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Abstract
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ternative. We characterize the budget equilibria that are the minimally informative
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1 Introduction

This paper considers the problem of finding allocations that satisfy certain social goals

when economic agents have private information regarding their preferences. This problem

has received renewed interest in the literature on “market design”–in particular, in two-

sided matching (e.g., Roth and Sotomayor (1990)) and combinatorial auctions (e.g., Vohra

and de Vries (2003)). The goals of market design include exact or approximate efficiency,

voluntary participation, stability to group deviations, and some notions of fairness. A

key theme in the literature is that incentives alone do not determine the choice of the

mechanism. Indeed, if incentive compatibility were the only concern, it could be ensured

with a direct revelation mechanism. However, in many practical settings, full revelation

of agents’ preferences would be prohibitively costly, even if the agents were willing to

report truthfully. For example, in combinatorial auctions, full revelation would require

communicating bidders’ valuations for all possible bundles of objects, and the number of

such bundles is exponential in the number of objects. For this reason, the literature has

considered a variety of indirect mechanisms, which purport achieve the desired goals using

less communication than full revelation.1 This raises the question: What is the minimal

information that must be elicited by the designer in order to achieve the goals (even if

agents are sincere), and how much communication does this require?

The communication requirements of allocation mechanisms were first discussed by

Hayek (1945), who called attention to the “problem of the utilization of knowledge that is

not given to anyone in its totality,” when “practically every individual ... possesses unique

information of which beneficial use might be made.” Hayek argued that “we cannot expect

that this problem will be solved by first communicating all this knowledge to a central

board which, after integrating all knowledge, issues it orders.” Instead, “the ultimate de-

cisions must be left to the people who are familiar with the ... particular circumstances of

time and place.” At the same time, the decisions must be guided by prices, which sum-

1Another motivation for indirect mechanisms, cited by Parkes (2000), is to economize on the agents’ cost

of computing (rather than communicating) their preferences. However, in the absence of communication

costs, the agents could reveal all the raw data for their computations and let the designer perform them

as needed (or possibly share the computational burden with the agents).
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marize the information needed “to co-ordinate the separate actions of different people.”

While Hayek did not discuss allocation mechanisms other than the price mechanism and

central planning (full revelation), he noted that “nobody has yet succeeded in designing

an alternative system” that would fully utilize individual knowledge.

While price mechanisms in allocation problems have received extensive scrutiny since

Hayek, existing research has failed to answer the following four questions:

1. Is it necessary to find some supporting prices in order to achieve social goals?

2. For which preference domains is it necessary to find supporting prices?

3. For which social goals is it necessary to find supporting prices?

4. What kind of prices verify a given social goal on a given preference domain while

revealing the minimal necessary information?

The best-known results about the role of prices are the Fundamental Theorems of

Welfare Economics. These theorems fail to address even question (1). Indeed, the First

Welfare Theorem says that supporting prices are sufficient to verify Pareto efficiency, but

does not establish their necessity. The Second Welfare Theorem only says that supporting

prices can be constructed for a given Pareto efficient allocation once all the information

about the economy is available. However, once all the information is available, the desired

allocation can be imposed directly, without using prices. The theorems have nothing to say

about possible efficient non-price mechanisms in an economy with distributed knowledge

of preferences.

A better understanding of the role of prices is offered by the literature on the “informa-

tional efficiency” of price equilibrium. The literature was started by Hurwicz (1977) and

Mount and Reiter (1974), who showed that in convex exchange economies, the Walrasian

price mechanism uses the least-dimensional message space among all Pareto efficient ver-

ification mechanisms satisfying a continuity restriction. Jordan (1982) strengthened this

result by showing that the Walrasian mechanism is a unique individually rational mech-

anism with this property. These results were later extended to convex economies with

public goods and externalities (Sato 1981; Tian 2004). While providing an important
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inspiration for the present paper, this literature still comes short of answering questions

(1)-(4). Indeed, it does not answer (1), because it focuses on dimensionally minimal con-

tinuous mechanisms, and does not rule out the possibility that either discontinuous or

slightly more complex continuous mechanisms could achieve efficiency without revealing

supporting prices. It does not answer (2), because it only considers settings in which agents

have convex preferences over divisible allocations.2 In fact, the typical continuity restric-

tion in the literature rules out the communication of discrete allocations, and so makes it

inapplicable to most market design settings. The literature does not answer (3), because it

restricts attention to the goal of Pareto efficiency. As noted by Nisan and Segal (2003), this

restriction may overstate the hardness of the problem, because in some settings (notably

that of Calsamiglia (1977)) permitting a very small inefficiency allows a dramatic reduction

in the communication burden. In other settings (such as matching without side transfers),

efficiency may be achieved trivially, and the designer may be interested in other objectives,

such as voluntary participation, stability to group deviations, or some notions of fairness.

The literature does not answer (4), because of its ad hoc focus on linear-price equilibria,

which fail to exist in many important social choice problems.3

The present paper answers questions (1)-(4). It examines communication protocols

realizing a social choice rule when the (sincere) agents privately know their preferences.

While general communication is a multi-stage (extensive-form) game, a simple lower bound

on this problem is offered by an omniscient oracle’s problem of verifying the desirability of

an alternative. This problem is known as the “verification problem” in the informational

2Calsamiglia (1977) considered the communication burden with nonconvex preferences over divisible

goods, but failed to note the role of prices in this setting.

3Another related result is obtained by Parkes (2002). He considers the combinatorial auction problem

with quasilinear preferences and shows the necessity of revealing supporting prices by those communication

languages that reveal so-called “outcome-independent” information and implement surplus-maximizing

allocations. This result still does not answer questions (1)-(4), because it considers a restricted set of com-

munication mechanisms, a specific allocation setting, and only the goal of surplus-maximization. Parkes’s

proof uses the duality theory for optimization problems, and thus could not be easily extended to social

choice rules that cannot be described as solutions to a maximization problem (including the Pareto rule

in the presence of wealth effects).
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efficiency literature and as the “nondeterministic problem” in computer science.

In one special class of verification protocols, the oracle proposes an alternative and

gives each agent a budget set–a subset of social alternatives (which could in general be

delineated by personalized and nonlinear prices). Each agent is asked to verify that the

proposed alternative is optimal to him within his budget set. A choice rule can be verified

with such a “budget protocol” if and only if it is monotonic (in the sense of Maskin

(1999)). While generalizing the traditional welfare theorems, this observation inherits

their deficiency: Just because a choice rule can be realized with a budget protocol does

not mean that it cannot be realized with a completely different, and perhaps much simpler,

protocol.

Enter the main result of the paper, which characterizes the choice rules satisfying the

Communication Welfare Theorem (CWT): Any verification protocol must reveal enough

information to construct supporting budget sets verifying the choice rule. Such choice rules

are characterized by the property of intersection monotonicity, which is a strengthening of

monotonicity, and proves to be satisfied by such important rules as Pareto, approximate

Pareto, the core, stable matching, and no-envy rules. For all these choice rules, any

verification protocol (and therefore any communication) must reveal supporting budget

sets.

What appears striking about this result is that even in a social choice problem with

sincere agents, a minimally informative verification mechanism asks the agents to pursue

their individual objectives independently within their budget sets. Our intuition for this

result is that intersection monotonicity postulates certain congruence between the agents’

individual preferences and the social goals, which allows to economize on communication

by giving agents some freedom to utilize their individual knowledge, while designing the

budget sets to coordinate their choices.

We next turn to the question of which supporting budget sets must be revealed to verify

a given choice rule. The larger an agent’s budget set is, the more informative is the fact

that proposed alternative is optimal to him within the set. On the one hand, the agents’

budget sets must be large enough so as to verify that the proposed alternative is in the

choice rule. On the other hand, supporting budget sets that are too large reveal more
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information than necessary for the verification. We characterize the minimally informative

budget equilibria verifying that a given alternative is desirable. (When there are many

equally informative budget equilibria, we select among them the ones with the largest

budget sets.) Under CWT, such budget equilibria exhaust all the minimally informative

verifying messages. Application of the characterization to several well-known social choice

problems yields the following results:

• The minimally informative messages verifying Pareto efficiency in an exchange econ-
omy with smooth convex preferences are equivalent toWalrasian equilibria, in which

the budget sets are delineated by linear and anonymous prices.

• The minimally informative messages verifying Pareto efficiency in a social choice
problem with numeraire are equivalent to the valuation equilibria of Mas-Colell

(1980), in which the budget sets are delineated by nonlinear personalized prices

whose sum across agents is independent of the public decision.

• The minimally informative messages verifying the approximation of Pareto efficiency
in a social choice problem with numeraire within some δ > 0 (as measured by the

compensating variation in terms of numeraire) are equivalent to δ-valuation equi-

libria, in which the sum of the nonlinear personalized prices across agents for any

off-equilibrium public decision exceeds by δ that for the equilibrium decision.

• The minimally informative messages verifying Pareto efficiency and individual ratio-
nality on the universal preference domain are equivalent to partitional equilibria, in

which the agents’ budget sets include the status-quo alternative and partition all the

other off-equilibrium alternatives.

• The minimally informative messages verifying the stability of a many-to-one two-
sided matching are equivalent to match-partitional equilibria, in which each off-

equilibrium match is allocated to either partner’s budget set (but not both).

These results are formulated in the partial informativeness order on messages, and

so they do not rely on any scalar measure of communication. However, the results also
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prove useful for identifying the communication burden, as measured either with the num-

ber of transmitted bits (for discrete communication, as in the “communication complexity”

literature surveyed by Kushilevitz and Nisan (1997)) or with the dimension of the mes-

sage space (for continuous communication, as in the “informational efficiency” literature).

Specifically, the results imply that the communication burden of verifying a choice rule

satisfying CWT is exactly that of announcing a minimally informative verifying budget

equilibrium. In general, a verification protocol need not use all such budget equilibria,

since it only needs to verify one desirable alternative in a given state rather than all of

them. For example, in a convex exchange economy, Pareto efficiency can be realized using

only those Walrasian budget sets that contain an (arbitrarily fixed) endowment allocation,

which reduces the dimensionality of the space of equilibria while still ensuring equilibrium

existence. In general, the nondeterministic communication burden of a choice rule F sat-

isfying CWT is determined by a minimal collection E of minimally informative budget
equilibria verifying F that ensures the existence of an equilibrium from E. Namely, the
burden of F is exactly that of communicating an equilibrium from E, which requires dim E
real variables for continuous communication, or log2 |E| bits for discrete communication.
This number also bounds below the burden of deterministic communication, i.e., finding

a desirable alternative. (While in some settings there exists a known deterministic com-

munication protocol coming close to achieving this lower bound, the general problem of

identifying the deterministic communication burden of a social choice rule appears to be

much harder and is not tackled here.)

