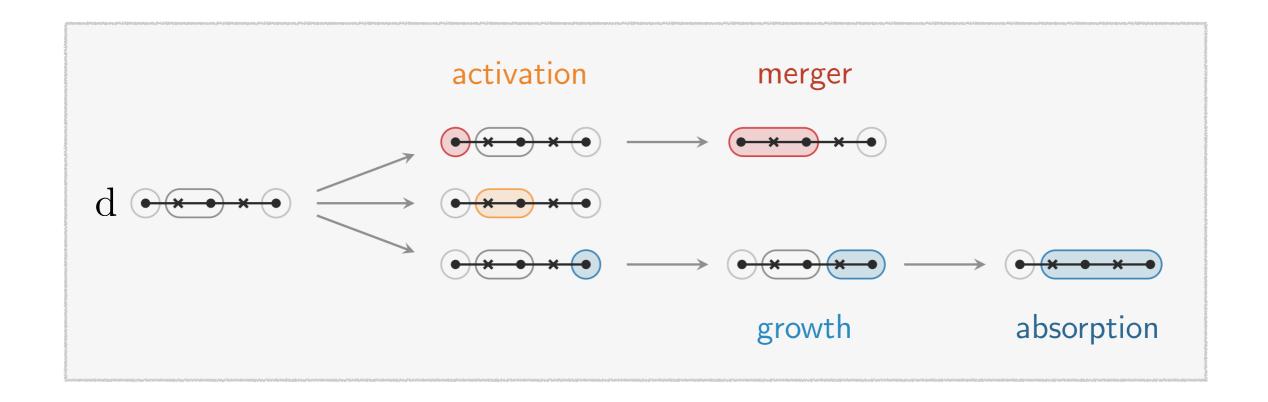


16 (25) functions

 \sim naive counting from twisted cohomology (64 vs. 201 for $n_{site}=4$)

Kinematic Flow

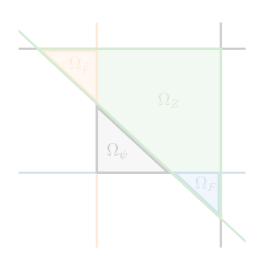
Upon differentiation, graph tubings evolve according to simple graphical rules.



These rules allow us to predict (by hand!) the equations for all tree graphs.

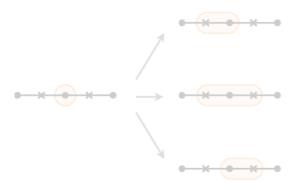
This reformulates bulk time evolution as a flow in kinematic space.

Correlators as
Twisted Integrals



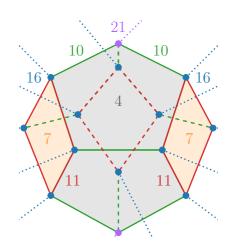
П.

A Hidden Pattern



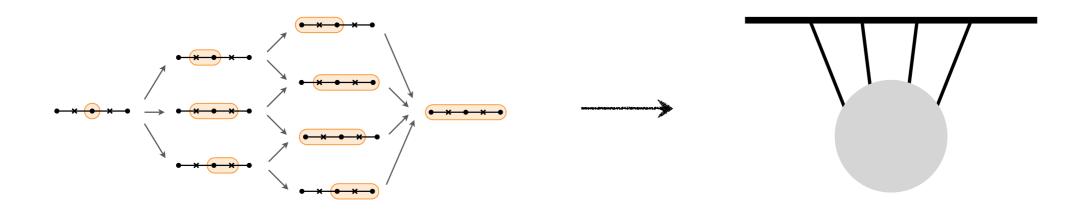
III.

Conclusion & Outlook



Conclusion

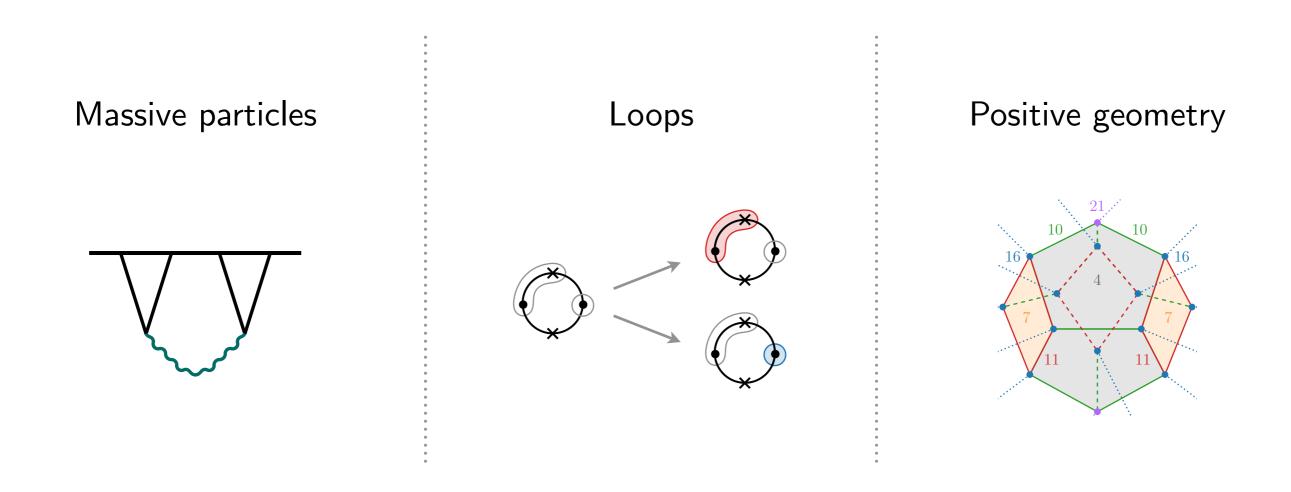
We have found a **hidden pattern** in the differential equations for the tree-level FRW wavefunction of conformally coupled scalars.



Simple graphical rules allow us to predict the equations for all tree graphs.

Outlook

Next Frontier: more nontrivial graphs, deeper mathematical structures, ...



This presents a fascinating connection between amplitudes and cosmology.