Electromagnetism

Discovering the Higgs: Inevitability, Rigidity, Fragility, Beauty

Slide from Nima Arkani-Hamed’s lecture, “The Inevitability of Physical Laws: Why the Higgs Has to Exist.”

Following the discovery in July of a Higgs-like boson—an effort that took more than fifty years of experimental work and more than 10,000 scientists and engineers working on the Large Hadron Collider—Juan Maldacena and Nima Arkani-Hamed, two Professors in the School of Natural Sciences, gave separate public lectures on the symmetry and simplicity of the laws of physics, and why the discovery of the Higgs was inevitable.

Peter Higgs, who predicted the existence of the particle, gave one of his first seminars on the topic at the Institute in 1966, at the invitation of Freeman Dyson. “The discovery attests to the enormous importance of fundamental, deep ideas, the substantial length of time these ideas can take to come to fruition, and the enormous impact they have on the world,” said Robbert Dijkgraaf, Director and Leon Levy Professor.

In their lectures “The Symmetry and Simplicity of the Laws of Nature and the Higgs Boson” and “The Inevitability of Physical Laws:
Why the Higgs Has to Exist,” Maldacena and Arkani-Hamed described the theoretical ideas that were developed in the 1960s and 70s, leading to our current understanding of the Standard Model of particle physics and the recent discovery of the Higgs-like boson. Arkani-Hamed framed the hunt for the Higgs as a detective story with an inevitable ending. Maldacena compared our understanding of nature to the fairytale Beauty and the Beast.

“What we know already is incredibly rigid. The laws are very rigid within the structure we have, and they are very fragile to monkeying with the structure,” said Arkani-Hamed. “Often in physics and mathematics, people will talk about beauty. Things that are beautiful, ideas that are beautiful, theoretical structures that are beautiful, have this feeling of inevitability, and this flip side of rigidity and fragility about them.”

Modern Mathematics and the Langlands Program

In his conjectures, now collectively known as the Langlands program, Robert Langlands drew on the work of Hermann Weyl (above), André Weil, and Harish-Chandra, among others with extensive ties to the Institute.

It has been said that the goals of modern mathematics are recon­struction and development.1 The unifying conjectures between number theory and representation theory that Robert Langlands, Professor Emeritus in the School of Mathematics, articulated in a letter to André Weil in 1967, continue a tradition at the Institute of advancing mathematical knowledge through the identification of problems central to the understanding of active areas or likely to become central in the future.

“Two striking qualities of mathematical concepts regarded as central are that they are simultaneously pregnant with possibilities for their own development and, so far as we can judge from a history of two and a half millennia, of permanent validity,” says Langlands. “In comparison with biology, above all with the theory of evolution, a fusion of biology and history, or with physics and its two enigmas, quantum theory and relativity theory, mathematics contributes only modestly to the intellectual architecture of mankind, but its central contributions have been lasting, one does not supersede another, it enlarges it.”2

In his conjectures, now collectively known as the Langlands program, Langlands drew on the work of Harish-Chandra, Atle Selberg, Goro Shimura, André Weil, and Hermann Weyl, among others with extensive ties to the Institute. 

Weyl, whose appointment to the Institute’s Faculty in 1933 followed those of Albert Einstein and Oswald Veblen, was a strong believer in the overall unity of mathematics, across disciplines and generations. Weyl had a major impact on the progress of the entire field of mathematics, as well as physics, where he was equally comfortable. His work spanned topology, differential geometry, Lie groups, representation theory, harmonic analysis, and analytic number theory, and extended into physics, including relativity, electromagnetism, and quantum mechanics. “For [Weyl] the best of the past was not forgotten,” notes Michael Atiyah, a former Institute Professor and Member, “but was subsumed and refined by the mathematics of the present.”3

Syndicate content