Much has been written about J. Robert Oppenheimer. The substance of his life, his intellect, his patrician manner, his leadership of the Los Alamos National Laboratory, his political affiliations and post-war military/security entanglements, and his early death from cancer, are all components of his compelling story.

A number of plays have been written about him. American composer John Adams (Nixon in China) is currently at work on an opera. Commissioned by the San Francisco Opera, and tentatively titled “Doctor Atomic,” it is scheduled to premier in September of 2005.

Much of the drama of Oppenheimer’s life unfolded in the early years following World War II when he was Director of the Institute for Advanced Study, the position he held from 1947 until 1966. He was simultaneously Chairman of the General Advisory Committee of the Atomic Energy Commission (AEC), from 1947 through 1952.

Born Julius Robert Oppenheimer, on 22 April 1904 in New York City, Robert grew up in a Manhattan apartment decorated with paintings by Van Gogh, Cézanne, and Gauguin. His father, Julius Oppenheimer, was a German immigrant who worked in his family’s textile importing business. His mother, Ella Friedman, was a painter whose family had been in New York for generations. His younger brother, Frank, would also become a physicist.

In 1921, Oppenheimer graduated from the Ethical Culture School of New York at the top of his class. At Harvard, Oppenheimer studied mathematics and science, philosophy and Eastern religion, French and English literature. He graduated summa cum laude in 1925 and afterwards went to Cambridge University’s Cavendish Laboratory as a research assistant to J. J. Thomson. Bored with routine laboratory work, he went to the University of Göttingen, in Germany. Göttingen was the place for quantum physics. Oppenheimer met and studied with some of the day’s most prominent figures, Max Born and Niels Bohr among them. In 1927, Oppenheimer received his doctorate. In the same year, he worked with Born on the structure of molecules, producing the Born-Oppenheimer Approximation. Subsequently, he traveled from one prominent center of physics to another: Harvard, California Institute of Technology, Leyden, and Zurich. In 1929, he received offers to teach at Caltech and the University of California at Berkeley. Accepting both, he divided his time between Pasadena and Berkeley, attracting his own circle of brilliant young physics students.

"His lectures were a great experience, for experimental as well as theoretical physicists," commented Hans Bethe, who would later work with Oppenheimer at Los Alamos: "In addition to a superb literary style, he brought to them a degree of sophistication in physics previously unknown in the United States. Here was a man who obviously understood all the deep secrets of quantum mechanics, and yet made it clear that the most important questions were unanswered. His earnestness and deep involvement gave his research students the same sense of challenge. He never gave his students the easy and superficial answers but trained them to appreciate and work on the deep problems."

When Julius Oppenheimer died in 1937, Oppenheimer became a wealthy man. In 1940 he married Katharine (Kitty) Puening Harrison, a biologist and divorcee whose second husband had been killed during World War II. Hans Bethe, who would later work with Oppenheimer at Los Alamos: "In addition to a superb literary style, he brought to them a degree of sophistication in physics previously unknown in the United States. Here was a man who obviously understood all the deep secrets of quantum mechanics, and yet made it clear that the most important questions were unanswered. His earnestness and deep involvement gave his research students the same sense of challenge. He never gave his students the easy and superficial answers but trained them to appreciate and work on the deep problems."

When Julius Oppenheimer died in 1937, Oppenheimer became a wealthy man. In 1940 he married Katharine (Kitty) Puening Harrison, a biologist and divorcee whose second husband had been killed during World War II.

Oppenheimer was a man who obviously understood all the deep secrets of quantum mechanics, and yet made it clear that the most important questions were unanswered. His earnestness and deep involvement gave his research students the same sense of challenge. He never gave his students the easy and superficial answers but trained them to appreciate and work on the deep problems.

