Solar System

Life on Other Planets

By David S. Spiegel 

Sighting a deer outside of Fuld Hall; how long did Earth have to wait before life "walked into sight"?

Until a couple of decades ago, the only planets we knew existed were the nine in our Solar System. In the last twenty-five years, we’ve lost one of the local ones (Pluto, now classified as a “minor planet”) and gained about three thousand candidate planets around other stars, dubbed exoplanets. The new field of exoplanetary science is perhaps the fastest growing subfield of astrophysics, and will remain a core discipline for the forseeable future.

The fact that any biology beyond Earth seems likely to live on such a planet is among the many reasons why the study of exoplanets is so compelling. In short, planets are not merely astrophysical objects but also (at least some of them) potential abodes.

The highly successful Kepler mission involves a satellite with a sensitive telescope/camera that stares at a patch of sky in the direction of the constellation Cygnus. The goal of the mission is to find what fraction of Sun-like stars have Earth-sized planets with a similar Earth-Sun separation (about 150 million kilometers, or the distance light travels in eight minutes).

Is the Solar System Stable?

By Scott Tremaine 

Scott Tremaine explores the stability of our solar system, one of the oldest problems in theoretical physics, dating back to Isaac Newton.

The stability of the solar system is one of the oldest problems in theoretical physics, dating back to Isaac Newton. After Newton discovered his famous laws of motion and gravity, he used these to determine the motion of a single planet around the Sun and showed that the planet followed an ellipse with the Sun at one focus. However, the actual solar system contains eight planets, six of which were known to Newton, and each planet exerts small, periodically varying, gravitational forces on all the others.

The puzzle posed by Newton is whether the net effect of these periodic forces on the planetary orbits averages to zero over long times, so that the planets continue to follow orbits similar to the ones they have today, or whether these small mutual interactions gradually degrade the regular arrangement of the orbits in the solar system, leading eventual ly to a collision between two planets, the ejection of a planet to interstellar space, or perhaps the incineration of a planet by the Sun. The interplanetary gravitational interactions are very small—the force on Earth from Jupiter, the largest planet, is only about ten parts per million of the force from the Sun—but the time available for their effects to accumulate is even longer: over four billion years since the solar system was formed, and almost eight billion years until the death of the Sun.

Syndicate content