Andre Weil

From Prime Numbers to Nuclear Physics and Beyond

After his teatime conversation with Hugh Montgomery, Freeman Dyson wrote this letter to Atle Selberg with references showing that the pair-correlation of the zeros of the zeta function is identical to that of the eigenvalues of a random matrix.

In early April 1972, Hugh Montgomery, who had been a Member in the School of Mathematics the previous year, stopped by the Institute to share a new result with Atle Selberg, a Professor in the School. The discussion between Montgomery and Selberg involved Montgomery’s work on the zeros of the Riemann zeta function, which is connected to the pattern of the prime numbers in number theory. Generations of mathematicians at the Institute and elsewhere have tried to prove the Riemann Hypothesis, which conjectures that the non-trivial zeros (those that are not easy to find) of the Riemann zeta function lie on the critical line with real part equal to 1⁄2.

Montgomery had found that the statistical distribution of the zeros on the critical line of the Riemann zeta function has a certain property, now called Montgomery’s pair correlation conjecture. He explained that the zeros tend to repel between neighboring levels. At teatime, Montgomery mentioned his result to Freeman Dyson, Professor in the School of Natural Sciences.

In the 1960s, Dyson had worked on random matrix theory, which was proposed by physicist Eugene Wigner in 1951 to describe nuclear physics. The quantum mechanics of a heavy nucleus is complex and poorly understood. Wigner made a bold conjecture that the statistics of the energy levels could be captured by random matrices. Because of Dyson’s work on random matrices, the distribution or the statistical behavior of the eigenvalues of these matrices has been understood since the 1960s.

Modular Arithmetic: Driven by Inherent Beauty and Human Curiosity

By Richard Taylor 

In modular arithmetic, one thinks of the whole numbers arranged around a circle, like the hours on a clock, instead of along an infinite straight line. Here we have seven “hours” on our clock—arithmetic modulo 7. To add 3 and 5 modulo 7, you start at 0, count 3 clockwise, and then a further 5 clockwise, this time ending on 1. To multiply 3 by 5 modulo 7, you start at 0 and count 3 clockwise 5 times, again ending up at 1.

Modular arithmetic has been a major concern of mathematicians for at least 250 years, and is still a very active topic of current research. In this article, I will explain what modular arithmetic is, illustrate why it is of importance for mathematicians, and discuss some recent breakthroughs.

For almost all its history, the study of modular arithmetic has been driven purely by its inherent beauty and by human curiosity. But in one of those strange pieces of serendipity which often characterize the advance of human knowledge, in the last half century modular arithmetic has found important applications in the “real world.” Today, the theory of modular arithmetic (e.g., Reed-Solomon error correcting codes) is the basis for the way DVDs store or satellites transmit large amounts of data without corrupting it. Moreover, the cryptographic codes which keep, for example, our banking transactions secure are also closely connected with the theory of modular arithmetic. You can visualize the usual arithmetic as operating on points strung out along the “number line.”

Modern Mathematics and the Langlands Program

In his conjectures, now collectively known as the Langlands program, Robert Langlands drew on the work of Hermann Weyl (above), André Weil, and Harish-Chandra, among others with extensive ties to the Institute.

It has been said that the goals of modern mathematics are recon­struction and development.1 The unifying conjectures between number theory and representation theory that Robert Langlands, Professor Emeritus in the School of Mathematics, articulated in a letter to André Weil in 1967, continue a tradition at the Institute of advancing mathematical knowledge through the identification of problems central to the understanding of active areas or likely to become central in the future.

“Two striking qualities of mathematical concepts regarded as central are that they are simultaneously pregnant with possibilities for their own development and, so far as we can judge from a history of two and a half millennia, of permanent validity,” says Langlands. “In comparison with biology, above all with the theory of evolution, a fusion of biology and history, or with physics and its two enigmas, quantum theory and relativity theory, mathematics contributes only modestly to the intellectual architecture of mankind, but its central contributions have been lasting, one does not supersede another, it enlarges it.”2

In his conjectures, now collectively known as the Langlands program, Langlands drew on the work of Harish-Chandra, Atle Selberg, Goro Shimura, André Weil, and Hermann Weyl, among others with extensive ties to the Institute. 

Weyl, whose appointment to the Institute’s Faculty in 1933 followed those of Albert Einstein and Oswald Veblen, was a strong believer in the overall unity of mathematics, across disciplines and generations. Weyl had a major impact on the progress of the entire field of mathematics, as well as physics, where he was equally comfortable. His work spanned topology, differential geometry, Lie groups, representation theory, harmonic analysis, and analytic number theory, and extended into physics, including relativity, electromagnetism, and quantum mechanics. “For [Weyl] the best of the past was not forgotten,” notes Michael Atiyah, a former Institute Professor and Member, “but was subsumed and refined by the mathematics of the present.”3

The Fundamental Lemma: From Minor Irritant to Central Problem

The simplest case of the fundamental lemma counts points with alternating signs at various distances from the center of a certain tree-like structure. As depicted in the above image by former Member Bill Casselman, it counts 1, 1–3=–2, 1–3+6=4, 1–3+6–12=–8, etc. But this case is deceptively simple, and Bao Châu Ngô’s final proof required a huge range of sophisticated mathematical tools.

The proof of the fundamental lemma by Bao Châu Ngô that was confirmed last fall is based on the work of many mathematicians associated with the Institute for Advanced Study over the past thirty years. The fundamental lemma, a technical device that links automorphic representations of different groups, was formulated by Robert Langlands, Professor Emeritus in the School of Mathematics, and came out of a set of overarching and interconnected conjectures that link number theory and representation theory, collectively known as the Langlands program. The proof of the fundamental lemma, which resisted all attempts for nearly three decades, firmly establishes many theorems that had assumed it and paves the way for progress in understanding underlying mathematical structures and possible connections to physics.

The simplest case of the fundamental lemma counts points with alternating signs at various distances from the center of a certain tree-like structure. As depicted in the above image by former Member Bill Casselman, it counts 1, 1–3=–2, 1–3+6=4, 1–3+6–12=–8, etc. But this case is deceptively simple, and Ngô’s final proof required a huge range of sophisticated mathematical tools.

The story of the fundamental lemma, its proof, and the deep insights it provides into diverse fields from number theory and algebraic geometry to theoretical physics is a striking example of how mathematicians work at the Institute and demonstrates a belief in the unity of mathematics that extends back to Hermann Weyl, one of the first Professors at the Institute. This interdisciplinary tradition has changed the course of the subject, leading to profound discoveries in many different mathematical fields, and forms the basis of the School’s interaction with the School of Natural Sciences, which has led to the use of ideas from physics, such as gauge fields and strings, in solving problems in geometry and topology and the use of ideas from algebraic and differential geometry in theoretical physics.

Syndicate content