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1. Introduction

The alocation of resources is an al-pervasive theme in economics. And, | think it isno
exaggeration to say that the question of whether there exist mechanisms ensuring efficient allocation--
i.e., mechanisms that ensure that resources wind up in the hands of those who value them most--is of
central importance in the discipline. Indeed, the very word “economics’ connotes a preoccupation
with the issue of efficiency.

But economists interest in efficiency does not end with the question of existence. If efficient
mechanisms can be constructed, we want to know what they look like and to what extent they might
resemble institutions used in practice.

Understandably, the question of what will constitute an efficient mechanism has been a magjor
concern of economic theorists going back to Adam Smith. But the issueis far from just a theoretical
one. Itisaso of considerable practica importance. Thisis particularly clear when it comes to
privatization, the transfer of assets from the state to the private sector.

In the last fifteen years or so, we have seen aremarkable flurry of privatizations in Eastern
Europe, the former Soviet Union, China, and highly industrialized Western nations such as the United
States, the United Kingdom, and Germany. An important justification for these transfers has been the
expectation that they will improve efficiency. But if efficiency is the rationale, an obvious leading
question to ask is: “What sorts of transfer mechanisms will best advance this objective?’

One possible and, of course, familiar answer is“The Market.” We know from the First
Theorem of Welfare Economics (see Debreu (1959)) that, under certain conditions, the competitive
mechanism (the uninhibited exchange and production of goods by buyers and sellers) resultsin an
efficient allocation. A magjor constraint on the applicability of this result to the circumstances of
privatization, however, is the theorem’s hypothesis of large numbers. For the competitive mechanism

to work properly--to avoid the exercise of monopoly power--there must be sufficiently many buyers



and sdllers so that no single agent has an appreciable effect on prices. But privatization often entails
small numbers. In the recent U.S. “ spectrum” auctions--the auctions in which the government sold
rights (in the form of licenses) to use certain radio frequency bands for telecommunications--there
were often only two or three serious bidders for agiven license. The competitive model does not
seem readily applicable to such a setting.

An interesting alternative possibility was raised by William Vickrey forty years ago (Vickrey
(1961)). Vickrey showed that, if a seller has a single indivisible good for sale, a second-price auction
(see Section 2) is an efficient mechanism—i.e., the winner is the buyer whose valuation of the good is
highest—in the case where buyers have private values (“ private values’ mean that no buyer’s private
information affects any other buyer’s valuation). Thisfinding is rendered even more significant by
the fact that it can readily be extended to the sale of multiple goods®, as shown by Theodore Groves
(Groves (1973)) and Edward Clarke (Clarke (1971)).

Unfortunately, once the assumption of private values is dropped and thus buyers' valuations
do depend on other buyers information (i.e., we are in the world of common? or interdependent
values), the second-price auction is no longer efficient, as | will illustrate by means of an example
below. Yet, the common-values case is the norm in practice. |If, say, atelecommunications firm
undertakes a market survey to forecast demand for cell phonesin a given region, the results of the
survey will surely be of interest to its competitors and thus turn the situation into one of common
values.

Recently, aliterature has developed on the design of efficient auctions in common-values
settings. Thetime is not yet ripe for a survey; the areais currently evolving too rapidly for that. But |

would like to take this opportunity to discuss afew of the ideas from this literature.

1 Vickrey himself also treated the case of multiple units of the same good.



2. TheBasic Model
Because it is particularly simple, | will begin with the case of asingleindivisible good. Later
I will argue that much (but not al) of what holds in the one-good case extends to multiple goods.
Suppose that there are n potential buyers. It will be simplest to assume that they are risk-
neutral (however, we can accommodate any other attitude toward risk if the model is specialized to
the case in which there is no residual uncertainty about valuations when all buyers' information is
pooled). Assume that each buyer i’ s private information about the good can be summarized by areal-

valued signal. That is, buyer i’s information is reduceable to a one-dimensional parameter®
Formally, suppose that each buyer i’ssgnd s liesin aninterva Lsi S ] Thejoint prior distribution
of (s;,...,s,) isgiven by thec.d.f. F(s,,...,s, ). Buyer i'svaluation for the good (i.e., the most he

would be willing to pay for it) is given by the function v; (sl,...,sn ) | shall suppose (with little loss

of generality) that higher vaues of s correspond to higher valuations, i.e.,

Vo @

Let us examine two illustrations of this model.

Example 1: Suppose that

2| am using “common values’ in the broad sense to cover any instance where one agent’ s payoff depends on
another’ sinformation. Theterm is sometimes used narrowly to mean that all agents share the same payoff.

3 Later on | will examine the case of multidimensiona signals. Aswith multiple goods, much will
generdize. Aswe will see, the most problematic case is that in which there are both multiple goods
and multidimensiona signals.



In this case, we are in the world of private values, not the interesting setting from the perspective of

this lecture, but avalid special case.

A more pertinent exampleis:

Example 2: Suppose that the true value of the good to buyer i isy;, which, in turn, is the sum of a

value component that is common to al buyers and a component that is peculiar to buyer i. That is,

Yi =2+,

where z isthe common component and z is buyer i’s idiosyncratic component. Suppose, however,

that buyer i does not actually observey;, but only anoisy signa
S =Y te, @
where e isthe noise term, and al the random variables-- z, the z’s, and the e’ s-are independent. In

this case every buyer j’ssigna s provides information to buyer i about his valuation, because s is

correlated (via (2) ) with the common component z. Hence we can express V. (Sl, cony 51) as

Vi(spon80) = Elyi 11080, 3

where the right-hand side of (3) denotes the expectation of y; conditional on the signals (s1 peees sn) .



This second example might be kept in mind as representative of the sort of scenario that the analysis

is intended to apply to.

3. Auctions

An auction in the model of Section 2 is a mechanism (dternatively termed a “game form” or
“outcome function™) that, on the basis of the bids submitted, determines (i) who wins (i.e., who--if
anyone--is awarded the good), and (ii) how much each buyer pays'. Let uscall an auction efficient

provided that, in equilibrium, buyer i isthe winner if and only if

Vi(sy,.e08y) maxv(sy,....s,) 4

jri

(this definition is dightly inaccurate because of the possibility of ties for highest valuation, an issue
that | shall ignore). In other words, efficiency demands that, in an equilibrium of the auction, the

winner be the buyer with the highest valuation, conditional on all available information (i.e., on al

buyers signals).

