Astronomy
Measuring the Cosmos, Mapping the Galaxy, Finding Planets
By David H. Weinberg
![]() |
An SDSS-III plugplate, which admits light from preselected galaxies, stars, and quasars, superposed on an SDSS sky image. |
Why is the expansion of the universe speeding up, instead of being slowed by the gravitational attraction of galaxies and dark matter? What is the history of the Milky Way galaxy and of the chemical elements in its stars? Why are the planetary systems discovered around other stars so different from our own solar system? These questions are the themes of SDSS-III, a six-year program of four giant astronomical surveys, and the focal point of my research at the Institute during the last year.
In fact, the Sloan Digital Sky Survey (SDSS) has been a running theme through all four of my stays at the Institute, which now span nearly two decades. As a long-term postdoctoral Member in the early 1990s, I joined in the effort to design the survey strategy and software system for the SDSS, a project that was then still in the early stages of fundraising, collaboration building, and hardware development. When I returned as a sabbatical visitor in 2001–02, SDSS observations were—finally—well underway. My concentration during that year was developing theoretical modeling and statistical analysis techniques, which we later applied to SDSS maps of cosmic structure to infer the clustering of invisible dark matter from the observable clustering of galaxies. By the time I returned for a one-term visit in 2006, the project had entered a new phase known as SDSS-II, and I had become the spokesperson of a collaboration that encompassed more than three hundred scientists at twenty-five institutions around the globe. With SDSS-II scheduled to complete its observations in mid-2008, I joined a seven-person committee that spent countless hours on the telephone that fall, sorting through many ideas suggested by the collaboration and putting together the program that became SDSS-III.
Extrasolar Planets and the New Astronomy
By Aristotle Socrates
![]() |
Figure 2: Orbits of the Earth, Venus, and Mercury superposed with that of HD 80606b (magenta). Not only is its orbit extreme in comparison with those of our inner-solar system, but its mass is extreme as well in that HD 80606b is a gas giant planet, like Jupiter. |
The desire to discover distant, rare, and strange objects dominated twentieth-century astronomy, for which increasingly larger and more sensitive telescopes were constructed.
Is the Solar System Stable?
By Scott Tremaine
![]() |
Scott Tremaine explores the stability of our solar system, one of the oldest problems in theoretical physics, dating back to Isaac Newton. |
The stability of the solar system is one of the oldest problems in theoretical physics, dating back to Isaac Newton. After Newton discovered his famous laws of motion and gravity, he used these to determine the motion of a single planet around the Sun and showed that the planet followed an ellipse with the Sun at one focus. However, the actual solar system contains eight planets, six of which were known to Newton, and each planet exerts small, periodically varying, gravitational forces on all the others.
The puzzle posed by Newton is whether the net effect of these periodic forces on the planetary orbits averages to zero over long times, so that the planets continue to follow orbits similar to the ones they have today, or whether these small mutual interactions gradually degrade the regular arrangement of the orbits in the solar system, leading eventual ly to a collision between two planets, the ejection of a planet to interstellar space, or perhaps the incineration of a planet by the Sun. The interplanetary gravitational interactions are very small—the force on Earth from Jupiter, the largest planet, is only about ten parts per million of the force from the Sun—but the time available for their effects to accumulate is even longer: over four billion years since the solar system was formed, and almost eight billion years until the death of the Sun.