This approach is used to identify (or bound) the communication burden of several

well-known social choice problems. In some problems, the burden proves to be of the same

order of magnitude as full revelation of agents’ preferences. These problems include: finding

combinatorial allocations that achieve or approximate the maximum total surplus, finding

Pareto efficient individually rational allocations in economies with indivisible goods, and

finding stable two-sided one-to-one matchings.4 Other social choice problems can be solved

with much less communication than full revelation. These problems include: finding Pareto

4The analysis of combinatorial allocations borrows from Nisan and Segal (2003), who also examine the

communication burden for several important restricted classes of valuations.
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efficient allocations in convex exchange economies, and finding stable two-sided many-to-

one matchings when the agents have substitutable preferences. In particular, we find that

the Gale-Shapley deferred acceptance algorithm finds a stable matching using close to

the smallest necessary amount of communication, which is exponentially smaller than full

revelation of preferences.

2 Social Choice and Communication

Let N be a finite set of agents, and X be a set of social alternatives. (With a slight

abuse of notation, the same letter will denote a set and its cardinality when this causes no

confusion.) Let P denote the set of all preference relations over set X.5 For any preference
relation R ∈ P and any alternative x ∈ X, it is convenient to define the relation’s lower
contour set at x, L (x,R) = {y ∈ X : xRy} .
Each agent i’s preference relation is assumed to be his privately observed type, and

the set of his possible types is denoted by Ri ⊂ P.6 A state is a preference profile

R = (R1, . . . , RN) ∈ R1× . . .×RN ≡ R, where R is the state space, also called preference

domain. The goal is to realize a choice rule, which is a correspondence F : R ³ X. For

every state R ∈ R, the rule specifies the set F (R) of “desirable” alternatives in this state.
We now describe the communication procedures solving the social choice problem. It

is well known that the amount of communication can be reduced by letting agents send

messages sequentially rather than simultaneously. For example, if we want to find a Pareto

efficient alternative, agents need not report their preferences between alternatives x and y if

it is clear from the preceding messages that y is dominated by z for all of them. Therefore,

we must consider multi-round communication protocols.

5A preference relation R over set X is a binary relation over X, with xRy interpreted as “x is weakly

preferred to y.” It is common to restrict attention to preference relations that are rational, i.e., complete

and transitive. Rationality will play no role in the general analysis, but it will be assumed in all the

applications.

6Thus, we focus on “private-value” environments. It would be interesting to extend the analysis to

“interdependent-value” environments, in which an agent’s preferences may depend on other agents’ private

information.
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In the language of game theory, a multi-round communication protocol specifies an

extensive-form message game and each agent’s strategy in this game (complete message

plan contingent on his type and the observed history). Instead of payoffs, the game assigns

alternatives to terminal nodes (and so is more properly called a “mechanism”). Agents

are assumed to follow the prescribed strategies (but see Section 4 for a discussion of in-

centive compatibility). Such communication protocols are known in computer science as

“deterministic,” because the message sent by an agent at a given information set is fully

determined by his type and the preceding messages. A protocol realizes choice correspon-

dence F if in every state R it achieves a terminal node to which an alternative from F (R)

is assigned.7

Characterizing all deterministic communication protocols is a tall order. Analysis is

drastically simplified by generalizing the notion of communication to allow what is called

“nondeterministic communication” in computer science and “the verification scenario” in

economics: Imagine an omniscient oracle who knows the true state R and consequently the

desirable alternatives. However, he needs to prove to an ignorant outsider that alternative

x ∈ F (R) is indeed desirable. He does this by publicly announcing a message m ∈ M .
Each agent i either accepts or rejects the message, doing this on the basis of his own type

Ri. The acceptance of message m by all agents must prove to the outsider that alternative

x is desirable.8

While nondeterministic communication is patently unrealistic, we introduce it for the

following reasons:

1. Any deterministic communication protocol can be represented as nondeterministic

by letting all the messages be sent by the oracle instead of the agents, and having

each agent accept the message sequence if and only if all the messages sent in his

stead are consistent with his strategy given his type. The oracle’s message space M

7Note that only nonempty-valued choice rules can be realized. Nonempty-valuedness could be ensured

by thinking of states R ∈ R in which F (R) = ∅ as “illegal,” and allowing any alternative in such states
(i.e., redefining F (R) = X).

8This communication is called “nondeterministic” in computer science because the oracle has to “guess”

a message that is acceptable to all agents (and there may be more than one such message in a given state).
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is thus identified with the set of the protocol’s possible message sequences (terminal

nodes). Therefore, any statement about nondeterministic protocols will apply to

deterministic protocols as a particular case (this is explained more thoroughly in

Kushilevitz and Nisan (1997, Chapter 2)).

2. A famous economic example of nondeterministic communication is Walrasian equilib-

rium. The role of the oracle is played by the “Walrasian auctioneer,” who announces

the equilibrium prices and allocations. Each agent accepts the announcement if and

only if his announced allocation constitutes his optimal choice from the budget set

given by the announced prices. A generalization of this nondeterministic communi-

cation is described in the next section.

3. A nondeterministic protocol realizing choice rule F may be viewed as a steady state of

an iterative deterministic protocol realizing or approximating F . At each stage of the

iteration, a messagem ∈M is announced, and each agent reports a direction in which

the message should be adjusted to become “more acceptable” to him. Examples of

such adjustment processes include “tatonnement” for finding Walrasian equilibria,

“deferred acceptance algorithms” for finding stable matchings, and ascending-bid

auctions for finding efficient combinatorial allocations.

Formally, nondeterministic communication is defined as follows:

Definition 1 A (nondeterministic communication) protocol is a triple Γ = hM,µ, hi,
where

• M is the message space,

• µ : R³M is the message correspondence satisfying Privacy Preservation:

µ(R) = ∩i∈Nµi(Ri) ∀R ∈ R, where µi : Ri ³M ∀i ∈ N,

• h :M ³ X is the outcome correspondence.

Γ realizes choice rule F if ∅ 6= h(µ(R)) ⊂ F (R) ∀R ∈ R.
Γ fully realizes F if h(µ(R)) = F (R) ∀R ∈ R.

9



Privacy Preservation captures the fact that each agent does not observe other agents’

types, thus the set of messages acceptable to him is a function µi(Ri) of his own type Ri

only.9 Realization means the set of messages generated by the protocol in state R is a

subset of the set of desirable messages F (R), while full realization means that it is exactly

F (R). We are ultimately interested in realization, but the concept of full realization allows

comparisons with some existing literature.

Definition 2 Message m ∈ M in protocol Γ = hM,µ, hi verifies alternative x ∈ X in

choice rule F if µ−1(m) ⊂ F−1 (x). (Γ and F will be omitted when clear from the context.)

If we are interested in whether a given message correspondence µ can be used to realize

choice rule F , without loss we can define the outcome correspondence h (m) to be the

set of alternatives verified by message m. Then realization means that, in any state R,

some alternative is verified by an acceptable message, while full realization means that any

alternative in F (R) is verified by some acceptable message.

The above concepts have a graphical illustration, discussed in Kushilevitz and Nisan

(1997), and depicted in Figure 1. Namely, each µ−1(m) is the subset of the state space R
on which message m ∈M is acceptable. Privacy Preservation requires each such subset to

be a product set µ−11 (m)× . . .×µ−1N (m)–a “rectangle” in the computer science parlance.

Message m verifies alternative x if the corresponding rectangle µ−1(m) is contained in

the set F−1 (x) on which x is desirable–in the computer science parlance, the rectangle is

“monochromatic”. Realization requires that the whole state space be covered by rectangles

verifying some alternative, while full realization requires that each set F−1 (x) for x ∈ X
be exactly covered by some set of rectangles.

We will be interested in how much information must be revealed to realize a given

choice rule, using the partial order of informativeness:

Definition 3 Message m ∈ M in protocol hM,µ, hi is more informative than (or veri-
fies) message m̃ ∈ M̃ in protocol

D
M̃, µ̃, h̃

E
if µ−1 (m) ⊂ µ̃−1 (m̃). Messages m and m̃

9This is an established term in the economic literature on “informational efficiency,” but it differs from

the layman’s concept of “privacy” in that it places no constraints on the revelation of information in the

course of communication.
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are equivalent if they are equally informative, i.e., µ−1 (m) = µ̃−1 (m̃). Message m is a

minimally informative message verifying alternative x ∈ X if it verifies x, and any less

informative message verifying x is equivalent to m.

We will examine how a given choice rule can be realized using messages that are less

informative, and possibly minimally informative. This examination will demonstrate what

information must be revealed by any protocol realizing a given social choice rule F , and

how much communication this would require (in terms of bits or real numbers). For the

latter, we note for now that the communication burden of a protocol is linked to the size of

its message space M (see Section 7 below for more detail). Thus, starting with a protocol

realizing F and replacing a message with a less informative message that still verifies the

same alternative would produce another protocol realizing F , whose size of the message

space, and therefore the communication burden, will not be higher than that of the original

protocol. It will follow that in looking for a nondeterministic protocol realizing F with the

minimal communication burden, one can without loss restrict attention to protocols using

only minimally informative verifying messages.

3 Budget Equilibria and the Welfare Theorems

We introduce a special class of nondeterministic protocols, in which the oracle’s message

consists of a proposed alternative x ∈ X and a budget set Bi ⊂ X for each agent i. Each

agent i ∈ N accepts message (B1, . . . , BN , x) if and only if there is no alternative in his

budget set Bi that he strictly prefers to the proposed alternative x. (B1, . . . , BN , x) is a

budget equilibrium in state R ∈ R if it is accepted by all agents in this state.10 Formally,

the budget equilibrium correspondence E : R³ 2XN ×X is described as

E (R) =
©
(B, x) ∈ 2XN ×X : Bi ⊂ L (x,Ri) ∀i ∈ N

ª
.

10A number of related concepts have been suggested, including “social equilibrium” (Debreu 1952),

“social situations” (Greenberg 1990), “effectivity functions” (Moulin and Peleg 1982), “effectivity forms”

(Miyagawa 2002), “opportunity equilibrium” (Ju 2001), and “interactive choice sets” (Serrano and Volij

2000). However, all these papers have motivated the concept by incentive compatibility, rather than

deriving it from communication among sincere agents (see also Section 4 below).
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E satisfies Privacy Preservation because each agent’s acceptance depends only on his own

preferences.

The oracle’s message space M in a budget protocol is a collection of budget equilibria

that he is allowed to announce, and the outcome function simply implements the proposed

alternative:

Definition 4 Protocol hM,µ, hi is a budget protocol ifM ⊂ 2XN×X, µ (R) = E (R)∩M
∀R ∈ R, and h (B, x) = {x} ∀ (B,x) ∈M .

The informativeness of a budget equilibrium message depends on how large the agents’

budget sets are. Formally, consider

Definition 5 For two budget equilibria (B, x) , (B0, x0) ∈ 2XN ×X, (B0, x0) is larger than
(B, x) if x = x0 and Bi ⊂ B0i ∀i ∈ N .