This notion of efficiency is sometimes called ex-post efficiency. It assumesimplicitly that
the social value of the good being sold equals the maximum of the potential buyers’ individual
valuations. This assumption would be justified if, for example, each buyer used the good (e.g., a
spectrum license) to produce an output (e.g., telecommunication service) that is sold in a competitive
market without significant externalities (market power or externalities might drive a wedge between

individual and social values).

* For some purposes—e.g., dealing with risk-averse buyers (see Maskin and Riley (1984)) or liquidity
constraints (see Che and Gale (1996) or Maskin (2000) or allocative externalities (see Jehiel and Moldovanu
1998))—one must consider auctions in which buyers other than the winner also make payments. In thislecture,
however, | will not have to deal with this possibility.



The reader may wonder why, even if one wants efficiency, it is necessary to insgst that the
auction itself be efficient. After all, the buyers could always retrade afterwards if the auction resulted
in awinner with less than the highest valuation. The problem with relying on post-auction trade,
however, is much the same as that plaguing competitive exchange in the first place: these
mechanisms do not in general work efficiently when there are only afew traders. To seethis,

consider the following example®:

Example 3: Suppose that there are two buyers. Assume that buyer 1 has won the auction and has a
valuation of 1. If the auction is not guaranteed to be efficient, then there is some chance that buyer
2'svaluation is higher. Suppose that, from buyer 1's perspective, buyer 2's valuation is distributed
uniformly in theinterval [0,2]. Now, if there isto be further trade after the auction, someone hasto
initiate it. Let us assume that buyer 1 does so by proposing a trading price to buyer 2. Presumably,
buyer 1 will propose apricep’ that maximizes his expected payoff, i.e., that solves

mg%(Z- p)(p- 1) . )

(To understand (*) note that 1 (- p) is the probability that the proposal is accepted—since it is the
2

probability that buyer 2'svauation is at least p—and that p- 1 isbuyer 1's net gain in the event of
acceptance.)) But the solutionto (*) is p” = g Hence, if buyer 2’'svaluation lies between 1 and ;

the allocation, even after allowing for ex-post trade, will remain inefficient, since buyer 2 will reject

1's proposdl.

I will first look at efficiency in the second-price auction. This auction form (often called the

Vickrey auction) has the following rules: (i) each bidder i makes a (sealed) bid b;, whichisa

® In this example, buyers have private values, but, asFieseler, Kittsteiner, and Moldovanu (2000) show, resale



nonnegative number; (ii) the winner is the bidder who has made the highest bid (again ignoring the

issue of ties); (iii) the winner pays the second-highest bid, max b;- Asl have aready noted and will
jr

illustrate explicitly below, this auction can readily be extended to multiple goods.

The Vickrey auction is efficient in the case of private values’. To see this, note first that it is
optimal--in fact, a dominant strategy--for buyer i to set b =v;, i.e,, to bid histrue valuation. In
particular, bidding below v; does not affect buyer i’s payment if he wins (since his bid does not
depend on his own bid); it just reduces his chance of winning—and so is not agood strategy. Bidding
above v; raises buyer i’ s probability of winning, but the additiona eventsin which he wins are
precisely those in which someone else has bid higher than v;. In such events buyer i pays more than
Vi, also not adesirable outcome. Thusit isindeed optima to bid b; =v;, which implies that the winner
is the buyer with the highest valuation, the criterion for efficiency.

Unfortunately, the Vickrey auction does not remain efficient once we depart from private

values. To see this, consider the following example.

Example 4: Suppose that there are three buyers with valuation-functions

i(s5.5.8) =8 +25, +2,
3723

_ 1 2
Vo(S,5,,85) =5, +=5 =5,
3 3
Vs(s1,8;,85) = 8.
Notice that buyers 1 and 2 have common values, i.e., their vauations do not depend only on their own

signals. Assume that it happens that s; =s,=1 (of course, buyers 1 and 2 would not know that their

can become even more problematic when there are common values.

6 Itiseasy to show that the “first-price” auction—the auction in which each buyer makes a bid, the high bidder
wins, and the winner pays his bid—is anonstarter as far as efficiency is concerned. Indeed, even in the case of
private values, the first-price auction is never efficient except when buyers' valuations are symmetrically
distributed (see Maskin (1992)).



signa vaues are equal, since signals are private information), and suppose that buyer 3's signa value

is either dightly below or dightly above 1. In the former case, it is easy to see that

V) >V, >V,
and so, for efficiency, buyer 1 ought to win. However, in the latter case

V, >V, >V,
and so buyer 2 is the efficient winner. Thus the efficient alocation between buyers 1 and 2 turns on
whether s is below or above 1. But in a Vickrey auction, the bids made by buyers 1 and 2 cannot
incorporate information about s; since that signal is private information to buyer 3. Thus the outcome
of the auction cannot in general be efficient.

4. An Efficient Auction
How should we respond to the shortcomings of the Vickrey auction as illustrated by Example 3?

One possible reaction is to appeal to classical mechanism-design theory. Specificaly, we could have
each buyer i announce a signal value §, award the good to the buyer i for whom v, (§1§n) is
highest, and choose the winner's payment so as to evoke truth-telling in buyers, i.e., so as to induce
each buyer j to set §j equal to histrue signal value S;.

The problem with such a “direct revelation” mechanism is that it is utterly unworkable in

practice. In particular, notice that it requires the mechanism designer to know the physical signal
spaces y,...,S,, the functiond forms v, (>) and the prior distributions of the signals-an

extraordinarily demanding constraint. Now, the mechanism designer could attempt to elicit this
information from the buyers themselves using the methods of the implementation literature (see
Palfrey (1993)). For example, to learn the signal spaces, he could have each buyer announce a
vector (él S, )and assign suitable pendlties if the announcements did not match up appropriately.

A magor difficulty with such a scheme, however, is that in al likelihood the signa spaces S are

themselves private information. For analytic purposes, we model § as smply an interval of numbers.



