School of Mathematics
'An Artificially Created Universe': The Electronic Computer Project at IAS
By George Dyson
![]() |
In this 1953 diagnostic photograph from the maintenance logs of the IAS Electronic Computer Project (ECP), a 32-by-32 array of charged spots––serving as working memory, not display––is visible on the face of a Williams cathode-ray memory tube. Starting in late 1945, John von Neumann, Professor in the School of Mathematics, and a group of engineers worked at the Institute to design, build, and program an electronic digital computer. |
I am thinking about something much more important than bombs. I am thinking about computers.––John von Neumann, 1946
Can the Continuum Hypothesis be Solved?
By Juliette Kennedy
![]() |
The continuum hypothesis was under discussion as an "undecidable statement" at the Princeton University Bicentennial Conference on "Problems of Mathematics" in 1946, the first major international gathering of mathematicians after World War II. Kurt Gödel is in the second row, fifth from left. |
In 1900, David Hilbert published a list of twenty-three open questions in mathematics, ten of which he presented at the International Congress of Mathematics in Paris that year. Hilbert had a good nose for asking mathematical questions as the ones on his list went on to lead very interesting mathematical lives. Many have been solved, but some have not been, and seem to be quite difficult. In both cases, some very deep mathematics has been developed along the way. The so-called Riemann hypothesis, for example, has withstood the attack of generations of mathematicians ever since 1900 (or earlier). But the effort to solve it has led to some beautiful mathematics. Hilbert’s fifth problem turned out to assert something that couldn’t be true, though with fine tuning the “right” question—that is, the question Hilbert should have asked—was both formulated and solved. There is certainly an art to asking a good question in mathematics.
The problem known as the continuum hypothesis has had perhaps the strangest fate of all. The very first problem on the list, it is simple to state: how many points on a line are there? Strangely enough, this simple question turns out to be deeply intertwined with most of the interesting open problems in set theory, a field of mathematics with a very general focus, so general that all other mathematics can be seen as part of it, a kind of foundation on which the house of mathematics rests. Most objects in mathematics are infinite, and set theory is indeed just a theory of the infinite.
The Geometry of Random Spaces
By Matthew Kahle
![]() |
Matthew Kahle, Member (2010-11) in the School of Mathematics, writes about his interest in thinking about what it might be like inside a black hole. This illustration (Figure 1.), from Kip Thorne's Black Holes and Time Warps: Einstein's Outrageous Legacy (W. W. Norton & Company, Inc., 1994), suggests a few probabilities. |
I sometimes like to think about what it might be like inside a black hole. What does that even mean? Is it really “like” anything inside a black hole? Nature keeps us from ever knowing. (Well, what we know for sure is that nature keeps us from knowing and coming back to tell anyone about it.) But mathematics and physics make some predictions.
John Wheeler suggested in the 1960s that inside a black hole the fabric of spacetime might be reduced to a kind of quantum foam. Kip Thorne described the idea in his book Black Holes & Time Warps as follows (see Figure 1).
“This random, probabilistic froth is the thing of which the singularity is made, and the froth is governed by the laws of quantum gravity. In the froth, space does not have any definite shape (that is, any definite curvature, or even any definite topology). Instead, space has various probabilities for this, that, or another curvature and topology. For example, inside the singularity there might be a 0.1 percent probability for the curvature and topology of space to have the form shown in (a), and a 0.4 percent probability for the form in (b), and a 0.02 percent probability for the form in (c), and so on.”
In other words, perhaps we cannot say exactly what the properties of spacetime are in the immediate vicinity of a singularity, but perhaps we could characterize their distribution. By way of analogy, if we know that we are going to flip a fair coin a thousand times, we have no idea whether any particular flip will turn up heads or tails. But we can say that on average, we should expect about five hundred heads. Moreover, if we did the experiment many times we should expect a bell-curve shape (i.e., a normal distribution), so it is very unlikely, for example, that we would see more than six hundred heads.
1948–1950: Snapshots
By Cécile DeWitt-Morette
![]() |
Cécile DeWitt-Morette with (from left to right) Isadore Singer, Freeman Dyson, and Raoul Bott at the Institute in the 1950s |
In Brief
It all began with a cable from Oppenheimer that I received on March 10, 1948, in Trondheim, Norway: ON THE RECOMMENDATION OF BOHR AND HEITLER I AM GLAD TO OFFER YOU MEMBERSHIP SCHOOL OF MATHEMATICS FOR THE ACADEMIC YEAR 1948 – 1949 WITH STIPEND OF $3500. ROBERT OPPENHEIMER.
I did not know that this was a great offer. I did not even know where Princeton was, but as a general rule, I would rather say “yes” than “no.” I was then on leave from the French Centre National de la Recherche Scientifique (CNRS), having been awarded a Rask-Oersted Fellowship for the academic year 1947–48 at the Nordiska Institutet för Teoretisk Fysik in Copenhagen.
In retrospect, I think that in the days of the Marshall plan, Oppie was looking for a couple of European young postdocs who would benefit from a year at the Institute. Did I benefit? More than I could ever have imagined.
During my two-year stay, 1948–50, Bryce DeWitt, a postdoc at the Institute, 1949–50, asked me to marry him, and I conceived the Les Houches Summer School as my self-imposed condition for marrying a “foreigner.” Thanks to Freeman Dyson and Richard Feynman, I learned about functional integration and am still fascinated by it.
The Fundamental Lemma: From Minor Irritant to Central Problem
![]() |
The simplest case of the fundamental lemma counts points with alternating signs at various distances from the center of a certain tree-like structure. As depicted in the above image by former Member Bill Casselman, it counts 1, 1–3=–2, 1–3+6=4, 1–3+6–12=–8, etc. But this case is deceptively simple, and Bao Châu Ngô’s final proof required a huge range of sophisticated mathematical tools. |
The proof of the fundamental lemma by Bao Châu Ngô that was confirmed last fall is based on the work of many mathematicians associated with the Institute for Advanced Study over the past thirty years. The fundamental lemma, a technical device that links automorphic representations of different groups, was formulated by Robert Langlands, Professor Emeritus in the School of Mathematics, and came out of a set of overarching and interconnected conjectures that link number theory and representation theory, collectively known as the Langlands program. The proof of the fundamental lemma, which resisted all attempts for nearly three decades, firmly establishes many theorems that had assumed it and paves the way for progress in understanding underlying mathematical structures and possible connections to physics.
The simplest case of the fundamental lemma counts points with alternating signs at various distances from the center of a certain tree-like structure. As depicted in the above image by former Member Bill Casselman, it counts 1, 1–3=–2, 1–3+6=4, 1–3+6–12=–8, etc. But this case is deceptively simple, and Ngô’s final proof required a huge range of sophisticated mathematical tools.
The story of the fundamental lemma, its proof, and the deep insights it provides into diverse fields from number theory and algebraic geometry to theoretical physics is a striking example of how mathematicians work at the Institute and demonstrates a belief in the unity of mathematics that extends back to Hermann Weyl, one of the first Professors at the Institute. This interdisciplinary tradition has changed the course of the subject, leading to profound discoveries in many different mathematical fields, and forms the basis of the School’s interaction with the School of Natural Sciences, which has led to the use of ideas from physics, such as gauge fields and strings, in solving problems in geometry and topology and the use of ideas from algebraic and differential geometry in theoretical physics.