It is clear that if budget equilibrium (B0, x0) is larger than budget equilibrium (B, x),

then (B0, x0) it is more informative (i.e., (B0, x0) being an equilibrium ensures that (B, x)

is also an equilibrium). Thus, the oracle must announce supporting budget sets that are

large enough to verify the proposed allocation.11

Which choice rules can be realized by a budget protocol? The classical Welfare Theo-

rems say that any Pareto efficient allocation in a convex exchange economy can be verified

with a budget equilibrium (specifically, a Walrasian equilibrium). The theorems have been

extended to some “non-classical” social choice problems.12 These results can be generalized

as follows:

Definition 6 (Maskin (1999)) Choice rule F is monotonic if ∀R ∈ R, ∀x ∈ F (R), and
∀R0 ∈ R such that L (x,Ri) ⊂ L (x,R0i) ∀i ∈ N , we have x ∈ F (R0).
11For example, when Bi = {x} for all i, budget equilibrium (B,x) is uninformative and does not verify

x, unless it is always selected by the choice rule.

12Including the Pareto rule in public-good economies (Milleron 1972) and general economies with nu-

meraire (Mas-Colell 1980; Bikhchandani and Mamer 1997; Bikhchandani and Ostroy 2002), and stable

many-to-one matching problems with and without transfers (Kelso and Crawford 1982; Hatfield and Mil-

grom 2004).
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Theorem 1 A choice rule F is fully realized by a budget protocol if and only if it is

monotonic.13

Proof. That F is fully realized with a budget protocol means that ∀R ∈ R ∀x ∈ F (R)
∃B ∈ 2NX such that (B,x) ∈ E (R) and (B, x) verifies x. Since a larger budget equilibrium
is more informative and so more likely to verify x, this is equivalent to checking that the

largest budget equilibrium (B, x) supporting x in state R, which has Bi = L (x,Ri) ∀i ∈ N ,
verifies x. This is in turn equivalent to the monotonicity of F .

Theorem 1 is not novel: analogous results are stated in Williams (1986, Theorem 2),

Miyagawa’s (2002, Theorem 1), Ju (2001), and Greenberg (1990, Theorem 10.1.2). The key

deficiency of Theorem 1 is that, just like the traditional Welfare Theorems, it does not say

anything about non-budget protocols realizing choice rule F , which could possibly reveal

less information and involve less communication than any budget protocol realizing F . We

remedy this deficiency by characterizing choice rules that satisfy the following property:

Definition 7 Choice rule F satisfies the Communication Welfare Theorem (CWT) if any

message verifying an alternative x ∈ X in F verifies a budget equilibrium (B,x) that in

turn verifies that x is in F .

CWT is illustrated in Figure 2. When applied to messages m that fully reveal a state

R (i.e., µ−1 (m) = {R}, which would be represented by a single point in Figure 2), CWT
says that for any x ∈ F (R) we can construct a budget equilibrium (B, x) in state R

that verifies x. Thus, CWT implies the traditional welfare theorems, and so by Theorem

1 it implies the monotonicity F . However, CWT is stronger, since it requires a budget

equilibrium verifying x to be constructed without knowing the exact state, upon observing

any communication verifying x. This strengthening indeed eliminates some monotonic

choice rules:

Example 1 Let N = 1, 1 < |X| < ∞, and R = P. Consider the choice rule F (R) =
{x ∈ X : L (x,R1) 6= {x}}. That is, F includes all alternatives except a single worst one

13This implies that F is realized by a budget protocol if and only if has a nonempty-valued monotonic

subcorrespondence.
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for the agent. It is easy to see that F is monotonic, hence by Theorem 1 it can be fully

realized with a budget protocol. Namely, note that budget equilibrium (B1, x) verifies x if

and only if B1\ {x} 6= ∅, and that any x ∈ F (R) is verified by the budget equilibrium

(L (x,R1) , x).

Now fix some alternative x̂ ∈ X, and consider the communication protocol in which
agent 1 announces “x̂” if L (x̂, R1) 6= {x̂}, and announces his preferred alternative from
X\ {x̂} otherwise, and the announced alternative is implemented. Message “x̂” verifies
x̂, but does not reveal any other alternative in L (x̂, R1), thus it does not verify a budget

equilibrium (B1, x̂) that would verify x̂. Therefore, F does not satisfy CWT.

The choice rules that do satisfy CWT are characterized as follows:

Definition 8 Choice rule F is Intersection-Monotonic (IM) if ∀ eR = eR1× . . .× eRN ⊂ R,
∀x ∈ ∩R∈ eRF (R), and ∀R0 ∈ R such that ∩Ri∈ eRi

L (x,Ri) ⊂ L (x,R0i) ∀i ∈ N we have

x ∈ F (R0).14

To see directly that IM implies monotonicity, take eR = {R} in the definition.
Theorem 2 Choice rule F satisfies the Communication Welfare Theorem if and only if it

is Intersection-Monotonic.

Proof. That F satisfies the Communication Welfare Theoremmeans that ∀ eR = eR1×. . .×eRN ⊂ R ∀x ∈ ∩R∈ eRF (R) ∃B ∈ 2NX such that (B,x) ∈ ∩R∈ eRE (R) and (B, x) verifies x.
Since a larger budget equilibrium is more informative and so more likely to verify x, this is

equivalent to checking that the largest budget equilibrium (B, x) supporting x in all states

from eR, which has Bi = ∩Ri∈ eRi
L (x,Ri) ∀i ∈ N , verifies x. This is in turn equivalent to

the intersection monotonicity of F .

14A property with the same name is defined by Miyagawa (2002), but he interesects lower contour sets of

different agents, and uses the property for an apparently different purpose. IM is also related to Sjostrom’s

(1996) Condition W, but the latter is much stronger in that it allows to construct supporting budget sets

verifying x using no information other than x itself. Therefore, Condition W allows F to be fully realized

with a “proposed action” protocol described by Ishikida and Marschak (1996), which only announces the

alternative to be implemented (formally, F itself satisfies Privacy Preservation).
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4 Relation to Incentives

The role of monotonicity in Theorem 1 is related to the literature on Nash implementation

spurred by Maskin (1999). That literature differs from our setup in two ways: (a) agents

observe each other’s preferences, and (b) agents are restricted to behave in an incentive-

compatible way. Despite these crucial differences, there is a simple connection, which lies

in the fact that the Nash equilibrium correspondence in any game form can be viewed as a

budget protocol. Namely, a game form consists of a strategy space Si for each agent i and

an outcome function g : S1× . . .×SN → X. A strategy profile s ∈ S1× . . .×SN is a Nash
equilibrium of the game form if and only if g (s) is each agent i’s preferred alternative in his

attainable set Bi (s) = {g (s0i, s−i) : s0i ∈ Si}. Thus, the game form is equivalent to the bud-
get protocol with the message space M = {(B1(s), . . . , BN (s) , g (s)) : s ∈ S1 × . . .× SN}.
Theorem 1 then implies the classical result of Maskin (1999) that any Nash implementable

choice rule is monotonic. The converse is not true (see, e.g., Maskin (1999, Example 2)),

because not every budget protocol can be derived from a game form.15

Can we conclude that even when agents have complete information about one another,

incentive compatibility (Nash implementation) still requires the revelation of supporting

budget sets? This conclusion is false if we allow extensive-form mechanisms. In such mech-

anisms, equilibrium play need not reveal the agents’ strategies (complete contingent plans),

and therefore need not reveal supporting budget sets. For example, consider the mechanism

constructed in Theorem 3 of Maskin (1999), which can implement any monotonic choice

rule F satisfying a “no veto power” condition with N ≥ 3 agents. This simultaneous-move
mechanism, but it can be converted into the following two-stage mechanism: In the first

stage, agents simultaneously announce an alternative. If they agree on an alternative, it

is implemented, otherwise we move to the second stage, in which each agent announces a

state and an integer (without observing the first-stage messages). The outcome function is

the same as described by Maskin. Applying Maskin’s arguments, it is easy to check that

15For the same reason, even when a choice rule can be Nash implemented, this may require more

communication than realizing it with a budget protocol. For example, Reiter and Reichelstein (1988)

examine the increase in communication required to Nash implement the Walrasian equilibrium choice rule.
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the two-stage mechanism still Nash implements F , yet in any equilibrium the agents agree

on an alternative in the first stage and no other information is revealed. Thus, incentive

compatibility does not ensure the revelation of supporting budget sets when agents know

each other’s preferences.

The converse is also not true: a budget protocol does not ensure incentive compatibility.

To be sure, no agent would have an incentive to deviate by proposing another alternative

within his budget set. However, a budget protocol, being nondeterministic, does not specify

what alternative an agent could get by “rejecting” the budget equilibrium announced by the

oracle. Incentive compatibility must instead be examined in the context of deterministic

communication. When a budget equilibrium correspondence is realized with a deterministic

protocol, an agent may be able to manipulate his messages to influence his budget set to

his advantage (see, e.g., Mas-Colell et al. (1995, Example 23.B.2)).16 Thus, in general,

the restriction to incentive-compatible protocols increases the communication burden (see,

e.g., Reichelstein 1984).

5 A Class of Intersection-Monotonic Choice Rules

This section identifies a large and economically important class of intersection-monotonic

choice rules.

Definition 9 F : PN ³ X is a Coalitionally Unblocked (CU) choice rule if for some

blocking correspondence β : X × 2N ³ X,

F (R) = {x ∈ X : β (x, S) ⊂ ∪i∈SL (x,Ri) ∀S ⊂ N} ∀R ∈ PN .

In words, a CU choice rule is described by specifying for any coalition S ⊂ N and any

proposed alternative x ∈ X a “blocking set” β (x, S) ⊂ X –the set of alternatives that S

can use to block x. x is “unblocked” by coalition S if it is weakly Pareto efficient for its

members within its blocking set β (x, S), i.e., if it is not possible to make all members of S

16An exception is given by “nonatomic” convex economies, in which individual agents have no influence

on the Walrasian equilibrium prices. Another exception is when an agent’s budget set depends only on

other agents’ types, as in the Vickrey-Groves-Clarke mechanism.
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strictly better off within β (x, S).17 x ∈ F (R) if it is unblocked by all coalitions.18 A CU
rule are defined on the universal preference domain R = PN , but can be considered on a
restricted domain.

Lemma 1 Any CU choice rule is IM.