But, this abstracts from the redlity that buyer i’s signal corresponds to some physical entity--whatever
itisthat buyer i observes. Indeed, the signa may well be a sufficient statistic for data from a variety
of different informational sources. And there is no reason why other buyers should know just what
this array of sourcesis.

To avoid these complications, | shall concentrate on auction rules that do not make use of such
details as signal spaces, functional forms, and distributions. Indeed, | will be interested in auctions
that work well irrespective of these details, that is, | will adhere to the “Wilson Doctring” (after
Robert Wilson, who has been an eloquent proponent of the view that auction institutions should be
“detail-freg”). It turns out that a judicious modification of the Vickrey auction will do the trick.

Before turning to the modification, however, | need to introduce a restriction on valuation

functions that is critical to the possibility of constructing efficient auctions. Let us assume that

fordliand j2iandal(s,...,s,)

. v,
Vi(sy,.80)=vi(s...8,) P M(sl,...,sn)> L(s,....s,).” ®)

Iis; ﬂ_5|

In words, condition (5) says that buyer i’'s signal has a greater marginal effect on his own valuation

than on that of any other buyer | (at least a points where buyer i’ sand buyer j’ s valuations are equd).

Notice that, in view of (1), condition (5)° is automatically satisfied by Example 1 (the case of

private values): the right-hand side of the inequdity then simply vanishes. Condition (5) aso holds

for Example 2. Thisis because, in that example, s conveys relevant information to buyer j(* i) about

the common component z but tells buyer i not only about z but aso his idiosyncratic component z.
Thus, v; will be more sensitive than v; to variationsin s.

But whether or not condition (5) is likely to be satisfied, it is, in any event, essentid for

efficiency. To see what can go wrong without it, consider the following example.

" This condition was introduced by Gresik (1991).



Example5: Suppose that the owner of atract of land wishes to sdll off the rights to drill for oil on her
property. There are two potential drillers who are competing for this right. Driller 1's fixed cost of
drilling is 1, whereas his marginal cost is2. In contrast, driller 2 has fixed and margina cost of 2 and
1, respectively. Assume that driller 1 observes how much ail is

underground. That is, s; equals the quantity of oil. Driller 2 obtains no private information. Then if

the price of ail is 4 we have

v(s)=(4- 2)s-1=25,- 1
Vo(s)=(4- s - 2=35 - 2

Observe that y(s) >v,(s) if and only if s,<1. Thus, for efficiency, driller 1 should be awarded drilling
rights provided that _;<g_ <1(fors <%, there is not enough ail to justify drilling at al). Driller 2, by

contrast, should get the rightswhen s; > 1.
In this example, there is no way (either through a modified Vickrey auction or otherwise) of

inducing driller 1 to reveal the true value s, in order to alocate drilling rights efficiently. To see this,

consider, without loss of generaity, a direct revelation mechanism and let tl(él) be a monetary

transfer (possibly negative) to driller 1 if he announces signal value §. Let sfand st be signal

values such that

S<spelcs ©®

Then for driller 1 to have the incentive to announce truthfully when s, =s{, we must have

ty(sf)® 2s¢- 1+1,(sf) ™

8 Notice that the strictness of the inequality in (5) rules out the case of “pure common values,” where all buyers
share the same valuation. However, in that case, the issue of who wins does not matter for efficiency.

10



(the left-hand side is his payoff when he is truthful, whereas the right-hand side is his payoff when he

pretendsthat § =Sf). Similarly, the incentive-constraint correspondingto S; = Sf is

2sf - 1+t,(sf)® t;(sk). ®)
Subtracting (8) from (7), we obtain
2(sf- sf)® 0,
acontradiction of (6). Hence there exists no efficient mechanism.
The feature that interferes with efficiency in this example is the violation of condition (5),
i.e., the fact that

V. V.
<—ﬂ 1<—ﬂ 2

0 .
s, Ts

©)

Inequalities (1) and (9) imply that, as s, rises, drilling rights become more valuable to driller 1 but
increasingly more likely, from the standpoint of efficiency, to be awarded to driller 2. This conflict

makes the task of providing proper incentives for driller 1 impossible.

Assuming henceforth that (5) holds, let us reconfront the task of designing an efficient
auction. In Example 4 we saw that the Vickrey auction failed because buyers 1 and 2 could not
incorporate pertinent information about buyer 3 in their bids (sihce s; was private information). This
suggests that, as in Dasgupta and Maskin (2000), a natural way of amending the Vickrey auction
would be to alow buyers to make contingent bids—bids that depend on other buyers valuations. In
Example 4, this would enable buyer 1 to say, in effect, “I don't know what buyer 3's valuation is, but
if it turns out to be x, then | want to bid y.”

Let us examine how contingent bidding would work in the case of two buyers. Buyer 1

would announce a schedule p, (), where, for al possible values v,,

b,(v,) = buyer 1's bid if buyer 2 has valuation v,.

11



Similarly, buyer 2 would announce a schedule 62(9, where
b, (v, ) = buyer 2'shid if buyer 1's valuation is v,.
We would then look for a fixed point
(ve.v8) = (.(v9).B, ). (10
and
install buyer 1 asthe winner if and only if v, >vy. (11)
To understand the rationale for (10) and (11), imagine that buyers bid truthfully. Since

signals are private information and thus buyer 1 will not in general know his own vauation, truthful

bidding means that, if his signd value is s, he submits a schedule b, (¥ = b, (¥ such that
b, (v(51,85)) = Vi (s, 85) for dll 5§ ° (12
That is, whatever s§ (and hence v,,) turns out to be, buyer 1 bids his true valuation for that signal

vaue. Similarly, truthful bidding for buyer 2 with signal vaue s, means reporting schedule
62(>) =h, (¥ such that

b, (v (5£,5,)) =V, (st.s,) for all sf. (13
Observe that if buyers bid according to (12) and (13), then the true valuations
(V(s1,9). V2 (51,8))
constitute a fixed point in the sense of (10).*°
In view of (10) and (11), this means that if buyers are truthful, the auction will result in an

efficient allocation. Thus, the remaining critical issue is how to get buyers to bid truthfully. For this

% | noted in my arguments against direct revelation mechanisms that buyer 1 most likely will not know buyer 2's
signal space S;. But thisin no way should prevent him from understanding how his own valuation isrelated to
that of buyer 2, which iswhat (12) isrealy expressing (i.e., (12) still makes sense even if buyer 1 does not
know what values s§ can take).