When Julius Oppenheimer died in 1937, Oppenheimer became a wealthy man. In 1940 he married Katharine (Kitty) Puening Harrison, a biologist and divorcee whose second husband had been killed during World War II.”
The symposium was organized by José Cutileiro and supported by contributions from Theodore L. Cross, A German Perspective" by Karl Kaiser, "George Kennan and the New Europe: A German Perspective" by Karl Kaiser, and "The Container Contained" by斯特洛·塔伯特。

The symposium was organized by José Cutileiro and supported by contributions from Theodore L. Cross, A German Perspective" by Karl Kaiser, and "The Container Contained" by斯特洛·塔伯特。

Attending the symposium in Professor Kennan’s honor, are from left to right: Strobe Talbott, President of The Brookings Institution, and former Deputy Secretary of State; Jack F. Matlock, Jr., the last U.S. Ambassador to the Former Soviet Union, and former George F. Kennan Professor in the School of Historical Studies; José Cutileiro, George F. Kennan Professor in the School of Historical Studies, and former Secretary General of the Western European Union; Lawrence S. Eagleburger, former Secretary of State; Karl Kaiser, Otto-Wolf-Director Emeritus of the German Council on Foreign Relations, and Visiting Scholar, Weatherhead Center for International Affairs, Harvard University; Alexander A. Besmertnykh, last Foreign Minister of the Former Soviet Union, James D. Wolfensohn, President of the World Bank, and Chairman of the Board of Trustees of the Institute for Advanced Study, and Institute Director Peter Goddard.

Just two days after his 100th birthday on February 16, George F. Kennan made a surprise visit to the Institute. Professor in the School of Historical Studies since 1956 and Professor Emeritus since 1974, Professor Kennan (seated) and his personal assistant Tony Marino (in bow tie) were greeted by, from left to right: Trustee Emeritus Laddadish von Hoffmann; George F. Kennan Professor José Cutileiro; Professor Kennan’s grandson George Kennan Pjajib (partially hidden in back); Professor Kennan’s son-in-law, Kevin Delaney; Institute Director Peter Goddard (in rear), Chairman of the Board of Trustees James D. Wolfensohn, and Elaine Wolfensohn.
Prospects in Theoretical Physics (PiTP), sponsored by the Institute for Advanced Study's School of Natural Sciences, is an intensive two-week summer program designed for graduate students considering a career in theoretical physics. In addition to Institute Faculty, many faculty members from the physics and astrophysics departments at Princeton University are actively involved in the program together with scientists from neighboring institutions. The program builds on the strong relationship between the research groups at the Institute for Advanced Study and Princeton University.

First held in the summer of 2002, this year’s program is geared toward advanced (4th and 5th year) graduate students actively involved in research in string theory. Morning lectures will be followed by informal sessions in the afternoon in which all participants will have the opportunity for interactive discussions on the latest advances and open questions in string theory. A partial list of organizers and lecturers includes: Juan Maldacena, Nathan Seiberg, Ken Wilson, and current Member in the School of Mathematics.

A special lecture during the second week will be given by Juhi Jang (Brown University), who will lecture during the second week. On Saturday, May 20, a reunion of past participants will feature lectures, panel discussions, and a research poster session.

The Program’s organizers are member and former Distinguished Visiting Professor in the School of Mathematics, Karen Uhlenbeck (University of Texas at Austin), current Member Sun-Yung Alice Chang (Princeton University), and former Member Chau-Lien Teng (Northeastern University).

The Program for Women in Mathematics, a joint program of the Institute for Advanced Study and Princeton University, receives support from The Starr Foundation. For further information, see http://www.math.ias.edu/womenprogram.

The 53rd A.W. MELLOn Lectures
April 18-May 23: “More Than Meets the Eye”

Irving Lavin, Professor Emeritus in the School of Historical Studies, where he was Professor of Art History from 1973–2001, is this year’s A. W. Mellon Lecturer in the Fine Arts. Professor Lavin will deliver a series of six lectures on successive Sundays between April 18 and May 23 at 2:00 p.m. at the National Gallery of Art in Washington D.C. The series, “More Than Meets the Eye,” includes six lectures titled “The Story of O from Giotto to Einstein,” on April 18; “Michelangelo, Moses, and the Warrior Pope,” on April 25; “Caravaggio’s Divine Dissimulation,” on May 2; “Caravaggio II: The View from Behind,” on May 9; “The Infinite Spiral: Claude MELLON’s Miraculous Image,” on May 16; and “Going for Baroque: Observations on the Postmodern Fold,” on May 23.

