Eugene Wigner

From Prime Numbers to Nuclear Physics and Beyond

After his teatime conversation with Hugh Montgomery, Freeman Dyson wrote this letter to Atle Selberg with references showing that the pair-correlation of the zeros of the zeta function is identical to that of the eigenvalues of a random matrix.

In early April 1972, Hugh Montgomery, who had been a Member in the School of Mathematics the previous year, stopped by the Institute to share a new result with Atle Selberg, a Professor in the School. The discussion between Montgomery and Selberg involved Montgomery’s work on the zeros of the Riemann zeta function, which is connected to the pattern of the prime numbers in number theory. Generations of mathematicians at the Institute and elsewhere have tried to prove the Riemann Hypothesis, which conjectures that the non-trivial zeros (those that are not easy to find) of the Riemann zeta function lie on the critical line with real part equal to 1⁄2.

Montgomery had found that the statistical distribution of the zeros on the critical line of the Riemann zeta function has a certain property, now called Montgomery’s pair correlation conjecture. He explained that the zeros tend to repel between neighboring levels. At teatime, Montgomery mentioned his result to Freeman Dyson, Professor in the School of Natural Sciences.

In the 1960s, Dyson had worked on random matrix theory, which was proposed by physicist Eugene Wigner in 1951 to describe nuclear physics. The quantum mechanics of a heavy nucleus is complex and poorly understood. Wigner made a bold conjecture that the statistics of the energy levels could be captured by random matrices. Because of Dyson’s work on random matrices, the distribution or the statistical behavior of the eigenvalues of these matrices has been understood since the 1960s.

Of Historical Note

By John Wheeler 

The paper by Niels Bohr and John Wheeler on the mechanism of nuclear fission appeared in the Physical Review of September 1, 1939, the same day the war began.

The following excerpt is from remarks given by John Archibald Wheeler on March 27, 2000, in connection with the play Copenhagen by Michael Frayn. Wheeler was a Professor of Physics at Princeton University from 1938 until his retirement in 1976 and a Member of the Institute’s School of Mathematics (prior to the founding of the School of Natural Sciences) in the spring of 1937, when it was still temporarily housed in Fine Hall (now Jones Hall) at Princeton University. Niels Bohr, who had a twenty-year association with the Institute, first visited in the academic year 1938–39, when the Institute completed Fuld Hall. For more about Bohr and his relationship with Albert Einstein, one of the Institute’s first Professors, see the Spring 2009 Institute Letter.

If two such great thinkers as Bohr and Einstein, who had such a high regard for each other, could be brought together for a prolonged period, would not something emerge of great value to all of us? This thought and this hope animated the guiding spirits of the Princeton Institute for Advanced Study to invite Niels Bohr to come as a guest of the Institute for the entire spring semester of 1939. However, four days before Bohr boarded his America-bound ship, he learned from Otto Robert Frisch that Frisch and his aunt Lisa Meitner had solid evidence that a neutron splits the nucleus of uranium. As he crossed the Atlantic, Bohr’s vision turned more and more from the problem of quantum mechanics to the problems of nuclear physics. So January and February, March and April of 1939 saw him working, discussing, calculating, and writing, day after day, not with Einstein on quantum physics as intended, but with me on the nuclear physics of fission. Yes, of course, there were meetings Bohr had with Einstein but they were occasional and did not lead to the big push it takes to formulate a solid well-argued position. No. Fission, and what it meant and how it differed from one nucleus to another, and what those differences offered in the way of using the nucleus for a chain reaction stood at the center of our attention. . . .

Syndicate content