10 Without further assumptions on valuation functions, there could be additional—non-truthful—fixed points.
Dasgupta and Maskin (2000) and Eso and Maskin (2000a) provide conditions to rule such fixed points out. But
even if they are not ruled out, the auction rules can be modified so that, in equilibrium, the truthful fixed point
results (see Dasgupta and Maskin (2000)).



purpose, it is useful to recal the device that the Vickrey auction exploits to induce truthful bidding,
viz., to make the winner's payment equal, not to his own bid, but to the lowest possible bid he could
have made and still have won the auction.

This trick cannot be exactly replicated in our setting because buyers are submitting schedules

rather than single bids. But let ustry to take it as far as it will go. Suppose that when buyers repeat
the schedules (B, (), b, (3). the resuiting fixed point (2, v2 ) satisfies

vy > Vs,
Then according to our rules, buyer 1 should win. But rather than having him pay v;°, we will have

buyer 1 pay \.{, where

v, =D, (v} ) (14)

This payment rule, | maintain, is the common-values analog of the Vickrey trick in the sense that
VI isthe lowest constant bid (i.e., the lowest uncontingent bid) that buyer 1 could make and till win

(or tie for winning) given buyer 2's bid @(% The corresponding payment rule for buyer 2 should he
winisv, such that
v, =hi{v;). (15)
| clam that, given the payment rules (14) and (15), it is an equilibrium for buyers to bid

truthfully. To see this most easily, let us make use of a strengthened version of (5):

m > M (16)
s s

Let us suppose that buyer 2 is truthful, i.e., he bids b,(") satisfying (13). | must show that it is optimal
for buyer 1to bid b, (3 satisfying (12).

Notice first that if buyer 1 wins, his payoff is

W(s.5,)- Vi where v; =b, ;). )

13



regardiess of how he bids (since neither his valuation nor his payment depends on his bid). | clam
that if buyer 1 bids truthfully, then he wins if and only if (17) is positive. Observe that if thisclaim is
established, then | will in fact have shown that truthful bidding is optimal; because buyer 1's bid does
not affect (17), the most he can possibly hope for is to win precisely in those cases where the net
payoff from winning is positive.

To seethat the claim holds, let usfirst differentiate (13) with respect to sf to obtain

db
d—\:(Vl(SF, SZ))% (sts,) = %(sﬁ s,) for dl sf.

This identity, together with (1) and (16), implies that

%(vl) <1,for dl v;. (18)

Vi

But from (18), (17) is pogtive if and only if

» _ db R
Wl s:)- vi > 22 (5.5 - v Jfor all v (19

1

Now, from the intermediate value theorem, there exists Vg1 [v;,V; (S, S,)] such that

bz(V1(5_Lasz))' b, (VI): %(Vﬂ?)(vl(sl,sz) - VI)

1

Hence (17) is positive if and only if

Vi(s1,5,) - v >by((s1,5,))- by ). 0
which, since v; = b, (vl ) is equivalent to

Vi(81,S;) > Vo (81, S,)- 1)

Now suppose that buyer 1 is truthful. Because (v,(S;,S,),V,(S;,S,)) is then afixed point, 1 wins if

and only if (21) holds. So we can conclude that, when buyer 1 is truthful, his net payoff from

14



winning is positive (i.e., (17) is positive) if and only if he wins, which iswhat | claimed. That is, the
modified Vickrey auction is efficient.
An attractive feature of the Vickrey auction in the case of private values is that bidding one's

true vauation is optimal regardless of the behavior of other buyers, i.e., it is a dominant strategy.

Once we abandon private values, however, there is no hope of finding an efficient mechanism with
dominant strategies (this is because, if my payoff depends on your signal, then my optima strategy
necessarily depends on the way that your strategy reflects your signal value, and so is not independent
of what you do). Nevertheless, equilibrium in our modified Vickery auction has a strong robustness
property. In particular, notice that athough, technically, truthful bidding constitutes only a Bayesian
(rather than dominant-strategy) equilibrium, equilibrium strategies are independent of the prior
distribution of signals F. That is, regardiess of buyers prior beliefs about signals, they will behave
the same way in equilibrium. In particular, this means that the modified Vickrey auction will be
efficient even in the case in which buyers signals are believed to be independent of one another.**
One might complain that having a buyer make his bid a function of the other buyer's
valuation imposes a heavy informational burden on him—what if he doesn’t know anything about the
connection between the other’s vauation and his own? | would argue, however, that the modified
Vickrey auction should be viewed as giving buyers an additional opportunity rather than as setting an
onerous requirement. After al, the degree to which a buyer makes his bid contingent is entirely up to
him. In particular, he always has the option of bidding entirely uncontingently, i.e., of submitting a
constant function. Thus, contingency is optional (but, of course, the degree to which the modified
Vickrey auction will be more efficient than the ordinary Vickrey will turn on the extent to which

buyers are prepared to bid contingently).

1 Crémer and McLean (1988) exhibit a mechanism that attains efficiency if the joint distribution of signalsis
common knowledge (including to the auction designer) and exhibits correlation. In very recent work A.
Postlewaite has shown how this mechanism can be generalized to the case where the auction designer himself
does not know the joint distribution.

15



| have explicitly illustrated how the modified Vickrey auction works only in the case of two
bidders, but the logic extends immediately to larger numbers. For the case of n buyers the rules

become:
i) each buyer i submits a contingent bid schedule Bi (¥, which is a function of v;, the vector of

valuations excluding that of buyer i;
i) the auctioneer computes a fixed point (vf oo vr‘,’) wherev® =b (V%) forll i;
i) the winner is the buyer i for whom v 2 v{ foral j* i;
iv)  thewinner pays max Bj (V.;) where fordl j i, v; sdtisfies V] :6j (V).

jri
Under conditions (1) and (5), an argument similar to the two-buyer demonstration above establishes
that it is an equilibrium in this auction for each buyer to bid truthfully (see Dasgupta and Maskin
(2000))™*. That is, if buyer i’ssigna valueis s, he should set Bi (3 =b (Jsuch that
bi(v.; (s.54)) = vi(s;, s ) for al s¢,.* (22)

Furthermore, it is easy to see that, if buyers bid truthfully, the auction results in an efficient alocation.