Proof. Suppose in negation that a CU choice rule F described by blocking correspondence

β is not IM, i.e., ∃ eR = eR1 × . . .× eRN ⊂ PN ∃R0 ∈ PN ∃x ∈ X such that (a) x ∈ F (R)
∀R ∈ eR, (b) ∩Ri∈ eRi

L (x,Ri) ⊂ L (x,R0i) ∀i ∈ N , but (c) x /∈ F (R0) .(c) means that

∃S ⊂ N ∃y ∈ β (x, S) such that y /∈ L (x,R0i) ∀i ∈ S. By (b), this implies that ∀i ∈ S
∃R∗i ∈ eRi : y /∈ L (x,R∗i ). Choosing such R∗i ∈ eRi for all i ∈ S and arbitrary R∗i ∈ eRi for all

i ∈ N\S, we obtain R∗ ∈ eR such that β (x, S) * ∪i∈SL (x,R∗i ), and therefore x /∈ F (R∗),
contradicting (a).

To illustrate the proof of Lemma 1, take a CU choice rule F , and suppose that for two

different preferences R1, R01 of agent 1 and some preference profile R−1 of other agents, we

have x ∈ F (R1, R−1) and x ∈ F (R01, R−1). This means that in each state, x is Pareto
efficient for each coalition within its blocking set. For example, the situation for coalition

{1, 2} is illustrated in Figure 3, in which the box represents the coalition’s blocking set
β (x, {1, 2}), agent 1’s preferences are increasing in the top-right direction, and agent 2’s
preferences are increasing in the bottom-down direction (as in the traditional Edgeworth

box). The Pareto efficiency of x for coalition {1, 2} within the box in states (R1, R−1)
and (R01, R−1) means that the indifference curves representing R1 and R

0
1 passing through

x both lie above the indifference curve representing R2 passing through x. Now take a

17We use weak Pareto efficiency because the strong Pareto rule is not even monotonic, let alone IM.

Note, however, that the weak and strong Pareto criteria coincide for preferences that are strictly monotonic

and nonsatiated in some divisible economic good.

18Such choice rules are also known as “respecting group rights,” with y ∈ β (x, S) interpreted as the
“one-way right” of coalition S to replace alternative x with alternative y (Hammond (1997, Section 5)).

The “rights” literature, initiated by Sen (1970), is concerned with the problem that individual and group

rights may be incompatible with each other on the universal preference domain, i.e., that “group rights-

respecting” choice rules may be empty-valued. In the applications considered in Section 8 below, the

preference domains and coalitional rights will be defined in to ensure nonempty-valuedness.
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third preference R001 for agent 1 such that L (x,R1)∩L (x,R01) ⊂ L (x,R001). In Figure 3 this
means that the indifference curve representing R001 passing through x lies above the lower

envelope of the curves representing R1 and R01. But this implies that the curve representing

R001 still lies above that representing R2, and therefore in state (R
00
1, R−1), x remains Pareto

efficient for coalition {1, 2} within its blocking set. Since the same argument works for
all coalitions, we see that x remains unblocked in state (R001, R−1), hence x ∈ F (R001 , R−1).
Iterating the argument by sequentially changing the preferences of agents 2,3, etc., we can

see that F is IM.

The converse to Lemma 1 is not true:

Example 2 Let N = 2 and X = {x, y, z}. Take the choice rule

F (R) =

 {x, y, z} if xR1y or xR2z,

{y, z} otherwise
∀R ∈ P2.

It is easy to verify that F is IM. On the other hand, if F were a CU choice rule described

by blocking correspondence β, we would have y, z /∈ β (x, S) ∀S ⊂ N (since x ∈ F (R) in
the states R in which the agents i = 1, 2 share a strict preference ordering yRixRiz or

zRixRiy), but then we would have x ∈ F (R) ∀R ∈ P2, which is not true.

Now we describe several important examples of CU choice rules. Note that according

to Definition 9, the empty coalition S = ∅ will block in any state, hence F can only include
alternatives in the set X̄ = {x ∈ X : β (x, ∅) = ∅}, which we interpret as the set of feasible
alternatives.19 With this notation, a CU choice rule will include those feasible alternatives

that are not blocked by nonempty coalitions.

• The Pareto rule: β (x, S) = X̄ if S = N , ∅ if S /∈ {N, ∅}. That is, the grand coali-
tion can block any alternative with any feasible alternative, and no other nonempty

19For example, the empty coalition may be responsible for the satisfaction of resource constraints. We

permit X to be larger than X̄ to allow budget sets that include infeasible allocations, as they may in

the Walrasian protocol. If X consisted only of feasible allocations in a convex exchange economy, the

Walrasian choice rule would not be monotonic (see Hurwicz et al. (1995)), hence it could not be fully

realized with a budget protocol.
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coalition has any blocking power.20

• The Approximate Pareto rule: β (x, S) = Xδ if S = N , ∅ if S /∈ {N, ∅}. HereXδ ⊂ X̄
is interpreted as the set of alternatives that waste at least amount δ of resources.

In words, a feasible alternative x is desirable if it is impossible to make everyone

strictly better off while wasting amount δ of resources. Thus, δ is the “compensating

variation” measure of inefficiency–the amount of resources that could be extracted

from the agents while compensating all of them for the change. There are many

ways to define Xδ in an economy with multiple goods. For example, if Xδ consists

of allocations that waste proportion δ of the economy’s aggregate endowment, F

chooses allocations whose “coefficient of resource utilization” in the sense of Debreu

(1951) is at least 1−δ. Alternatively, if Xδ consists of allocations that waste amount

δ of a specific good–“numeraire,” and if preferences are quasilinear in numeraire, F

chooses allocations that achieve within δ of the maximum possible surplus.

• The core: For all S 6= ∅, β (x, S) = ε (S)–the “effectivity set” of coalition S. Pareto
efficiency is imposed by letting ε (N) = X̄. Individual rationality (i.e., voluntary

participation) is imposed by letting ε ({i}) = {x0} for all i ∈ N , where x0 ∈ X is the

“status quo” alternative. Specification of effectivity sets for intermediate coalitions

reflects the coalitions’ powers. For example, the majority voting (Condorcet) choice

rule is described by ε (S) = X̄ if |S| ≥ N/2, ∅ otherwise. In an exchange economy,
ε (S) is usually defined by allowing the members of S to reallocate resources among

each other. We can also define the approximate core (quasi-core, epsilon-core) of an

exchange economy, by letting ε (S) consist of allocations that destroy at least amount

δS of resources available to the coalition.21

20If any preference Ri ∈ Ri of agent i has a maximal alternative in the feasible set X̄, the Pareto rule
could be realized simply by letting the agent choose this alternative. To rule out this dictatorial solution,

the literature on the communication requirements of the Pareto rule has either considered settings in which

the feasible set is infinite and noncompact, or introduced additional restrictions on the alternatives.

21In particular, Shapley and Shubik (1966) require the destruction of amount δS of numeraire, Kannai

(1970) requires the destruction of amount δS of each good, and McLean and Postlewaite (1989, Subsection

3.3) require the destruction of share δS of a given commodity bundle.
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• Stable Network: Let X = 2N×N –i.e., an alternative x ∈ X is a binary relation on

X (a list of ordered pairs of agents). (i, j) ∈ x is interpreted as the directed link from
agent i ∈ N to agent j ∈ N in network x ∈ X. The blocking sets are described by

β (x, S) = {y ∈ X : y\ (S ×N) = x\ (S ×N)} .

In words, members of coalition S can change only their outgoing links. A stable

matching problem (such as that studied by Roth and Sotomayor (1990)) obtains as

particular case by defining the matching relation as the symmetric part of x (i.e., a

match is a bidirectional link). The blocking sets described above allow a coalition to

break matches with outsiders but not create new matches with them.

• The No-Envy rule: Let X = X1 × . . . ×XN , where xi ∈ Xi is interpreted as agent
i’s component of the allocation. Let

β (x, {i}) = {y ∈ X : (yi, yj , y−i−j) = (xj, xi, x−i−j) , j ∈ N} ∀i ∈ N,
β (x, S) = ∅ for |S| > 1.

In words, any individual agent can block an alternative by “trading places” with

another agent.

A Venn diagram for choice rules summarizing the above results is drawn in Figure 4.

Note that the intersection of CU rules is a CU rule, hence any combination of the above

social goals would yield a CU choice rule.

6 Minimally Informative Verifying Equilibria

We next address the question of which supporting budget equilibria must be revealed to

verify a given choice rule. We do it by characterizing the minimally informative messages

verifying a given choice rule, which, under the Communication Welfare Theorem, are all

equivalent to budget equilibrium messages. Recall that a budget equilibrium is more

informative the larger its budget sets are, thus the minimally verifying informative budget

equilibria must have large enough budget sets to verify the choice rule, but not any larger.
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First we justify the focus on minimally informative verifying messages by showing

that any message m verifying alternative x verifies a minimally informative message m̃

verifying x. When the state space R is finite, m̃ can be constructed by starting with m

and finding progressively strictly less informative messages verifying x while this is possible

(the procedure terminates since the number of possible non-equivalent messages is finite).

For an infinite state space, we need a different algorithm to construct m̃. We propose such

an algorithm and use it to characterize minimally informative messages verifying a given

choice rule.

It is notationally convenient to identify each message with its content by focusing on

direct protocols hM,µ, hi, in which M ⊂ 2R and µ−1 (m) = m for all m ∈ M . A direct
message is a message in a direct protocol, and by Privacy Preservation it must be a product

set m1 × . . . ×mN ⊂ R1 × . . . ×RN . Direct message m is more informative than direct

message m̃ if and only if m ⊂ m̃. Direct message m verifies alternative x if m ⊂ F−1 (x).

Definition 10 For i ∈ N , x ∈ X, the agent i-wise x-stretch of a direct message m ⊂ R
is the direct message [

m0
i⊂Ri:m0

i×m−i⊂F−1(x)
m0
i ×m−i.

For an illustration with N = 2 agents, consider Figure 5, where direct message m0 is

agent 1-wise x-stretching of direct message m.

Lemma 2 (a) Any direct message22 m ∈ 2R\ {∅} verifying alternative x verifies a mini-
mally informative message verifying x, which can be constructed by sequentially agent

i-wise x-stretching message m, i = 1, . . . ,N .

(b) A direct messagem ∈ 2R\ {∅} is a minimally informative message verifying alternative
x if and only if it is invariant to any agent-wise x-stretching.

Proof. (a) Let m0 = m, and for each i = 1, . . . ,N , let message mi be the agent i-wise

x-stretching of message mi−1. Note that mi = mN
1 × . . . ×mN

i ×mi+1 × . . . ×mN for all

i ∈ N .
22The most informative direct message m = ∅ is never accepted and so it is not useful for realization.
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By construction, mi ⊂ F−1 (x) for any i = 0, . . . , N . This in turn implies that by

construction, mi ⊃ mi−1 for all i ∈ N , and therefore mN ⊃ m0 = m, i.e., m verifies mN .

Suppose now that mN ⊂ m̂1 × . . .× m̂N ⊂ F−1 (x). Then for any i ∈ N ,

m̂i ×mi−1
−i ⊂ m̂i ×mN

−i ⊂ m̂ ⊂ F−1 (x) ,

and therefore by construction, mN
i = m

i
i ⊃ m̂i. Hence, mN = m̂, and therefore mN is a

minimally informative message verifying x.