Professor Lavin’s numerous books on Florentine and Roman sculpture and architecture include: Santa Maria del Fiore: The Cathedral of Florence and the Poggi Madonna (1999); Bertini, the Sansu, and the “Good” (Continued on page 6)
the Spanish Civil War. The couple had two children.

World War II interrupted the work and lives of most American physicists. In 1942, Oppenheimer was appointed to the Manhattan Project, code-name for the project to develop an atomic bomb. The project involved several laboratories in secret locations across the country, including the University of Chicago; Oak Ridge, Tennessee; and Los Alamos, New Mexico. Oppenheimer oversaw the construction of the Los Alamos laboratory, where he gathered the best minds in physics to work on the problem of creating an atomic bomb. Because of his leadership in this project, he is often referred to as the "father" of the atomic bomb.

When the war ended, the government set up the Atomic Energy Commission to replace the Manhattan Project. The AEC was formed with the purpose of overseeing all atomic research and development in the United States. As Chairman of the General Advisory Committee, Oppenheimer opposed the development of the hydrogen bomb. Known as the "Super Bomb," the hydrogen bomb was a thousand times more powerful than the atomic bomb. In the context of the Cold War, when the United States and the Soviet Union jockeyed for power, Oppenheimer's stance was controversial.

In the 1950s, while Oppenheimer was Director of the Institute, anti-Communist hysteria was sweeping through Washington, D.C., spearheaded by the conservative Senator Joseph McCarthy of Wisconsin. McCarthy and anti-Communist zealots devoted themselves to rooting out Communist spies from every walk of American life. Oppenheimer was subjected to a security investigation that became a scandal of American life. Oppenheimer was subjected to a security investigation that became a scandal of American life. Oppenheimer was subjected to a security investigation that became a scandal of American life.

With the AEC. Doors that had formerly been open to him were closed. "Oppenheimer took the outcome of the security hearing very quietly but he was a changed person; much of his previous spirit and liveliness had left him," recalled Haro Bethe.

Oppenheimer's concern for the general public's lack of scientific understanding, and the difficulty of conveying the content of scientific discoveries as well as the exhilaration of the creative act of discovery to even educated lay people, led to several popular essays on science. He delivered the Reith lectures on the BBC in 1953. These were published under the title "Science and the Common Understanding."

In April 1962, the U.S. Government made amends for the treatment J. Robert Oppenheimer suffered during the McCarthy years, when President Kennedy invited Oppenheimer to a White House dinner of Nobel Prize winners. In 1963, President Johnson awarded Oppenheimer the highest honor given by the AEC, the Fermi Award.

Oppenheimer continued to stimulate research in theoretical physics as Director of the Institute for Advanced Study until 1966. He died of throat cancer on February 18, 1967.

In 1967, George F. Kennan, Professor Emeritus in the School of Historical Studies, wrote of his Institute colleague and contemporary (both men were born in 1904):

"In preserving and developing the Institute for Advanced Study as a seat of the purest and highest sort of scientific and intellectual effort; in giving hospitality, encouragement and inspiration to a host of talented scholars—in many instances great scholars—from all parts of the world, in setting for these visitors and for thousands of others outside of Princeton an example of the scientific mind at its best, rigorous but humane, fastidious but generous and powerful, unconsciously responsible in its relationship to ascertainable truth but never neglectful of the need for elegance and beauty in the statement of it—in doing all these things, he was rendering a service of great importance to the progress of science and humane letters in this country and the world over; and he was conscious of doing so. This was, I am sure, a comfort and a solace to him in the face of the disappointments and frustrations with which these years were otherwise replete."
REMEMBERING ALBERT EINSTEIN