One drawback of the modified Vickrey auction that | have exhibited is that a buyer must
report quite a bit of information (this is an issue distinct from that of the buyer’s having to know a
great dedl, discussed above)--a bid for each possible vector of valuations that others may have. Perry

and Reny (1999a) have devised an dternative modification of the Vickrey auction that considerably

reduces the complexity of the buyer’s report.

12 The reader may wonder whether, when (5) is not satisfied and so an efficient auction may not be possible, the
efficiency of thefinal outcome could be enhanced by allowing buyersto retrade after the auction is over.
However, any post-auction trading episode could alternatively be viewed as part of a single mechanism that
embraces both it and the auction proper. That is, in our search for efficient auctions, we need not consider post-
auction trade since such activity could always be folded into the auction itself. Indeed, permitting post-auction
trade can, in principle interfere with efficiency in the same way that renegotiation can interfere with the
efficiency of acontract (see Dewatripont (1989)).

131t is conceivable—although unlikely—that for a given vector v;; there could exist two different signal vectors
s¢ and s@ suchthaty (Si s ) =V (Si , s ): v_; but v, (Si , 8§ )1 Vi (Si .4 ) in which case (22)
isnot well defined. To see how to handle that possibility see Dasgupta and Maskin (2000).

16



Specificaly, the Perry-Reny auction consists of two rounds of bidding. This means that a
buyer can make his second-round bid depend on whatever he learned about other buyers valuations

from their first-round bids, and so the auction avoids the need to report bid schedules. In the first

round, each buyer i submitsabid b 3 0. In the second round each buyer i submits abid b/; for each

buyer j 1 i. If some buyer submits a bid of zero in the first round, then the Vickrey rules apply: the
winner is the high bidder, and he pays the second-highest bid. If al first-round bids are strictly

positive, then the second-round bids determine the outcome. In particular, if there exists a buyer i

such that

bi 2 bl forall j* i -

then buyer i wins and pays max bij . If there exists no i satisfying (23), then the good is alocated at

i
random.

Perry and Reny show that, under assumption (1) and (5) and provided that the probability a
buyer has a zero vauation is zero, there exists an efficient equilibrium of this auction. They aso
demondtrate that the auction can be readily extended to the case in which multiple identical goods are
sold, provided that a buyer’s marginal utility from additional units is declining.

5. The English Auction

The reader may wonder why, in my discussion of efficiency, | have not brought up
the English auction, the familiar open format in which (i) buyers cal out bids publicly (with the
proviso that each successive bid exceed the one before), (ii) the winner is the last buyer to make a bid,
and (iii) the winner pays his bid. After al, the opportunity to observe other buyers bids in the
English auction would seem to alow a buyer to make a conditiona bid in the same way that the
modified Vickrey auction does.

However, as shown in Maskin (1992), Eso and Maskin (2000b) and Krishna (2000), the

English auction is not efficient in as wide a class of cases as the modified Vickrey auction. To see
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this, let us consider a variant of the English auction, sometimes called the “Japanese’ auction (see
Milgrom and Weber (1982)), which is particularly convenient anaytically:

(1) al buyers areinitidly in the auction;

(i) the auctioneer raises the price continuoudly starting from zero;

(iii) abuyer can drop out (publicly) at any time;

(iv) the last buyer remaining wins;

(v) the winner pays the price prevailing when the penultimate buyer dropped out.

Now, in this auction, a buyer can indeed condition his drop-out point according to when other buyers
have dropped out, allowing bids in effect to be conditional on other buyers' vauations. However, a
buyer can condition only on buyers who have already dropped out. Thus, for efficiency, buyers must
drop out in the “right” order in the equilibrium. That this might not happen is illustrated by the

following example from Eso and Maskin (20008a):

Example6: Suppose there are two buyers, where

Vi(s1,S,) =2+s; - 25,
and

Voi(S1,$) =2+s, - 25
and s; and s, are distributed uniformly on [0,1]. Notice first that conditions (1) and (5) hold, so that
the modified Vickrey auction results in a efficient equilibrium alocation. Indeed, buyers' equilibrium

contingent bids are
by(v,)=6- 35, - 2v,
and
b,(v;)=6- 35, - 2v,.
Now, consider the English auction. For i=1,2 let pi(s) be the price at which buyer i drops out if his

signd valueiss. If the English auction were efficient, then we would have
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s>sif and only if py(s;)> py(s,). (W)
Hence,
if 5=, =s then py(s)) = p(s,) (ww)
But from (w) and (ww), pi(st+)s) > pi (s) and so
P (>) isdrictly increasing in s. (Www)
Thus,
pi(s) = wi(s.s)
and
P () =va(s.s)
(if vl(s, s) > pl(s), then buyer 1 drops out before the price reaches his valuation and so would do
better to stay in a hit longer; if vl(s, s) < pl(s), then buyer 1 stays in for prices above his valuation,
and so would do better to drop out earlier). But,
vi(ss)=2+s- 2s=2- s,
which is decreasing in s, violating our finding that p,() is increasing. In short, efficiency demands
that a buyer with a lower signa value drop out first. But if buyer i's signa vaue is s, he has the
incentive to drop out when the price equals Vl(S, S), and this function is decreasing in s. So, in

equilibrium buyers will not drop out in the right order. We conclude that the English auction does not

have an efficient equilibrium in this example.

