Orbits
The Symplectic Piece
By Helmut Hofer and Derek Bermel
![]() |
This image (produced with a Java applet by Alec Jacobson at http://alecjacobåson.com/programs/three-body-chaos) shows colorful trackings of the paths of satellites as they evolve from a simple single orbit to a complex multicolored tangle of orbits. |
I can’t understand why people are frightened of new ideas. I’m frightened of the old ones.—John Cage
Helmut Hofer, Professor in the School of Mathematics, writes:
Last September, the School of Mathematics launched its yearlong program with my Member seminar talk “First Steps in Symplectic Dynamics.” About two years earlier, it had become clear that certain important problems in dynamical systems could be solved with ideas coming from a different field, the field of symplectic geometry. The goal was then to bring researchers from the fields of dynamical systems and symplectic geometry together in a program aimed at the development of a common core and ideally leading to a new field—symplectic dynamics.
Not long before, in my 2010 inaugural public lecture at IAS, “From Celestial Mechanics to a Geometry Based on the Concept of Area,” I had described the historical background and some of the interesting mathematical problems belonging to this anticipated field of symplectic dynamics. The lecture began with a computer program showing chaos in the restricted three-body problem. This problem describes the movement of a satellite under the gravity of two big bodies, say the earth and the moon, in a rotating coordinates system in which the earth and the moon stay at fixed positions. The chaos in the system is illustrated by putting about ten satellites initially at almost the same position with almost the same velocity.
When the system starts evolving, the program shows colorful trackings of the paths of the satellites as they evolve from a simple single orbit to a complex multicolored tangle of orbits, once the orbits of the different satellites start separating.
