Articles from the Institute Letter

Additional articles from new and past issues of the Institute Letter will continue to be posted over time and as they become available.

An IAS teatime conversation in 1935 introduces an ongoing debate over quantum physics.

"Einstein Attacks Quantum Theory” read the New York Times headline of May 4, 1935. The article continued:

Professor Albert Einstein will attack science’s important theory of quantum mechanics, a theory of which he was a sort of grandfather. He concludes that while it is “correct” it is not “complete.” With two colleagues at the Institute for Advanced Study here, the noted scientist is about to report to the American Physical Society what is wrong with the theory of quantum mechanics. The quantum theory with which science predicts with some success inter-atomic happenings does not meet the requirements for a satisfactory physical theory, Professor Einstein will report in a joint paper with Dr. Boris Podolsky and Dr. N. Rosen.

Two years after he joined the Institute’s Faculty, Einstein coauthored the referenced paper “Can Quantum-Mechanical Description of Physical Reality be Considered Complete?” with Podolsky and Rosen, generally referred to as EPR. Einstein had recruited Podolsky and Rosen as Members of the Institute in 1934. In a letter dated November 10, 1933, to Abraham Flexner, the Institute’s founding Director, Einstein described Podolsky as “one of the most brilliant of the younger men who has worked and published with [Paul] Dirac.”

READ MORE>
Charles Simonyi

The IAS Questionnaire: Charles Simonyi, Chairman of the Institute's Board of Trustees, reveals what makes him curious, the most surprising thing he's learned, and the question he would most like answered.

The Hungarian-born computer software pioneer, philanthropist, and Chairman of Intentional Software Corporation and the Institute’s Board of Trustees has twice visited the International Space Station, amounting to a total of twenty-eight days in space. His father, Károlyi Simonyi, was a physicist and electrical engineer whose book A Cultural History of Physics (AK Peters, 2012) was first published in Hungarian in 1979

What makes you curious? Immanuel Kant talked about the “moral law within”; I sense that curiosity is also within us like the moral law.
 
Whom do you most admire and why? J. S. Bach: creator of sublime beauty who worked very hard. Michael Faraday: an intuitive, self-taught genius.

READ MORE>
This original painting was created by Robbert Dijkgraaf, Director of the Institute and Leon Levy Professor, to commemorate the celebration in Freeman Dyson’s honor, “Dreams of Earth and Sky.” The title is taken from a book written in 1895 by Konstantin Tsiolkovsky, a Russian schoolteacher who worked out the mathematics of interplanetary rocketry in the nineteenth century. “The Earth is the cradle of the mind,” Tsiolkovsky wrote, “but we cannot live forever in a cradle.”

In 2013, Freeman Dyson celebrated his ninetieth birthday and also marked his sixtieth year as a Professor at the Institute for Advanced Study, the longest tenure of any Faculty member in the Institute’s history. When Dyson first arrived as a Member in 1948, the Institute was less than twenty years old. “Dreams of Earth and Sky,” a conference and celebration conceived by Dyson’s colleagues in the School of Natural Sciences and held September 27–28, provided a perspective on his work and impact across the sciences and humanities. The program featured a range of talks on mathematics, physics, astronomy, and public affairs that reflect both the diversity of Dyson’s interests and his ability to open new dialogues.

The son of composer Sir George Dyson and Mildred Atkey, Dyson was born in Crowthorne, England, on December 15, 1923. He worked as a civilian scientist for the Royal Air Force in World War II, and graduated from Cambridge University in 1945 with a B.A. degree in mathematics. He went on to Cornell University as a graduate student in 1947 and worked with Hans Bethe and Richard Feynman. One of Dyson’s most notable contributions to science was the unification of the three versions of quantum electrodynamics invented by Feynman, Julian Schwinger, and Sin-Itiro Tomonaga. Dyson then worked on nuclear reactors, solid state physics, ferromagnetism, astrophysics, and biology, looking for problems where mathematics could be usefully applied. Author of numerous articles and books about science for the general public, he has also been heavily invested in human issues, from arms control and space travel to climate studies. Dyson once remarked that he was “obsessed with the future.” His keen observations and sense of wonder, which have inspired generations here at the Institute and beyond, are powerful testaments to the freedom provided by the Institute to follow one’s future, wherever it may lead.

READ MORE>

By Pia de Jong

Punch cartoon inspired by seven-year-old Freeman Dyson
Immersed in Freeman Dyson’s World
 
In 1930, the British satirical magazine Punch published a cartoon of a boy, lying on his side on the lawn, reading a book on relativity. When asked where his sister is, he replies, “Somewhere in the absolute elsewhere.”

That boy was the seven-year-old Freeman Dyson. He did not understand why his father had sent his remark to Punch. It was after all technically correct. What was so funny about it?

Dyson grew up to be a world-famous mathematician, physicist, astronomer, and an elegant writer. For sixty years, he has worked at the Institute for Advanced Study. On December 15, he will be ninety. An elfin man with pointed ears and mischievous blue eyes, he still walks faithfully to his office every morning, invariably dressed as the British boarding school boy he once was—with a tweed jacket and tie.

To celebrate Dyson’s ninetieth birthday, a conference was held in his honor at the Institute. He himself gave it the title “Dreams of Earth and Sky.” The speakers, also all chosen by him, were just as exciting as the Jules Verne books he devoured as a child—until he realized that they lived only in science fiction.

Thus, I find myself immersed in his fascinating world. I hear the English Astronomer Royal, Martin Rees, talk about alternative universes. I see a map of the nearest stars where extraterrestrial life might really exist. Magic formulas, the interior of the Earth, climate change, nuclear disarmament, life on Mars—ideas that are often as controversial as those of Dyson himself. But also with an equally infectious enthusiasm about everything there is to discover. If I were a child, Dyson would be my hero, and I would want to be an astronomer. Happily, there are many children in the audience.

READ MORE>

By Siobhan Roberts

What lies beneath a structure with an unimaginable 196,883 dimensions?

In 1981, Freeman Dyson addressed a typically distinguished group of scholars gathered at the Institute for a colloquium, but speaking on a decidedly atypical subject: “Unfashionable Pursuits.”

The problems which we face as guardians of scientific progress are how to recognize the fruitful unfashionable idea, and how to support it.
   To begin with, we may look around at the world of mathematics and see whether we can identify unfashionable ideas which might later emerge as essential building blocks for the physics of the twenty-first century.*

He surveyed the history of science, alighting eventually upon the monster group—an exquisitely symmetrical entity within the realm of group theory, the mathematical study of symmetry. For much of the twentieth century, mathematicians worked to classify “finite simple groups”—the equivalent of elementary particles, the building blocks of all groups. The classification project ultimately collected all of the finite simple groups into eighteen families and twenty-six exceptional outliers. The monster was the last and largest of these exceptional or “sporadic” groups.

READ MORE>

Pages