(b) “Only if” holds by the definition of a minimally informative message. “If” follows

from part (a), since sequential agent-wise x stretching of m yields m itself.

Under the Communication Welfare Theorem, any minimally informative message ver-

ifying x verifies, and is thus equivalent to, a budget equilibrium message verifying x. We

would like to characterize the verifying budget equilibria that are minimally informative.

First note that different budget equilibria may generate equivalent messages. For exam-

ple, in exchange economies with monotone preferences, a Walrasian budget equilibrium, in

which the budget sets are half-spaces, is equivalent to the one in which the half-spaces are

replaced with their boundary hyperplanes (i.e., waste is not allowed). It is convenient to

focus on the largest equivalent budget equilibria:23

Lemma 3 The largest budget equilibrium
³
B̂, x

´
equivalent to a given budget equilibrium

(B, x) exists and has the budget sets

B̂i =
\

Ri∈Ri: Bi⊂L(x,Ri)
L (x,Ri) ∀i ∈ N.

Proof. Budget equilibrium
³
B̂, x

´
satisfies the following two properties by construction:

(i) it is less informative than budget equilibrium (B, x), and (ii) it is larger than any

budget equilibrium (B0, x) (B0 ∈ 2NX) that is equivalent to (B, x). (ii) implies that
³
B̂, x

´
is more informative than (B, x), which, together with (i), implies that

³
B̂, x

´
is equivalent

to (B, x). Then (ii) implies the statement of the lemma.

23One reason for this focus is that, as shown below, such an equilibrium always exists (in contrast to, say,

a smallest equivalent budget equlibrium). One might also argue on normative grounds for giving agents

as much freedom as possible while sustaining the socially desirable alternative.
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Lemma 3 allows us to focus on the largest equivalent budget equilibria, which we do

from now on. The lemma also implies some useful properties of such budget equilibria

in specific settings. In particular, when all feasible lower contour sets satisfy a property

that is invariant to set intersections, the largest equivalent budget sets must also satisfy

this property. Examples of such properties include: (i) free disposal of some good when

preferences are monotone in this good, (ii) closedness in some good when preferences

are continuous in this good, (iii) budget sets take the “private” form Bi = B̃i × X−i
when the alternative space is X = X1 × . . . XN and agent i’s preferences over allocations
(x1, . . . xN) ∈ X depend only on his own allocation xi.

For realizing an intersection-monotonic choice rule, Lemmas 2 and 3 together with the

CommunicationWelfare Theorem allow to restrict attention to the largest budget equilibria

that are minimally informative verifying messages. The lemmas also allow to characterize

such budget equilibria: Namely, by CWT, in agent-wise stretching we can restrict attention

to the largest equivalent budget equilibria verifying a given alternative x. Then agent-wise

stretching corresponds to shrinking the agent’s budget set by intersecting all of his lower

contour sets for which x is still verified given the revealed information about the other

agents’ preferences. This yields the following characterization (for convenience it assumes

that the choice rule is defined on the universal domain PN):

Theorem 3 Suppose that choice rule F is intersection-monotonic on PN . Then

(a) Budget equilibrium (B, x) ∈ 2NX ×X is a largest minimally informative budget equi-

librium verifying alternative x ∈ X if and only if for some R ∈ PN ,

Bi = L (x,Ri) =
\

R0i∈Ri: x∈F(R0i,R−i)

L (x,R0i) ∀i ∈ N . (1)

(b) If (1) holds for R ∈ R, then (B, x) is a unique largest equivalent budget equilibrium
verifying alternative x in state R.

Proof. (a) A largest equivalent budget equilibrium (B, x) must have x ∈ Bi ∀i ∈ N ,
hence we can write (B,x) = (L (x,R1) , . . . , L (x,RN ) , x) for some R ∈ PN . Lemma 3
and the intersection monotonicity of F on PN imply that any largest equivalent budget
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equilibrium of this form that verifies x must have x ∈ F (R) (and by monotonicity of F ,
any such budget equilibrium with x ∈ F (R) verifies x. Thus, we can restrict attention to
such budget equilibrium messages. By the same token, in agent i-wise stretching of such

a message, we can restrict attention to budget equilibria
³
L
³
x, R̃i

´
, B−i, x

´
for R̃i ∈ P

such that x ∈ F
³
R̃i, R−i

´
. Thus, the stretching includes all preferences R0i ∈ Ri such

that x ∈ F
³
R̃i, R−i

´
for some R̃i ∈ P satisfying L

³
x, R̃i

´
⊂ L (x,R0i), which by the

monotonicity of F is equivalent to x ∈ F (R0i, R−i). By Lemma 3, (B,x) is a largest

equivalent equilibrium invariant to such stretching if and only if (1) holds.

(b) As noted in the proof of part (a), any largest equivalent budget equilibrium verifying

x takes the form (L (x,R01) , . . . , L (x,R
0
N ) , x) for some R

0 ∈ PN such that x ∈ F (R0). If
it is an equilibrium in state R, then L (x,R0i) ⊂ L (x,Ri) for all i. By monotonicity of F ,
this implies x ∈ F (R0i, R−i) for each i. But then by (1) we have L (x,Ri) ⊂ L (x,R0i), and
therefore L (x,Ri) = L (x,R0i).

In words, Theorem 3(a) establishes that the largest minimally informative budget equi-

libria are those in which each agent’s budget set is the intersection of all his feasible lower

contour sets for which x is desirable given the information about the others’ preferences.

Furthermore, Theorem 3(b) says that if the budget sets in such an equilibrium happen to

coincide with the lower contour sets in some feasible state R, then it is a unique (up to

equivalence) budget equilibrium verifying alternative x in state R.

Intuitively, intersection-monotonicity implies that alternative x is desirable when it is

high enough in the agents’ preference rankings. Then (1) means that x is so low in the

preference rankings that any further reduction in any agent’s preferences would render

it undesirable. In other words, (1) describes the “boundary” of the states in which x is

desirable, and this boundary describes a trade-off between the ranking of x in different

agents’ preferences. In any state R satisfying (1), there is a unique (up to equivalence)

budget equilibrium verifying x, whose budget sets are the agents’ lower contour sets at

R. By CWT, this budget equilibrium must be a unique (up to equivalence) minimally

informative message verifying x in state R.

Finally, observe that if (1) holds in state R ∈ R, then it also holds when the domain
R is replaced with a smaller domain eR ⊂ R such that R ∈ eR. Thus, (B, x) remains a
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unique largest equivalent budget equilibrium verifying alternative x in state R on domaineR. This observation can be used to identify some minimally informative budget equilibria
on a reduced domain.

7 Implications for the Communication Burden

This section discusses the implications of our characterization of minimally informative

messages for the communication burden of intersection-monotonic choice rules. The (de-

terministic/nondeterministic) communication burden of a choice rule is defined as the mini-

mal communication burden of a (deterministic/nondeterministic) protocol realizing it. The

communication burden of a protocol is naturally defined as the length of the realized mes-

sage sequence, i.e., the number of messages sent in the course of the protocol. Since

this number may differ across states, here we focus on the “worst-case” communication

burden–the maximum length of the message sequence over all states. For this measure to

be interesting, the amount of information conveyed with each message must be bounded,

so that all messages are encoded with “elementary” messages.

The computer science literature on “communication complexity” considers discrete

communication, and elementary messages that are binary, i.e., convey a bit of informa-

tion (see Kushilevitz and Nisan (1997)).24 The nondeterministic communication burden

is then the number of bits needed to encode the oracle’s message from set M , which is

log2 |M |. In the economic literature on continuous communication, the elementary mes-
sages are real-valued. The nondeterministic communication burden is then identified with

the number of real numbers needed to encode the oracle’s message from space M , i.e.,

the dimension of M . The discrete and continuous cases have some similarities and some

differences, so we discuss them in turn.

24This is just a normalization, because an elementary message from any other finite set (alphabet) could

be recoded with a fixed number of bits.
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7.1 Discrete Communication

Starting with any protocol realizing F , we can replace any message verifying alternative x

with a less informative minimally informative message verifying x. Doing such replacement

for all messages, we obtain a new protocol realizing F using the same number of message,

but which uses only minimally informative verifying messages. Thus, in minimizing the

communication burden, we can restrict attention to protocols that use minimally informa-

tive verifying messages, which are exactly the budget equilibrium messages characterized

in Theorem 3(a).

This observation allows us to bound above the nondeterministic communication burden

of F by counting all the budget equilibria of the form (1) and taking the binary logarithm.

However, we are more interested in having a lower bound on the nondeterministic commu-

nication burden of F , which would then also serve as a lower bound on the deterministic

burden of F . Such a lower bound can be obtained using Theorem 3(b), which says that

any budget equilibrium of the form (1) for some state R ∈ R and alternative x ∈ F (R)
is indispensable for verifying alternative x in state R. However, realization (as opposed to

full realization) only requires to verify one desirable alternative in any state R. Thus, F

may be realized using only a subset the budget equilibria of the form (1).

Nevertheless, in applications considered below, the nondeterministic communication

burden of realization is shown to be not much smaller than that of full realization. In some

applications, a good lower bound on the nondeterministic burden of realization is obtained

by counting only the budget equilibria of the form (1) with states R ∈ R in which F (R) is

single-valued (and so by Theorem 3(b), each such budget equilibrium is indispensable for

realization). In other applications, in which single-valuedness of F (R) cannot be ensured,

the following technique proves useful: Say that Rf ⊂ R is a k-degree fooling set for choice

rule F if at most k distinct states from Rf can share a message verifying an alternative in

F . Then the cardinality of the message space in any protocol realizing F is bounded below

by
¯̄Rf

¯̄
/k, and the communication burden of F is bounded below by the binary logarithm

of this number.25 This paper’s results allow to show that Rf is a k-degree fooling set by

25This is known as the “rectangle-counting” method in the computer science literature (Kushilevitz and
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showing that at most k distinct states from Rf can share a budget equilibrium of the form

(1).

7.2 Continuous Communication

The study of continuous communication requires a metric ρR on the state spaceR. Follow-
ing a suggestion of Debreu (1983), we use the Hausdorff metric on the agents’ preference

relations derived from a given metric ρX on the underlying alternative space X.26

We would like to define the continuous communication burden as the (worst-case)

number of real-valued elementary messages sent in the course of the protocol. We also

want to allow finite-valued messages, e.g., to announce of discrete allocations, but not

counted such messages towards the communication burden. In the nondeterministic case,

we can identify the communication burden with the dimension of the oracle’s message

space M .