In Example 6 each buyer's valuation is decreasing in the other buyer's signd. Indeed, this
feature is important: as Maskin (1992) shows, the English auction is efficient in the case n=2 when
valuations are nondecreasing functions of signals (and conditions (1) and (5) hold). However,
examples due to Perry and Reny (1999b), Krishna (2000), and Eso and Maskin (2000b) demonstrate

that this result does not extend to more than two buyers. Nevertheless, Krishna (2000) provides some
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interesting conditions (considerably stronger than the juxtaposition of (1) and (5)) under which the
English auction is efficient with three or more buyers (see also Eso and Maskin (2000b)). Moreover,
the Perry and Reny paper shows that the English auction can be modified (in away anaogous to their
(1999b) alteration of the Vickrey auction) that renders it efficient under the same conditions as the
modified Vickrey auction. In fact, this modified English auction extends to multiple (identical) units,
as long as buyers marginal valuations are decreasing in the number of units consumed (in the
multiunit case, the Perry-Reny auction is actually a modification of the Ausubel (1997) generdization

of the English auction).

6. Multiple Goods

In the same way that the ordinary Vickrey auction extends to multiple goods via the Groves-
Clarke mechanism, so our modified Vickrey auction can be extended to handle more than one good.
It is smplest to consider the case of two buyers, 1 and 2, and two goods, A and B. If there were
private values, the pertinent information about buyer i would consist of three numbers,
Via: Vig, @d V5 --his valuations, respectively, for good A, good B, and and both goods together.
Efficiency would then mean alocating the goods to maximize the sum of valuations. For example, it
would be efficient to allocate both goods to buyer 1 provided that

Viag ® maX{VlA +Vop,Vig +V2A’V2AB}'

The Groves-Clarke mechanism is the natural generalization of the Vickrey auction to a multi-
good setting.  In this mechanism, buyers submit vauations (in our two-good, private-vaues mode,
each buyer i submits V;,,V;5,and V;,5); the goods are alocated in the way that maximizes the sum
of the submitted valuations; and each buyer makes a payment equal to his marginal impact on the
other buyers (as measured by their submitted valuations). Thus, in the private-values model, if buyer

lisallocated good A, then he should pay

Vang - Vo, (24
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since V,,5 Would be buyer 2's payoff were buyer 1 absent, V,g is his payoff given buyer 1's
presence, and so the difference between the two—i.e., (24)-- is buyer 1's margind effect on buyer 2.

Given private vaues, bidding on€e's true valuation is a dominant strategy in the Vickrey
auction and the same is true in the Groves-Clarke mechanism. Hence, in view of its alocative rule,
the mechanism is efficient in the case of private values. But, as with the Vickrey auction, the Groves-
Clarke mechanism is not efficient when there are common vaues. Hence, | shal examine a
modification of Groves-Clarke anaogous to that for Vickrey.

As in the one-good case, assume that each buyer i (i=1,2) observes a private rea-vaued

sgnd s. Buyer i’ svaluations are functions of the two signals:

Via(S1: $): Vig (S1:S2), Viag(St: Sz)-

The appropriate counterpart to condition (1) is the requirement that if H and H ¢ are two bundles of

goods for which, given (slsz) buyer i prefers H, then the intensity of that preference rises with 5.

That is, for al i=1,2 and for any two bundles H,H (=f | A/ B, AB

Vin (81:S;) - VinS1,S;) > 0P ﬂiS(ViH (51,5,) - Vine(S1,S,))> 0. (25)

Notice that if, in particular, H = Aand H(=f, then (25) just reduces to the requirement that if
Via .
Via(s, S;) >0, then K(Sl’ s,) >0, i.e, to ().

Similarly, the proper generdization of (5) is the requirement that if, for given signa vaues, two
alocations of goods are equaly efficient (i.e., give rise to the same sum of vauations), then an

increasein s leads the dlocation that buyer i prefers to become the more efficient. That is, for al

i =1,2, and any two dlocations (Hl, H 2),(H{, Hg),
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2 2
if éleHj (s,8;) = élijT (s,82) ad vy, (51, Sy) > Vipe(S1:S,),
i= i=
(26)

2
o

then 1 > L 1 2
s | Ts &ViH] (s.s,) aV,Hf(sl S)-

Notice that, if just one good A were being alocated and the two alocations were
(H, H,) =(Af )ad (H{, H$)=(f , A), then, when i=1, condition (26) would reduce to the

requirement

i Via(S1S) =Voa(S),Sy) and via(sy,s;) >0,

2
ﬂ“‘(slsz)>ﬂz’*(slsz) @)

which isjust (5).
An auction is efficient in this setting if, for al (S;, S, ), the equilibrium allocation (Hf H g)

olves

max &y, (5,5,)

Hy,Hz )i=1

Under assumptions (25) and (26), the following rules congtitute an efficient auction:

(i) buyer i submits schedulesb, (3,6, (3, b, 5 (3, wherefor dll H=AB,AB andal v,

By (v, ) = buyer i*shid for Hif buyer j's(j * i)
valuations arev; :(vjA,va,vjAB);

(ii) the auctioneer computes a fixed point (vf,vg) such that, for all i and H,

v =by () ;

(iif) goods are divided according to allocation (H?,H ), where



2
(He HS)=arg max Ave,;
H1,H2)i=l '

(iv) suppose that buyer 1 isalocated good A (i.e., H = A); if () there exists v; such that

Via t 628 (Vi ) = 6ZAB (VI ), (28)
then buyer 1 pays

62AB(VI ) - 623 (VI ); (29
if instead of (28), (b) there exist V; (with 0;, <’y )and v, such that

Via + 625 (\71) =g + BZA(\,};)

and

then buyer 1 pays

(BZA (\71 ) - 628 (\7; )) + (62 AB (VI* ) - BZA (VI* )) (30)

(v) if buyer 1 isalocated good B, then his payment is completely andogousto that of (iv);
(vi) if buyer 1 is alocated goods A and B, then see the Appendix for his payment;
(vii) buyer 2's payments are completely analogous to those of buyer 1.

