Paul Cohen

From Prime Numbers to Nuclear Physics and Beyond

After his teatime conversation with Hugh Montgomery, Freeman Dyson wrote this letter to Atle Selberg with references showing that the pair-correlation of the zeros of the zeta function is identical to that of the eigenvalues of a random matrix.

In early April 1972, Hugh Montgomery, who had been a Member in the School of Mathematics the previous year, stopped by the Institute to share a new result with Atle Selberg, a Professor in the School. The discussion between Montgomery and Selberg involved Montgomery’s work on the zeros of the Riemann zeta function, which is connected to the pattern of the prime numbers in number theory. Generations of mathematicians at the Institute and elsewhere have tried to prove the Riemann Hypothesis, which conjectures that the non-trivial zeros (those that are not easy to find) of the Riemann zeta function lie on the critical line with real part equal to 1⁄2.

Montgomery had found that the statistical distribution of the zeros on the critical line of the Riemann zeta function has a certain property, now called Montgomery’s pair correlation conjecture. He explained that the zeros tend to repel between neighboring levels. At teatime, Montgomery mentioned his result to Freeman Dyson, Professor in the School of Natural Sciences.

In the 1960s, Dyson had worked on random matrix theory, which was proposed by physicist Eugene Wigner in 1951 to describe nuclear physics. The quantum mechanics of a heavy nucleus is complex and poorly understood. Wigner made a bold conjecture that the statistics of the energy levels could be captured by random matrices. Because of Dyson’s work on random matrices, the distribution or the statistical behavior of the eigenvalues of these matrices has been understood since the 1960s.

Can the Continuum Hypothesis be Solved?

By Juliette Kennedy 

The continuum hypothesis was under discussion as an "undecidable statement" at the Princeton University Bicentennial Conference on "Problems of Mathematics" in 1946, the first major international gathering of mathematicians after World War II. Kurt Gödel is in the second row, fifth from left.

In 1900, David Hilbert published a list of twenty-three open questions in mathematics, ten of which he presented at the International Congress of Mathematics in Paris that year. Hilbert had a good nose for asking mathematical questions as the ones on his list went on to lead very interesting mathematical lives. Many have been solved, but some have not been, and seem to be quite difficult. In both cases, some very deep mathematics has been developed along the way. The so-called Riemann hypothesis, for example, has withstood the attack of generations of mathematicians ever since 1900 (or earlier). But the effort to solve it has led to some beautiful mathematics. Hilbert’s fifth problem turned out to assert something that couldn’t be true, though with fine tuning the “right” question—that is, the question Hilbert should have asked—was both formulated and solved. There is certainly an art to asking a good question in mathematics.

The problem known as the continuum hypothesis has had perhaps the strangest fate of all. The very first problem on the list, it is simple to state: how many points on a line are there? Strangely enough, this simple question turns out to be deeply intertwined with most of the interesting open problems in set theory, a field of mathematics with a very general focus, so general that all other mathematics can be seen as part of it, a kind of foundation on which the house of mathematics rests. Most objects in mathematics are infinite, and set theory is indeed just a theory of the infinite.

Syndicate content