A well-known problem in measuring continuous communication is the possibility of

“smuggling” multidimensional information in a one-dimensional message space (e.g., using

the inverse Peano function). However, that with such smuggling, an arbitrarily small error

in the message could yield a large error in its meaning. This suggests that smuggling

is prevented when the topology on the messages space must be based on their meaning

rather than chosen ad hoc. Thus, we define the distance between two messages m and

m0 in protocol Γ = hM,µ, hi as the Hausdorff distance between the events µ−1 (m) and
µ−1 (m0) in which they occur. Formally,

ρM (m,m
0) = max

©
dM
¡
µ−1 (m) , µ−1 (m0)

¢
, dM

¡
µ−1 (m0) , µ−1 (m)

¢ª
, where

dM (A,B) = sup
R∈A

inf
R0∈B

ρR (R,R0) for A,B ⊂ R.

Given this metric ρM , we use the Hausdorff dimension of M (see, e.g., Edgar (1990))

Nisan (1997). In the case of k = 1, Rf is simply called a “fooling set” in the computer science literature,
and “a set with the uniqueness property” in the economic literature.

26Formally, ρR (R,R0) = maxi∈N max {dR (Ri, R0i) , dR (R0i, Ri)},
with dR (Ri, R0i) = sup

x,y∈X:xRiy
inf

x0,y0∈X:x0R0
iy
0
[ρX (x, x

0) + ρX (y, y0)], where ρX is the given metric on X.
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as the measure of continuous communication burden.27,28 With this definition of dimM , if

messages are coded with d real numbers with a coding whose inverse is Lipszhitz continuous

(so that small errors in the transmission of the code do not result in large distortion of the

state), then we must use d ≥M real variables (Edgar (1990, Exercise 6.1.9(1)). Also, ifM

is metrically equivalent to a set in Rd that contains an open set, we must have d = dimM

(Edgar (1990), Exercise 6.2.6). Thus, the proposed dimensionality measure of M is the

relevant measure of communication burden if the communication must be robust to using

a channel that is subject to small errors, due either to analog noise or to discretization

(“quantization”)29

Thus defined continuous communication burden can be bounded above using a fooling

set technique:

Definition 11 Rf ⊂ R is a fooling set for choice rule F if ∃C > 0 such that ∀R,R0 ∈ Rf

and any direct message m verifying any alternative in state R we have

inf
R00∈m

ρR (R00, R0) ≥ CρR (R,R0) .

This definition strengthens the (1-degree) fooling set defined in the previous subsection.

(The two definitions coincide when the state space R is finite, since we can then take

C =
minR,R0∈R:R0 6=R ρR(R,R0)
maxR,R0∈R ρR(R,R0)

> 0.)

27See, e.g., Edgar (1990). Alternatively, we could use metric dimension measures of M , such as the box

dimension or the packing index. In most practical cases, the different dimensions would coincide, provided

that M is bounded.

28This definition of the continuous communication burden stands in contrast to the existing economic

literature on message space dimension, in which the message space comes endowed with a Hausdorff

topology, its dimension is defined in a topological way, and a “regularity” restriction is imposed on the

communication protocol to prevent dimension smuggling. The typical regularity restriction, is that the

message correspondence µ be “locally threaded”–i.e., have a continuous selection on a neighborhood of any

point (Mount and Reiter 1974). This restriction rules out a priori some useful communication protocols:

For example, in problems with continuous preferences and discrete (e.g., combinatorial) allocations, it

prevents the communication of discrete allocations (any selection from µ is discontinuous at a point at

which the optimal discrete allocation switches).

29A formal result about robust discretization is stated by Nisan and Segal (2003, Propositon 4).
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Lemma 4 If Rf is a fooling set for choice rule F , then the continuous communication

burden of F is at least dimRf .

Proof. Take any protocol Γ = hM,µ, hi, and any selection γ from the message correspon-
dence µ on domain Rf . We must have

ρM (γ (R) , γ (R
0)) ≥ inf

R00∈γ(R)
ρR (R00, R0) ≥ CρR (R,R0) ,

where the first inequality is by definition of metric ρM as the Hausdorff metric, and the

second inequality is because γ (R) verifies an alternative in state R and the definition

of the fooling set. Therefore, γ : Rf → M has a Lipschitz continuous inverse, hence

dimM ≥ dimRf (Edgar (1990, Exercise 6.1.9(1)).

Note that it suffices to checking Definition 11 only for minimally informative verifying

messages m, since for them the inequality is the least likely to hold. Thus, just as for

discrete communication, characterization (1) of minimally informative verifying messages

(budget equilibria) facilitates the calculation of the continuous communication burden for

intersection-monotonic choice rules.

8 Applications

8.1 Pareto Efficiency in Convex Economies

Consider smooth convex exchange economies, in which the alternatives represent the con-

sumption of L divisible goods by the N agents, hence X = RNL+ . Each agent i’s pref-

erence domain consists of the convex preferences described by differentiable utility func-

tions of his own consumption xi ∈ RL+ with a nonnegative nonzero gradient everywhere.
The feasible set consists of allocations of a given aggregate endowment x̄ ∈ RL++: X̄ =

{x ∈ X :
P

i xi = x̄} .Recall that the Pareto rule is described by

F (R) =
©
x ∈ X̄ : X̄ ⊂ ∪i∈NL (x,Ri)

ª ∀R ∈ R.
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Proposition 1 A message is a minimally informative message verifying the Pareto effi-

ciency of allocation x ∈ X̄ with x À 0 in a smooth convex exchange economy30 ,31 if and

only it is equivalent to a Walrasian equilibrium supporting x, i.e., a budget equilibrium

(B, x) with

Bi = {y ∈ X : p · yi ≤ p · xi} ∀i ∈ N (2)

for some price vector p ∈ RL+ such that kpk = 1. Any such equilibrium is a unique

Walrasian equilibrium supporting allocation x in any state in which it is an equilibrium.32

Proof. (B, x) verifies the Pareto efficiency of x if and only if the normalized gradients of

all agents’ utility functions at x in all states in E−1 (B,x) equal some p ∈ RL+. By Lemmas
2 and 3, (B, x) is a largest minimally informative budget equilibrium verifying x if and

only if for each i ∈ N , Bi is the intersection of all lower contour sets at x of agent i’s utility
functions with gradient p at x. This means that Bi is given by (2). Furthermore, in any

state in which such (B, x) an equilibrium, the normalized gradients of all agents’ utilities

at x equal p, which implies that in this state (B,x) is a unique Walrasian equilibrium

supporting x.

The proposition implies that the minimal message space required for verifying any

Pareto efficient allocation in any convex economy is the space of Walrasian equilibria. Since

a feasible allocation x ∈ X̄ is described with (N − 1)L real variables, and a normalized
price vector p is described with L− 1 real variables, the space of Walrasian equilibria has
dimension (L− 1) + (N − 1)L = NL− 1.
30We restrict attention to x À 0 to avoid the problem of non-existence of supporting Walrasian prices

(see, e.g., Mas-Colell et al. (1995, Figure 16.D.2)).

31If non-smooth preferences are allowed, the Walrasian equilibria remain minimally informative messages

verifying Pareto efficiency, but other such messages emerge. For example, let N = L = 2 and x̄ = (2, 2),

and consider the budget equilibrium (B1,B2, x) with x = (1, 1, 1, 1), B1 = {x ∈ X : min {x11, x12} ≤ 1},
and B2 = {x ∈ X : x21, x22 ≤ 1} . This is a budget equilibrium in state R ∈ R if and only if L (x,R1) = B1.
This is a minimally informative message verifying the efficiency of x, but it is not equivalent to a Walrasian

equilibrium.

32Note that the last statement is stronger than that in Theorem 3(b): In this particular setting, the

minimally informative messages verifying x partition F−1 (x).
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However, realizing Pareto efficiency only requires to verify one efficient allocation in

each state. In fact it is possible to realize the Pareto rule without any communication, e.g.,

by giving all endowment to agent 1. To rule this out, we restrict attention to allocations

satisfying a “subsistence” requirement that kxk ≥ σ, for a given σ < 1
N
minl x̄l.33 Note that

the subsistence Pareto rule can be realized by fixing an “endowment allocation” ω ∈ X̄
with ω ≥ (σ, ..,σ) and announcing a Walrasian equilibrium (B, x) such that Bi 3 ω for all
i, which exist in any convex economy (Mas-Colell et al. 1995, Section 17.BB). Since such

equilibria satisfy the additional “budget constraints”
P

l plωil =
P

l pixil for all i, they can

be communicated using (L− 1) + (N − 1) (L− 1) = N (L− 1) real numbers.
It is in fact impossible to realize subsistence Pareto efficiency using less communication.

This can be shown using the fooling set consisting of the Cobb-Douglas economies, in which

each agent i’s preferences are described by a utility function of the form ui (xi) =
Q
l x
αil
il

with the normalization
P

l αil = 1. Indeed, all subsistence Pareto efficient allocations in a

Cobb-Douglas economy with parameters αÀ 0 are interior, and the first-order equilibrium

conditions imply that no two distinct Cobb-Douglas economies share a Walrasian equilib-

rium sustaining an interior allocation.34 Therefore, we must use a subspace of Walrasian

equilibria whose dimension is at least that of Cobb-Douglas economies, which is N (L− 1):

Corollary 1 The nondeterministic communication burden of subsistence Pareto efficiency

in the convex exchange economy is exactly N (L− 1) real numbers, and it is achieved by
the Walrasian equilibrium protocol with a fixed endowment.

Corollary 1 was first established by the “informational efficiency” literature (Hurwicz

1977; Mount and Reiter 1974). Unlike this literature, we have derived it from the purely

33The “informational efficiency” literature only ruled out the corners of the feasible set X, but need to

rule out neighboring allocations as well, because we do not impose any “regularity” restriction on protocols

and use a metric measure of dimensionality. Intuitively, if only the corners of X were ruled out, Pareto

efficiency could still be approximated arbitrarily closely without any communication, by giving nearly all

the aggregate endowment x to one agent.

34Furthermore, we can also show that Definition 11 holds: the minimal distance between a Cobb-Douglas

economy with parameters α and any economy that shares a subsistence Walrasian equilibrium with the

Cobb-Douglas economy with parameters α0 is at least C kα− α0k, provided that α,α0 ≥ (δ, .., δ) for a fixed
δ > 0.
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set-theoretic Proposition 1, which does not require any topological restrictions on commu-

nication or any scalar measure of the communication burden.

8.2 Pareto Efficiency in Economies with Numeraire

Consider economies with numeraire, in which the set of alternatives take the form X =

K × RN , where K is a finite set of (non-monetary) allocations, and RN describes the

transfers of numeraire (money) to the agents. Each agent i’s preference domainRi consists

of preferences Ri over (k, t) ∈ X that are, for all k ∈ K, (i) continuous and monotone in
his own transfer ti, (ii) do not depend on other agents’ transfers t−i, and (iii) unbounded

in numeraire, i.e., for any x ∈ X and any k ∈ K there exist t ∈ R such that (k, t)Rix. The
feasible set takes the form X̄ = {(k, t) ∈ X :

P
i ti = 0}, i.e., requires a balanced budget.