In the Spirit of Einstein’s Legendary Generosity, the Institute Donates Einstein Furniture to the Historical Society of Princeton

This year marks the 125th anniversary of the birth of Albert Einstein (1879-1955) in Ulm, Germany, where, auspiciously, the city’s motto is Ulmerus sunt mathematici. At the Institute for Advanced Study, where he was a member of the Faculty from 1933 until his death 22 years later, Professor Einstein is still very much a part of living memory. While there is no overt memorial to the great scientist, who was appointed one of the Institute’s first Faculty members—his home at 112 Mercer Street continues to be a private home, his office continues as the office of a working mathematician—nevertheless, Einstein’s legacy of excellence is still present.

During his lifetime, Einstein’s personal generosity was such that when his friends and colleagues wanted to celebrate his 70th birthday, they devised a plan to surprise him with a gift he could not give away. At age 88, Jack Rosenberg, then a young engineer just out of the armed services and working on John von Neumann’s Electronic Computer Project at the Institute, remembers the occasion in his unpublished memoir. As he records, Mr. Rosenberg had not expected to meet the famous scientist, with whom he shared a passionate love of classical music, let alone receive his attention and friendship.

In the late 1940s, Mr. Rosenberg’s expertise in designing and constructing his own high fidelity recording system, at a time when no such equipment was commercially available, brought him to the attention of Einstein’s close friend and fellow Institute professor, art historian Erwin Panofsky. Built for his own pleasure, Rosenberg’s audio equipment filled an entire room of his small Princeton apartment. Word of its quality soon spread among local music lovers.

As recalled in Rosenberg’s memoir, Erwin Panofsky approached him in the laboratory of the Electronic Computer Project building to request a “favor.” The favor was to build an audio system consisting of an FM tuner, amplifier, and loudspeaker, each housed in a separate wood cabinet. Signals would be received from classical music broadcasting stations located in New York City; the entire project was to be kept secret from Einstein until a working system could be unveiled. Rosenberg says, “Einstein’s friends wanted to give him something that would please him. Not only did they want to select something Einstein would enjoy frequently, but they also wanted something he could not easily bestow on someone else. Since he was overly generous, he usually gave away presents he received to anyone with a pitiful story.”

So it was that Rosenberg found himself surreptitiously installing an FM radio antenna on the roof of 112 Mercer Street while Einstein’s secretary, Helen Dukas, made sure that Einstein would remain absent from his home. The antenna lead was dropped from the chimney above Einstein’s study, through the bottom windowwall, and concealed under the rug where it lay hidden until March 14, 1949, when Institute Director J. Robert Oppenheimer transported Jack Rosenberg and the equipment to Einstein’s home for the gift’s installation and presentation.

Rosenberg writes: “When all three cabinets were installed, I began looking up the interconnecting cables and told Einstein it was an FM radio music system. He said ‘But does it not need an aerial?’ I reached under the rug, picked up the lead, and connected it to the tuner. Suddenly it all registered. ‘You have been here before. How did you get in?’ People unknown to him were never permitted to enter the house. By this time the radio was playing a classical composition. The look of pleasure in his face was a sight I will never forget... I have never witnessed a more authentic surprise.”

To express his gratitude, Professor Einstein invited Jack Rosenberg and his wife, Frances, to his home for the first of a series of conversations that the Rosenbergs enjoyed until they left Princeton in October, 1951.

When Einstein died in 1955, he bequeathed his home to the Institute. The Einstein home was one of the first planned gifts to the Institute for Advanced Study and it prompted the creation, in 1996, of the Einstein Legacy Society to honor those who name the Institute in their will and those who make a planned gift. Einstein’s stepdaughter, Margot, lived in the home, which contained the family’s furniture brought from Germany shortly after Einstein came to America, until her death in 1986.

