Jones Polynomial

Knots and Quantum Theory

By Edward Witten 

Edward Witten explains how mathematicians compare knots that differ by how a missing piece is filled in (as indicated by the question mark above).

In everyday life, a string—such as a shoelace—is usually used to secure something or hold it in place. When we tie a knot, the purpose is to help the string do its job. All too often, we run into a complicated and tangled mess of string, but ordinarily this happens by mistake.

The term “knot” as it is used by mathematicians is abstracted from this experience just a little bit. A knot in the mathematical sense is a possibly tangled loop, freely floating in ordinary space. Thus, mathematicians study the tangle itself. A typical knot in the mathematical sense is shown in Figure 1. Hopefully, this picture reminds us of something we know from everyday life. It can be quite hard to make sense of a tangled piece of string—to decide whether it can be untangled and if so how. It is equally hard to decide if two tangles are equivalent.

Such questions might not sound like mathematics, if one is accustomed to thinking that mathematics is about adding, subtracting, multiplying, and dividing. But actually, in the twentieth century, mathematicians developed a rather deep theory of knots, with surprising ways to answer questions like whether a given tangle can be untangled.

But why—apart from the fact that the topic is fun—am I writing about this as a physicist? Even though knots are things that can exist in ordinary three-dimensional space, as a physicist I am only interested in them because of something surprising that was discovered in the last three decades.

Syndicate content