Proposition 2 A message is a minimally informative message verifying the Pareto ef-

ficiency of allocation x = (k, t) ∈ X̄ in an economy with numeraire if and only if it is

equivalent to a valuation equilibrium supporting x, i.e., a budget equilibrium (B, x) in

which

Bi = {(k0, t0) ∈ X : pi (k
0) + t0i ≤ pi (k) + ti} ∀i ∈ N (3)

for some price vector p ∈ RNK satisfyingX
i

pi (k
0) =

X
i

pi (k) for all k0 ∈ K. (4)

Any such equilibrium is a unique valuation equilibrium supporting allocation x in the states

R in which L (x,Ri) = Bi for all i.

Proof. (B,x) = (L (x,R1) , ..., L (x,RN) , x) for some R ∈ R if and only if for each i,

Bi takes the form (3) for some pi ∈ (R∪ {+∞})K with pi (k) < +∞. Since this form is

preserved under set intersections, Lemma 3 implies that any budget equilibrium satisfying

(1) takes this form. Furthermore, x ∈ F (R) if and only if it is impossible to extract

numeraire while making all agents equally well off, i.e.,

X
i

pi (k
0) ≤

X
i

pi (k) for all k0 ∈ K
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(note that this implies that pi (k0) < +∞ for all k0 ∈ K). (1) means that the prices pi (k0)
for all k0 ∈ K\ {k} are maximized subject to the inequality, which yields condition (4).
Theorems 2 and 3 imply the proposition.

The term “valuation equilibrium” was coined by Mas-Colell (1980); such equilibria were

also studied by Bikhchandani and Mamer (1997) and Bikhchandani and Ostroy (2002).

These papers have establishes the traditional welfare theorems for such equilibria: An

allocation is Pareto efficient if and only if it is supported by a valuation equilibrium. The

contribution of proposition 2 lies is in showing that valuation equilibria constitute the

minimal information that must be revealed in order to verify the Pareto efficiency of an

allocation.

Proposition 2 implies that the minimal message space required for verifying any efficient

allocation in any economy with numeraire is the space of valuation equilibria. Normalizing

the prices, e.g., that
P

k pi (k) = 0 for each agent i, we can announce a price vector

satisfying (4) using (N − 1) (K − 1) real numbers. In addition, K − 1 real numbers are
needed to announce a transfer vector t adding up to zero (a discrete allocation k is zero-

dimensional).

For realizing Pareto efficiency, we only need to verify one efficient allocation in each

state, and so need not use all valuation equilibria. However, it turns out that all the

possible normalized valuation prices satisfying (4) still must be used. This is true even

if we restrict attention to preferences that are quasilinear in numeraire, i.e., described by

utility functions of the form ui (k, t) = vi (k)+ ti. (For such preferences, Pareto efficiency is

equivalent to maximizing the total surplus
P

i vi (k) .) Indeed, consider diagonal economies,

in which the agents’ utility functions are ui (k, t) = pi (k)+ ti with p ∈ RNK satisfying (4).
In such an economy, all allocations x ∈ X̄ are surplus-maximizing, but by the second

part of Proposition 2, the valuation equilibrium supporting any such allocation the agents’

budget sets must be described by prices p. Thus, no two distinct diagonal economies

share a valuation equilibrium, and so diagonal economies form a fooling set.35 Therefore,

realizing Pareto efficiency with quasilinear preferences requires the announcement of an

35Formally, to apply Lemma 4, we need diagonal economies to satisfy the stronger Definition 11 of a

fooling set, which is shown by Nisan and Segal (2003, Proposition 2).
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(N − 1) (K − 1) -dimensional price vector. This amount of communication in fact allows a
deterministic surplus-maximizing protocol, in which the first N − 1 agents announce their
normalized utilities and then the last agent chooses a surplus-maximizing allocation. Thus

we have

Corollary 2 The communication burden (both deterministic and nondeterministic) of Pareto

efficiency in a quasilinear economy is (N − 1) (K − 1) real numbers.

One class of quasilinear allocation problems with numeraire that has received a lot of

attention recently is the “combinatorial allocation problem,” in which there is a set L of

objects to be allocated among the agents, thusK = NL, and the preference domain includes

those quasilinear preferences in which each agent i cares only about his own consumption

bundle k−1 (i) and his preference is monotonic in this bundle (in the set inclusion order).

Consider the particular case of N = 2, and note that for any normalized price vector

p ∈ RNK satisfying (4) such that p1 (k) is nondecreasing in k−1 (1), we also have that p2 (k)
is nondecreasing in k−1 (2). In the state in which the agents’ preferences are described by

utility functions ui (k, t) = pi (k) + ti (i = 1, 2) for such prices, all allocations x ∈ X̄ are

surplus-maximizing by (4), but the normalized price vector in any valuation equilibrium

must coincide with p by the second part of Proposition 2. Thus, any normalized monotonic

price vector for an agent must be announced by an efficient protocol, which implies

Corollary 3 The continuous communication burden (both deterministic and nondetermin-

istic) of efficient combinatorial allocation of L objects between two agents is 2L − 1.

To see that the deterministic communication burden coincides with the nondetermin-

istic burden, consider the communication protocol in which firm 1 announces its utility

and then firm 2 chooses an efficient allocation. Corollary 3 is obtained by Nisan and Segal

(2003), who also examine the potential communication savings when agents’ combinatorial

valuations are a priori restricted to lie in certain important classes.
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8.3 Approximate Pareto Efficiency in Economies with Numeraire

Recall that the approximate Pareto rule is defined by

F (R) =
©
x ∈ X̄ : Xδ ⊂ ∪i∈NL (x,Ri)

ª ∀R ∈ R,
where Xδ ⊂ X̄ denotes the set of alternatives in which at least amount δ > 0 of resources

is wasted. We consider the domain R with numeraire defined in the previous subsection,

and let Xδ be the set of alternatives that waste at least amount δ of numeraire: Xδ =

{(k, t) :Pi ti ≤ −δ}.

Proposition 3 A message is a minimally informative message verifying δ-approximate

Pareto efficiency of allocation x = (k, t) ∈ X̄ in an economy with numeraire if and only if

it is equivalent to a δ-valuation equilibrium supporting x, i.e., a budget equilibrium (B, x)

with budget sets described by (3) for some price vector p ∈ RNK satisfyingX
i

pi (k
0) =

X
i

pi (k) + δ for all k0 ∈ K\ {k} . (5)

Any such equilibrium is a unique δ-valuation equilibrium in the states R in which L (x,Ri) =

Bi for all i.

Proof. Recall from the proof of Proposition 2 that (B,x) = (L (x,R1) , ..., L (x,RN) , x) for

some R ∈ R if and only if for each i, Bi takes the form (3) for some pi ∈ (R∪ {+∞})K with
pi (k) < +∞, and that any budget equilibrium satisfying (1) takes this form. x ∈ F (R) if
and only if it is impossible to extract more than δ of the numeraire while making all agents

equally well off, i.e.,

X
i

pi (k
0) ≤

X
i

pi (k) + δ for all k0 ∈ K.

(note that this implies that pi (k0) < +∞ for all k0 ∈ K). (1) means that the prices pi (k0)
for all k0 ∈ K\ {k} are maximized subject to the inequality, which yields condition (5).
Theorems 2 and 3 imply the proposition.

We now focus on the domain of quasilinear preferences, for which F (R) is the set of

alternatives that approximate the maximum surplus in state R within δ. Furthermore,
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we restrict attention to bounded utility functions: ui (k) ∈ [0, 1] for all k ∈ K, i ∈ N .
Then letting one agent choose an allocation to maximize his own utility approximates the

maximum surplus within δ = N − 1; we examine the communication burden of improving
the approximation to some δ < N − 1. Observe that any approximation δ > 0 can be

achieved with finite communication in which agents announce their utilities discretized to

multiples of a sufficiently small ε > 0. Thus, the communication burden of approximation

should be measured with the number of bits.

We bound below the number of δ-valuation equilibria needed to ensure equilibrium

existence on the subset eR of states in which for all k ∈ K, ui (k) ∈ {0, 1} for all i, andP
i ui (k) = 1. Observe that

¯̄̄ eR¯̄̄ = NK, since the value 1 for any allocation k ∈ K can

be assigned to any of the N agents. Now consider how many states from eR can share

a given δ-valuation equilibrium (B, (k, t)) described by a price vector p ∈ RNK. We can
assign value 1 for the proposed allocation k to one of the N agents. In all states in which

(B, (k, t)) is an equilibrium, for any allocation k0 6= k, each agent i’s utility must satisfy

ui (k
0) ≤ γi (k, k0) ≡ ui (k) + pi (k0)− pi (k) .

On the other hand, (5) implies that in any state from eR,X
i

γi (k, k
0) =

X
i

ui (k) + δ = 1+ δ < N.

Therefore, for some agent i we must have γi (k, k0) < 1, and so this agent cannot have value

1 for allocation k0. Thus, we are left with at most N − 1 possibilities to assign value 1 for
allocation k0 among the other agents. Since this holds for any k0 6= k, a given δ-valuation
equilibrium can be an equilibrium in at most N (N − 1)K−1 states from eR, i.e., eR is a

N (N − 1)K−1-degree fooling set, as defined in Section 7. Thus, we need to use at least
| eR|

N(N−1)K−1 = (1+ 1/ (N − 1))
K−1 such equilibria to ensure equilibrium existence on eR, and

the communication burden of F is bounded below by the binary logarithm of this number:

Corollary 4 When agents have quasilinear utilities in [0,1], the communication burden of

approximating the maximum surplus within δ < N − 1 (i.e., achieving a better approxima-
tion than by letting one agent choose an allocation) is at least (K − 1) log2 (1+ 1/ (N − 1))
bits.
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The Corollary reproves Nisan’s (2002) Theorem 2 on the communication complexity of

the “approximate disjointness problem” using the Communication Welfare Theorem. It

can also be used to prove Nisan and Segal’s (2003) result on the communication burden of

approximately efficient combinatorial auctions. Namely, they construct a “large” subset K

of allocations such that the agents can have arbitrary utilities in [0,1] for allocations from

K, and in looking for approximately efficient allocations we can restrict attention to those

from K. (The allocations from K correspond to partitions of objects with the “pairwise

intersection” property.) Corollary 4 implies that achieving a better approximation than

giving all objects to one agent requires communication proportional to |K|, which proves
to be exponential in the number of objects.

