David H. Weinberg
Measuring the Cosmos, Mapping the Galaxy, Finding Planets
By David H. Weinberg
![]() |
An SDSS-III plugplate, which admits light from preselected galaxies, stars, and quasars, superposed on an SDSS sky image. |
Why is the expansion of the universe speeding up, instead of being slowed by the gravitational attraction of galaxies and dark matter? What is the history of the Milky Way galaxy and of the chemical elements in its stars? Why are the planetary systems discovered around other stars so different from our own solar system? These questions are the themes of SDSS-III, a six-year program of four giant astronomical surveys, and the focal point of my research at the Institute during the last year.
In fact, the Sloan Digital Sky Survey (SDSS) has been a running theme through all four of my stays at the Institute, which now span nearly two decades. As a long-term postdoctoral Member in the early 1990s, I joined in the effort to design the survey strategy and software system for the SDSS, a project that was then still in the early stages of fundraising, collaboration building, and hardware development. When I returned as a sabbatical visitor in 2001–02, SDSS observations were—finally—well underway. My concentration during that year was developing theoretical modeling and statistical analysis techniques, which we later applied to SDSS maps of cosmic structure to infer the clustering of invisible dark matter from the observable clustering of galaxies. By the time I returned for a one-term visit in 2006, the project had entered a new phase known as SDSS-II, and I had become the spokesperson of a collaboration that encompassed more than three hundred scientists at twenty-five institutions around the globe. With SDSS-II scheduled to complete its observations in mid-2008, I joined a seven-person committee that spent countless hours on the telephone that fall, sorting through many ideas suggested by the collaboration and putting together the program that became SDSS-III.