In the spirit of Einstein’s generosity, the Institute for Advanced Study has donated 65 pieces of his possessions to the Historical Society of Princeton. The 65 pieces include Einstein’s treasured Biedermeier-style grandfather clock, his favorite armchair, his wooden music stand, and his pipe.

The Historical Society plans to devote a room in Bainbridge House, at 158 Nassau Street, to the collection as part of an educational and interpretative appreciation of Einstein’s life and work.
In March, Dr. Henry Louis Gates, Jr. in conversation with Elaine Wolfensohn at the Institute for Advanced Study

American intellectual of the 20th century, dreamed of editing an "Encyclopedia Africana," which he envisioned as a comprehensive compendium of knowledge about the history, cultures, and social institutions of people of African descent. Du Bois was able to secure only half the funds needed to complete his project. Inspired by Du Bois’ dream, Harvard professor Henry Louis Gates, Jr., and his colleague Kwoye Anthony Appiah, created what was left unfinished by Du Bois: the first scholarly encyclopedia whose scope is the entire history of Africa and the African Diaspora.

Ronald A. Carson, Special Visitor in the School of Social Science, spoke on “Metaphorical Concentration in Medicine,” in April. A bioethicist and “medical humanist,” Dr. Carson’s work is devoted to making healthcare more humane. He is the author of numerous articles and three books. Dr. Carson is the Harris L. Kempner Distinguished Professor and Director, Institute for the Medical Humanities, University of Texas Medical Branch.

The fall Fireside Chat was given in October by author Michael Curris, who presented findings from his book, Verdict on Vichy: Power and Prejudice in the Vichy France Regime, which explores the attitudes and actions of French officials and citizens towards Jews in France during World War II. In the book, Dr. Curris examines the degree to which French citizens, including ministers and officials of the Vichy regime, the legal and administrative system, the Church, and lay people, collectively participated in the discrimination and persecution of Jews. Michael Curris is Distinguished Professor Emeritus of Political Science at Rutgers University.

The Friends Executive Committee hosted a holiday reception for Friends and Faculty in December at which the guests of honor were Phillip and Taffy Griffiths. In January, Friends held a welcome reception for Peter and Helen Goddard.

Upcoming Friends events include the Friends annual meeting and picnic on June 2. For information on these events, or if you are interested in becoming a Friend, please call Pamela Hughes at (609) 734-8204.

UPCOMING WORKSHOPS AND PROGRAMS

(Continued from page 3)


For further information see http://www.nga.gov/programs.

IAS/PARK CITY MATHEMATICS INSTITUTE

July 11–31: Geometric Combinatorics

The 2004 PCMI Summer Session will take place July 11–31 in Park City, Utah. Each year, the IAS/Park City Mathematics Institute (PCMI), a program of the Institute for Advanced Study, draws mathematics researchers, educators, and post-secondary students for a three-week summer program of professional development and study.

This year’s research topic is “Geometric Combinatorics;” the education theme is “From Policy to Practice: Partnerships with School Districts.” Research organizers are Ezra Miller and Victor Reiner of the University of Minnesota, and Bernd Sturmfels of the University of California at Berkeley. Education coordinators are Gail Burtill and JoAnn Ferrus-Munson of Michigan State University, and Daniel Goroff of Harvard University.

PCMI receives major funding from the National Science Foundation and additional funding from the following foundations and individuals: the Starr Foundation, State of New Jersey, National Security Agency, Bristol-Myers Squibb Foundation, George S. and Dolores Doré Eccles Foundation, Mr. and Mrs. Charles Jaffin, Wolfensohn Family Foundation, and support from the University of Utah Department of Mathematics.

