You are here

IAS/PU-Montreal-Paris-Tel-Aviv Symplectic Geometry Zoominar

Floer Cohomology and Arc Spaces

Let f be a polynomial over the complex numbers with an isolated singular point at the origin and let d be a positive integer. To such a polynomial we can assign a variety called the dth contact locus of f. Morally, this corresponds to the space of d-jets of holomorphic disks in complex affine space whose boundary `wraps' around the singularity d times. We show that Floer cohomology of the dth power of the Milnor monodromy map is isomorphic to compactly supported cohomology of the dth contact locus. This answers a question of Paul Seidel and it also proves a conjecture of Nero Budur, Javier Fernández de Bobadilla, Quy Thuong Lê and Hong Duc Nguyen. The key idea of the proof is to use a jet space version of the PSS map together with a filtration argument.

Featuring

Mark McLean

Speaker Affiliation

Stony Brook University

Affiliation

Mathematics

Event Series

Video

https://video.ias.edu/puias/2020/0612-MarkMcLean

Notes

Direct Zoom link:   https://umontreal.zoom.us/j/94366166514?pwd=OHBWcGluUmJwMFJyd2IwS1ROZ0FJdz09


 

Date & Time
June 12, 2020 | 9:1510:30am

Location

Remote Access - see Zoom link below

Categories