Rules (i)-(iii) so closaly mirror rules (i)-(iii) of the modified Vickrey auction in section 4 that
they do not require further comment. Let us, therefore, focus onrule (iv). If A werethe only good
being allocated, then to compute buyer 1's payment, we would reduce v, , from v;, to the point VI A

whereit is no longer uniquely efficient to alocate buyer 1 good A (i.e., it becomes equally efficient to

allocate A to buyer 2) and have him pay his marginal impact at vi on buyer 2: the difference between

buyer 2's payoff from getting A and that from getting nothing:

BZA(VIA)' 0= BZA(VIA)’
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which is payment rule (14). Using this same principle in the two-good setting, let us reduce

v, 5 from v7, to the first point where it is no longer uniquely efficient to alocate A to buyer 1 and B

to buyer 2. There are two possible cases. In case (a), at this first switching point it becomes efficient
to allocate both goods to buyer 2. Let us denote the switching point in this case by VIA (choose
Vjg ad v, g to conformwith vj,, i.€.,, choose them so that v, = (VIA,VIB ,VIAB) lies in the domain
of (62A (>),6ZB(>),62 AB (>))) Hence, at V;,, buyer 1's marginal impact on buyer 2 is the difference
between 2's payoff from getting both goods, b, AB(VI), and that from getting just B, BZB(VI ) ie.,
(29). In case (b) it becomes efficient at the first switching point U;, (choose V5 and ¥ 55 to

conform with ;) to alocate A to buyer 2 but B to buyer 1. Hence, a V;, buyer 1's marginal

impact on buyer 2 from being alocated A rather than B is the difference between buyer 2's payoff

from A and that from B:

62A(\71)' BZB(VI)- (3D

But (31) does not represent buyer 1's full marginal impact on buyer 2 because it compares buyer 2's

payoff from B with that from good A, rather than from both Aand B. To obtain the latter comparison,

reduce v, from ¥ to the point vy where it just becomes efficient to alocate both A and B to
buyer 2. The marginal impact on buyer 2 at v,z (choose Vi, ad v, g to conformwith vig ) is

62AB (V; )' BZA(VI* ) (32)

Adding (31) and (32), we obtain buyer 1's full margina impact on buyer 2, viz., (30). Notice that in

the case of private values, where b, , (Vl ): b, A(Vi ) (30) reducesto b, g - by, which is buyer 1's

payment for good A in the ordinary Groves-Clarke mechanism.
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It can be shown (see Dasgupta and Maskin (2000)) that it is an equilibrium for buyers to bid

truthfully in the above auction, i.e,, for each i and bundle of goods H = A, B, AB, buyer i should set
by (3 =By (3, where
by (ij (si,sg))=viH(si,s§)for al s

if buyer i'ssgnd valueis s. Natice that if, in fact, buyers are truthful, the auction results in an

efficient equilibrium.

7. Multidimensional Signals

Up until now, the results | have quoted on efficient auctions with common values have
assumed that buyers' signals are one-dimensional. Thisisfor good reason—the results are smply not
true otherwise. Indeed, with multidimensional signals, efficiency in the sense | have defined it is
generaly unattainable with any mechanism (a point found in Maskin (1992) and Jehiel and

Moldovanu (1998)). To see this, consider the following example:

Example 7: Suppose that there are two buyers and one good. Assumethat buyer 2’ssignd s, is, as

usual, one-dimensiona but that buyer 1's signa s, has two components: $;=(S;1,S12)-

Let
Vi(S1,512.5,) = 811 + 51, +aS,

and

Vo(S1:512.5) =5, +bsy + 68, -

Because of independence, buyer 1's objective function is the same for any pairs (i1, S) that add up

to the same congtant, and thus, he will behave the same way for any such pairs. In particular, if

(sfy.sf,) and (s, sk) ae pairs such that S{; +Sf, =Sfy +sf,, then, in any auction, the
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equilibrium outcome must be identical for the two pairs. But, unless b=g, the efficient alocation may

turn on which pair obtains—specificaly, given s,, we might have

sty +sf, +as, >s, + bsf; +0sf, (33)

but
S+ s§+as, <s, +bsf, +gsf, , (34)
o that, with (s;,S,,)=(sl,Sb), the good should be alocated to buyer 1 and, with

(Sll!S_LZ): (Shsfz) it should be allocated to buyer 2 (if b=g, this conflict does not arise; the

inequality signs in (33) and (34) must be the same). Hence, an efficient auction is impossible when

btg
However, since buyer 1 cares only about thesum S;; +S,,, itisnaturd to define
=S %S
and set
w(n,s,)=r +as,
and

W, (r,s,) = Egiso [52 +Dbs; + 08, | St = rl]'
Notice that we have reduced the two-dimensiona signad s; to the one-dimensional signa r;.
Furthermore, provided that a,b, and g are al less than 1 (so that condition (5) holds), our modified
Vickrey auction is efficient with respect to the “reduced” vauation functions
Wl(>)and W, (>) (because all the analysis of Section 4 applies). Hence, a moment’s reflection should
convince the reader that, dthough full efficiency is impossible for the valuation functions
v1(>)and Vs (>) the modified Vickrey auction is constrained efficient, where “constrained” refers to
the requirement that buyer 1 must behave the same way for any pair (sll, 512) summing to the same

r, (in the terminology of Holmstromand Myerson (1983), the auction is “incentive efficient”).
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Unfortunately, as Jehiel and Moldovanu (1998) show in their important paper, this trick of
reducing a multidimensional signal to one dimension no longer works in genera if there are multiple
goods. To see the problem suppose that, as in Section 5, there are two goods A and B, but that now a
buyer i (i=1,2,3) receives two signa's—one for each good. Specificdly, let s, and sz be buyer i’s
signals for A and B, respectively, and let his vauation functions be

ViA(SJ.A’ Sas %A)md ViB(S.I.B’ Sz 1335)-

Let usfirst fix the signa values of buyers 2 and 3 at levels such that, as we vary s;, and S,

either (i) it is efficient to alocate good A to buyer 1 and B to 2, or (ii) it is efficient to alocate good A

to2and Bto 3. In case (i), we have

VlA(SlA! SZA’SSA)+VZB (SlB’ 3287338) > V2A(SlA7 SZA'SSA)+VSB (51315237533)’

that is,

VlA(S.LA’ SZA’SSA) > (35)
VZA(SJ.A’ Sa SSA) * V3 (3131 SoB1S3 )' Vog (S.I.B 15281 538)

whereasin case (i) we have

VlA(S.LA! SZA’SS’A) < (36)
VZA(SJ.A’ SAs %A) + V3 (S.LB1 SoB:S3 )' Vog (S.LB 1SoBs S3B)'