For further information see: http://www.admin.ias.edu/ms/
PIECING THE PAST
Former Member in the School of Historical Studies, Stephen V. Tracy is a Specialist in Greek Epigraphy

Epigraphist Stephen V. Tracy, who first came to the Institute for Advanced Study as a Member in the School of Historical Studies in 1987–88, has made the study of Athenian letter cutters his special field of research. Through repeated and painstaking examination involving thousands of inscriptions and meticulous measurement, he has developed the ability to distinguish the individual hands of some 100 stonecutters from the fifth to the first century B.C.E. These highly skilled artisans worked with hammer and chisel on marble and stone. They inscribed matters of state, copying laws and decrees of the Athenian Council and Assembly for public display. They cut text within stone, so as to create a raised letter, and the raised letter, with no spaces between words or sentences. They were extremely efficient and, it is thought, may have accompanied dignitaries on their travels throughout the Mediterranean. Dr. Tracy’s systematic examination of their stylistic traits allows him to attribute even small fragments of an inscription to a particular “writer,” just as one might recognize the lettering style in a handwritten note from a relative.

Since whole or nearly whole inscriptions are rare, it is important to piece fragments together whenever possible. Being able to identify the unique “hand” of a master allows dispersed pieces to be reunited, and helps date inscriptions to within the lifespan of an individual stonecutter. In the course of his career, Tracy has studied thousands of laws and decrees found in Attica as well as on the Athenian island of Delos or on the walls of the Athenian treasury in the sanctuary of Apollo at Delphi. He is able to ascribe to each cutter a portfolio of inscriptions, some comprising a few pieces, others amounting to some sixty or more pieces.

As a Member and subsequent frequent visitor to the Institute, Dr. Tracy has made use of the extensive collection of “squeezes” in the School of Historical Studies’ Epigraphical Library. “It was and is the best place—and at some periods the only place—to do this kind of work,” says Professor Habicht. “The magnificently housed collection housed there, little of which could have been accomplished.”

His studies have allowed Dr. Tracy to follow some of the unnamed stonecutters from Athens to Delphi or to Athenian Delos and back to Attica. He has been able to reconstruct the careers, some as long as forty years or more, of individual masters and to date numerous documents with greater accuracy than before.

Until Dr. Tracy’s first formal paper on the subject in 1970, “Identifying Epigraphical Hands” in Greek, Roman and Byzantine Studies, “the study of lettering had been done haphazardly, in a casual and amateurish way,” says Professor Habicht. “Today, the skill of recognizing hands of individual cutters is still Tracy’s exclusive possession. It has made him the undisputed and unchallenged expert in this field, to the same degree that Sir John Beasley was the expert for Athenian vase painters.”

While Dr. Tracy’s “new method” has met with some skepticism—even he admits to wondering sometimes whether he might be “dreaming it all”—it has proved effective. Often, after Dr. Tracy has identified two fragments of an inscription to the same hand, the fragments have been shown to fit together as parts of the same inscription. Lack of this aspect of his work to piece together a jigsaw puzzle, Tracy says “The study of individual hands thus provides a very powerful tool for dating fragments, and even in some cases for putting them back together. This is the primary reason for doing it. It also aids us greatly in dealing with the small number of stones that survive, so very difficult to study, for, once one has learned a hand, it is possible to recognize accurately even very small samples of a cutter’s writing.”

“The reliability of Tracy’s method has been proven by its results,” comments Professor Habicht, who notes that Tracy “has demonstrated hundreds of material joints between pieces that had previously not been identified as belonging to one and the same document...Each join is fresh proof of the validity of the method, and these results have therefore convinced experts in the field all over the world.”

Stephen Tracy’s work has resulted in advances in determining the chronology of ancient events, the precise dating of military campaigns, and even in distinguishing ancient historical figures of the same name. He was, for example, able to distinguish the scholar Demetrius of Phaleron, a leading political figure of late fourth century B.C.E. Athens, from Demetrios the military general and grandson of the former.

For historians, inscriptions provide an invaluable resource. Information thus gleaned helps define personalities in the ancient world. We learn, for example, that the Athenian dramatist Sophocles was also treasurer of the Athenian empire, as recorded in treasury accounts inscribed on the Acropolis, dating to the second half of the fifth century B.C.E. As Dr. Tracy puts it, “the study of hands provides a new means to date more precisely-inscribed texts from antiquity and thus to achieve a better understanding of the precise events in very small capitals.”

