Boaz Katz
Extrasolar Planets and the New Astronomy
By Aristotle Socrates
![]() |
Figure 2: Orbits of the Earth, Venus, and Mercury superposed with that of HD 80606b (magenta). Not only is its orbit extreme in comparison with those of our inner-solar system, but its mass is extreme as well in that HD 80606b is a gas giant planet, like Jupiter. |
The desire to discover distant, rare, and strange objects dominated twentieth-century astronomy, for which increasingly larger and more sensitive telescopes were constructed.
The act of carrying out this objective has brought enormous—and somewhat unbelievable—rewards: We now accept that we orbit a thermonuclear furnace, the Sun, whose physical properties are quite common, so common that there are nearly 100 billion Sun-like stars within our galaxy, the Milky Way. It was discovered that the Milky Way was not, in fact, the entire Universe; the observable Universe is of order many billions of light years across (that’s big), and there are of order 100 billion galaxies like our own floating around within it. In the center of these galaxies there happen to be super-massive black holes whose masses can be up to 10 billion times the mass of the Sun. When these enormous black holes are built up by in-falling gas, they are called “quasars,” and produce the equivalent of 100 trillion Suns worth of light within a volume comparable to our solar system. The greater the separation between any two galaxies or quasars, the greater the rate at which they move apart or, in other words, the Universe is expanding. Perhaps even more surprising, the Universe is primarily made up of stuff that we can neither see nor feel, i.e., dark energy and dark matter. The strategy of building bigger and more sensitive telescopes, meanwhile, has produced a growing number of “smaller” results that continue to employ regiments of astronomers: gamma-ray bursts, pulsars, X-ray emitting binary stars, clusters of galaxies, cosmic microwave background radiation, and the list goes on.