Notice that buyer 1's objective function does not depend on s,z (Sis affects only buyer 1's vauation
for good B, but buyer 1 isnot allocated B in either case (i) or (ii)). Hence, the equilibrium outcome of
any auction cannot turn on the value of this parameter. But this means that, if an auction is efficient,
which of case (i) or (ii), (i.e., which of (35) or (36)) holds cannot depend on s;5. We conclude, from

the right-hand sides of (35) and (36), that

Vag (315' SZB’SS‘B) - VZB(S.LBisZB’SS‘B)

must be independent of s;5. Expressed differently, we have

éVSB(SlB’SZB’%B):éVZB(SlB’SZB’SSB)'
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Repeating the argument for all other pairs of buyers and for good B, we have

Wik _ Vi

fordl j1il kandH =A B. (37)
sy  Tsu

Next, let us fix the signal values of buyers 2 and 3 at levels such that, as we vary s;, and S,
either (iii) it is efficient to allocate Ato buyer 1 and B to 2; or (iv) it is efficient to allocate B to buyer

1and A to 2. In case (iii), we have

VlA(slA! SZA’S3A)+VZB (S_LB’SZB 7538) >

Vig (St S25.:538) + V2a(Sia: Sa:S5n) <
and in case (iv),
Via(Siar S2n,S34) + Vag (Sie+ S26. Sa) < (29)
Vig (Si5 So8: S36 )+ Vo (Sia: 2. S3a)-
To smplify matters, let us assume that vauation functions are linear:
Via(Sia: Soa150) = Sia +21550 +a15S3 (40)
Vig (Sig+ S26. S5 ) = Sip + D156 + b15S3g (4D

and similarly for buyers 2 and 3. Then (38) and (39) can be rewritten as

Sia - Sig > @p1S1a T8 0S8 T 03S3a - D2iSig - D5Sp - DosSip (42
and

Sia - St <8215 T8 S T8 3838 - Do1Sip - DooSp - DpsSip.  (43)
Now (because we have fixed 2's and 3's signal values), buyer 1's objective function depends only on
Sia—Sig. That is, for any vdue of ), buyer 1 will behave the same way for signa values (S;a, Sg) &
for (slA +D,sg+D ) Hence, in any auction, the equilibrium outcome must be the same for any
vaueof D. In particular, if the auction is efficient, whether (42) or (43) applies cannot depend on D's

value. But from the right-hand sides of (42) and (43), this can be the case only if a,;=b,,, i.e, only if

Van _ Vog _
Tsa  Tsis
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Repeating the argument for the other buyers, we have

Wia v

sa s

foraliand j?i. (44)

The necessary conditions (37) and (44), due to Jehid and Moldovanu (1998), are certainly
restrictive. Nevertheless, as shown in Eso and Maskin (2000a), there is a natura class of cases in
which they are automatically satisfied. Specifically, suppose that in our two-good model, each buyer
wants at most one good (thisis not essential). Assume that the true value of good A to buyer i, V4, is
the sum of a component z, common to al buyers and a component of z, that is idiosyncratic to him.
That is,

Yia=Zaot Zia -
Similarly, assume that buyer i’ s true valuation of good B, yig, satisfies

Yis =Zg +Zp-
Suppose, however, that buyer i does not directly observe his true valuations but only noisy signas of
them. That is, he observess, and sg, where

Sa = Yiat€a
and

Se = Yis T€is-
It can be shown (see Eso and Maskin (2000a)) that if the random variables zy, zy,Qw, 1=1,2,3,
H=A,B, are independent, normal random variables and if the variances of g;4 and z, are proportional
to that of z,, i.e, for dl i, there existskiq and ki, such that

varey, =ke.var z, ad varz,, =k,var z,, H =AB,

then (37) and (44) are automatically satisfied and the modified Groves-Clarke mechanism discussed
in Section 6 is an efficient auction.

8. Further Work
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There is clearly a great deal of work remaining to be done on efficient auctions, including
dealing with the multiple good/multidimensiona problem in cases where (37) and (44) do not hold. |
would like to smply underscore one issue: finding an open auction counterpart to the modified
Groves-Clarke mechanism in the case of multiple goods. The task of submitting contingent bids is
considerable even for asingle good. For multiple goods, it could be formidable. For this reason, as |
have aready discussed, researchers have sought open auctions —variants of the English auction—as
desirable alternatives. Perry and Reny (1999b) have exhibited a lovely modification of the Ausubel
(1997) auction (which in turn elegantly extends the English auction to multiple identical goods).
However, efficiency in that auction obtains only when al goods are identica and buyers marginal
valuations are declining. It would be an important step, in my judgment, to find a similar result

without such restrictions on goods or preferences.
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Appendix: Buyer 1's payment when allocated both goodsin a two-good, two-buyer auction.

If

(a) there exists v, such that

~

Viag = Daag (V1 )

then buyer 1 pays

A

b2AB (VI ) ;

if (a) does not hold and instead
(b) there exists ¥, such that
Viag = Via + 055 (\7;) ,
then if,
(b1) there exists v, such that
Via +Dyg (VI )= bae (VI* )
buyer 1 pays

628 (\7; )"' (62AB (VI ) - 62B (Vl ))
and if instead

(b2) thereexist U, and ¥, such that

Via + Do (Vl ): Vig +Dyp (Vl )

and
Vi + B,V )= Bone ),
then buyer 1 pays
62B (\7; )"' (BZA (\7;* ) - 628 (\71* ))"' (BZAB (Vl* )' 62A (VI** »
finally, if



(c) there exists V; such that
\:/IAB = \:/IB + tA’zA(\:/I )
then if
(cl) there exists v, such that
Vig + 62A(VI* ): Done (VI* )
buyer 1 pays
BZA(\:/I*)+ (62AB (VI*)' l32A(V1* ))
and if instead
(c2) there exist ¥, and ¥} such that
Vi + B0 )=V + B0 )
and

Via +b23(V1 ):bZAB(Vl ),

then buyer 1 pays

BZA(\:/I )"' (623 (\:/I* )' 62A(\:/I* »"‘ (62AB (VI** ) - 625 (VI** ))
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