Stephen Tracy received his A.B. from Brown University in 1963, and his M.A. and Ph.D. from Harvard University in 1965 and 1968, respectively. At Harvard, he was a student of Greek scholar and epigraphist Sterling Dow, himself a student of Harvard classical historian William Scott Ferguson. Professor Habicht, recognized as the leading authority on the history of Athens from the time of Alexander the Great to the establishment of the Roman Empire, has described Dr. Tracy as “the legitimate heir of this great tradition and these two eminent figures.”

In 1986, Tracy founded the Center for Epigraphical and Paleographical Studies at Ohio State University and is now Director of the American School of Classical Studies at Athens. He is a member of the Rough Cilicia Survey Project and serves on the Advisory Board overseeing publication of a third edition of Volume II of Inscriptions Graecae. His books include: Athens and Macedon: Attic Letter-Cutters of 300 to 229 B.C. (Berkeley, 2003); Athenian Democracy in Transition: Attic Letter-Cutters of 340 to 290 B.C. (Berkeley, 1995); Attic Letter-Cutters of 229 to 86 B.C. (Berkeley, 1990); The Story of the Odyssey (Princeton, 1990); F. IG II 2 2346: Contributors of First Fruits for the Pythians (Meisenheim, 1983); The Lettering of an Athenian Mason (Princeton, 1975); and, with John Bodel, Greek and Latin Inscriptions in the USA: A Checklist (Princeton, 1997).

For further information on Stephen Tracy’s work, see his article, “Dating Athenian Inscriptions: A New Approach,” in the Proceedings of the American Philosophical Society, Vol. 144, No. 1, March 2000, which can be found online at http://www.aps.org/proceedings/proceeding/mai00/Tracy.pdf.

What is a Squeeze?
A “squeeze” is a copy of an inscription made by pressing damp paper over the lettering. The technique is used by scholars studying inscriptions written in ancient times on stone tablets. Prepared in the field or in museums, squeezes provide a physical rendering of an inscription that can be removed and examined elsewhere. According to Professor Christian Habicht, the technique was much used in the 19th century and can already be found in the 16th century. A committee working for the French Secretary of Education published recommendations for their use in 1843, and they were used extensively by the French Academician Philippe Le Bas (1794–1860) in Asia Minor (1843), and by the German scholar Karl Richard Lepsius (1815–1884) in Egypt (1842–1845).

The Institute for Advanced Study is home to some 25,000 such squeezes. A complete inventory of the Institute’s collection, prepared under the direction of Professor Habicht, is now on CD-ROM. Squeezes originally from the IAS collection, such as those shown here, can be viewed online with others in the Ohio State University collection on the website of the Center for Epigraphical and Paleographical Studies: http://omega.cohums.ohio-state.edu/epigraphy/.

This inscription (IG II 2 101) honors King of the Molossi, Athens the Synagogue, so called because he was exiled to Sicily and adopted into a Syracusan aristocratic family. Later restored to office, he raised an Athenian force sent to Corfu and was honored in Athens during the winter of 37/32 B.C.E. It is thought that the horse relief refers to a victory he won in an equestrian competition while in Athens.
This computer-generated image by artist Kazunori Takahashi was created for the experimental internet project Mapping the Web InfoMe. It appears on the cover of Academy & the Internet, published in 2004 by Peter Lang Publishing Inc., New York. The essays explore the impact of the Internet on scholarly research in the social sciences and other fields of inquiry, and address topics in history, computer ethics, cyberlaw, aesthetics, politics, economics and public policy. Contributing authors offer critical perspectives on the effects of the Internet on their particular fields of inquiry.

The editors cite the contributions of workshop participants Joan Fujimura, Manuel DeLanda, James Der Derian, Margaret Morse, Tom Streeter, and Michele White, among others; as well as the support of The John D. and Catherine T. MacArthur Foundation, The Ford Foundation, and the Gladys Krieble Delmas Foundation.