8.4 Individually Rational Pareto Efficiency with Universal Pref-

erences and in Discrete Economies

Let us require individual rationality along with Pareto efficiency, with x0 ∈ X being the

status quo alternative. Formally, F is defined by

F (R) =
©
x ∈ X : x0 ∈ L (x,Ri) ∀i ∈ N , X = ∪i∈NL (x,Ri)

ª ∀R ∈ R.
Let X be a finite set, which ensures that this choice rule is nonempty-valued (e.g., it

includes agent 1’s preferred alternative from those that are individually rational for the

other agents). Consider first the universal domain:

Proposition 4 A message is a minimally informative message verifying the Individually

Rationality and Pareto efficiency of alternative x ∈ X on the universal domain R = PN

if and only if it is equivalent to a partitional equilibrium supporting x, i.e., a budget equi-

librium (B, x) in which Bi 3 x, x0 for all i ∈ N , and (B1, . . . , BN ) forms a partition of
X\ {x, x0}. Furthermore, any such equilibrium is a unique partitional equilibrium support-
ing alternative x in any state R ∈ PN in which L (x,Ri) = Bi for all i ∈ N .

Proof. (1) means that for each i ∈ N ,

Bi =
\

R0i∈P: x∈F(R0i,R−i)

L (x,R0i) =
\

Y⊂X: x,x0∈Y , x0∈Bj ∀j∈N\{i}, Y ∪(∪j∈N\{i}Bj)=X
Y .
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This implies that x, x0 ∈ Bi ∀i ∈ N , and then holds if and onlyBi = {x, x0}∪
¡
X\©∪j∈N\{i}Bjª¢

∀i ∈ N , i.e., (B, x) is a partitional equilibrium. Theorems 2 and 3 imply the proposition.

Proposition 4 implies that the minimal message space required for verifying any Pareto

efficient IR alternative with universal preferences is the space of partitional equilibria.

Realization of the choice rule requires verifying only one desirable alternative in each

state, which in principle may not require all possible partitional equilibria. However, for

every partitional equilibrium (B, x) we can find a state R ∈ PN in which L (x,Ri) = Bi
for all i and x is a unique desirable alternative. In this state, the status-quo alternative

x0 (if different from x) is the next-best alternative to x in each agent’s preference ranking.

This ensures that the only alternatives that are individually rational for all agents in

state R are x and x0, and Pareto efficiency dictates that F (R) = {x}. The second part
of Proposition 4 then implies that (B, x) is a unique partitional equilibrium in state R.

Hence, all partitional equilibria must be used for realizing the choice rule.

There are NX−1 partitional equilibria with x = x0 (each of the alternatives in X\ {x0}
can be allocated to any of the N agents’ budget sets), and NX−2 such equilibria for any

given x 6= x0 (each of the alternatives in X\ {x, x0} can be allocated to any budget set).
Adding up, we obtain NX−1 + (X − 1)NX−2 partitional budget equilibria. Taking the

binary logarithm, we obtained the number of bits that must be communicated:

Corollary 5 The nondeterministic communication burden of the individually rational Pareto

rule on the universal preference domain is exactly (X − 2) log2N + log2 (N +X − 1) bits.

When X is large, this burden is asymptotically proportional to X, which is exponen-

tially larger than that of simply naming an alternative (which takes log2X bits). In fact,

the burden is comparable to that of full revelation of an agent’s preferences, which is

asymptotically equivalent to log2X! ∼ X log2X bits as X →∞.36
One setting where the alternative space X is naturally large is the exchange economy

with L indivisible goods, in whichX = NL (note that unlike in the combinatorial allocation

36Since there are X! strict preference orderings of X elements, by Stirling’s formula, it takes log2X! ∼
X log2X bits to communicate such an ordering as X →∞. That allowing indifference does not raise the
asymptotic communication burden follows from the approximation of Gross (1962).
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problem described in Subsection 8.2, there is no divisible “numeraire” good). Suppose that

each agent’s preferences depend only on his own consumption of goods and are monotonic

in it. While we no longer have universal preference domain, we can focus on the case where

N = 2, and on the subset X̃ ⊂ X of alternatives that give L/2 objects to each agent. If

the status-quo allocation x0 ∈ X̃, and if the agents’ preferences are restricted to be such
that they always strictly prefer to consume a larger number of objects, then all individually

rational allocations must also lie in X̃. Furthermore, the restriction still allows the agents

to have arbitrary preferences over X̃. Thus, we can restrict attention to the problem on

the set X̃ with universal preferences, and Corollary 5 yields

Corollary 6 The communication burden of verifying an individually rational Pareto effi-

cient allocation in an indivisible-good exchange economy with two agents and L objects is

at least X̃ − 1 = ¡ L
L/2

¢− 1 bits.
Thus, the communication burden is exponential in the number of objects.37

8.5 Stable Many-to-One Matching

Let the set N of agents be partitioned into the set F of firms and the set W of workers. A

two-sided matching between firms and workers is described by a binary relation x ⊂ F×W .
With a slight abuse of notation, we also let x represent the correspondence x : N ³ N

defined by:

x (i) = {j ∈ N : (i, j) ∈ x or (j, i) ∈ x} for i ∈ N .

We restrict attention to many-to-one matching problems, in which a worker cannot match

with more than one firm, and so the set of alternatives is

X = {x ⊂ F ×W : |x (w)| ≤ 1 ∀w ∈W}
37The setting can also be reinterpreted as bilateral bargaining over L binary attributes, where it is

known that, other things equal, agent 1 prefers value 1 and agent 2 prefer value 0 for any attribute, but

otherwise the agents can have arbitrary preferences over attribute profiles. The Corollary implies that

finding a Pareto efficient and individually rational attribute profile requires exponential communication in

the number of attributes.
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We focus on matching problems without externalities, i.e., those in which each agent i’s

preferences depend only on the set x (i) of his matching partners.

The stable matching rule is a CU rule that is described with the following blocking sets

β (x, S) = {y ∈ X : y\ (S × S) ⊂ x\ (S × S)} ∀S ⊂ N, ∀x ∈ X.

In words, a coalition cannot create new matches involving outsiders, but can break any

match and can create any match between its members.38 This stable matching problem is

studied in Roth and Sotomayor (1990), henceforth RS.

Proposition 5 A message is a minimally informative message verifying the stability of a

many-to-one matching x if and only if it is equivalent to a match-partitional equilibrium

supporting x, i.e., a budget equilibrium (B, x) satisfying

Bf = {y ∈ X : y (f) ⊂ ω (f)} ∀f ∈ F,
Bw = {y ∈ X : y (w) ⊂ φ (w)} ∀w ∈W,

for some φ,ω ⊂ F ×W such that φ ∩ ω = x and φ ∪ ω = F ×W . Furthermore, any such
equilibrium is a unique match-partitional equilibrium supporting matching x in any state

R ∈ R in which L (x,Ri) = Bi for all i ∈ N .

Proof. For any agent i ∈ N , Bi = L (x,Ri) for some Ri ∈ Ri if and only if

Bi = {y ∈ X : y (i) ∈ Ωi}

for some Ωi ⊂ 2W for i ∈ F or Ωi ⊂ 2F for i ∈ W . Since this form is preserved under

set intersection, any budget equilibrium (B, x) satisfying (1) must take this form for some

R ∈ R. x ∈ F (R) if and only if

(i) each worker w ∈W prefers x to being unmatched, and

(ii) each firm f ∈ F prefers x to matching with any subset consisting of workers who

strictly prefer f to their equilibrium match and those already matched with f .

38We might also prevent a coalition from breaking matches between outsiders, but this is irrelevant when

externalities in preferences are ruled out.
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(i) means that ∅ ∈ Ωw for each worker w ∈ W . Since the worker can match with at
most one firm, and the set of his possible matching partners in Bw is φ (w) = ∪ω∈Ωwω, Bw
is not affected by redefining Ωw = 2φ(w). This allows to write the workers’ budget sets in

the desired form for some relation φ ⊂ F ×W . Then (ii) means that for each firm f ∈ F ,

2(W\φ(f))∪x(f) ⊂ Ωf .

(1) means that each budget set Bi is the smallest possible given B−i such that the above

inclusion holds. For i ∈ F (firms), this means that Ωi = 2ω(i) for ω (i) = x (i) ∪ (W\φ (i)),
thus the firm’s budget sets take the desired form for a relation ω ⊂ F ×W such that ω

and φ partition (F ×W ) \x. This also ensures the minimality of the budget set Bi of any
worker i ∈W given B−i. Theorem 2 and 3 imply the proposition.

Intuitively, since a worker’s preferences depend only on his matching partner, his

(largest equivalent) budget sets can be described in terms of the available firms. On

the other hand, since a firm has preferences over groups of workers, its (largest equivalent)

budget sets can be described in terms of such available groups. A budget equilibrium with

such budget sets verifies stability if and only if each firm f ’s budget set includes all groups

consisting of workers who do not have f in their budget sets and those currently employed

by f . Indeed, this ensures that no deviation can make firm f and all of its new employees

strictly better off. Finally, minimally informative budget equilibria have the minimal bud-

get sets necessary for verification; this means that each firm f ’s budget set must include

exactly the groups consisting of f ’s current employees and those workers who do not have

f in their budget set. Thus, in a minimally informative budget equilibrium, the firms’

budget sets are implied by the workers’ budget sets, and they can be described by listing

individual workers that are available to the firm rather than groups of workers.

The fact that combinatorial budget sets for firms need not be used brings about an

exponential reduction in the communication burden. Indeed, the workers’ budget sets are

described by a relation φ ⊂ F ×W , which is communicated with at most FW bits, the

equilibrium matching x is communicated with W log2 (F + 1) bits, and the firms’ budget

sets are implied. Thus, the burden of verifying a many-to-one stable matching isO (FW ) as

F,W →∞. This is exponentially smaller than that of full revelation of a firm’s preferences
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over subsets of workers, which asymptotically takes log2
¡
2W !

¢ ∼ W · 2W bits as W →∞
(see footnote 36 above).

For realizing the choice rule, we only need to verify one stable matching in each state,

and need not use all match-partitional equilibria. However, we can show that “almost”

all such equilibria need to be used, and so the nondeterministic communication burden

of stability is asymptotically FW bits. This is true even if the preference domain is

restricted to include only preferences that are strict and one-to-one, i.e., each firm prefers

being unmatched to matching with more than one worker. With such preferences, we can

restrict attention to one-to-one matchings x, in which |x (i)| ≤ 1 for all i ∈ N . We show
that with such preferences, the uniqueness of a stable matching can be ensured by adding

one agent on each side:

Lemma 5 In the one-to-one matching problem with strict preferences, for any stable

matching x in any state R, we can add a firm f ∗ and a worker w∗ and complete the

preferences in a way consistent with R so that x∪{(f ∗, w∗)} is the unique stable matching.

Proof. Let the new agents’ preferences have wRf∗w∗Rf∗ {∅} and fRw∗f ∗Rw∗ {∅} for all
f ∈ F,w ∈W , i.e., each new agent prefers all other partners to the other new agent, which
he in turn prefers to being single. For the old agents, let every firm f ∈ F rank w∗ just below
its current match x (f), and let every worker w ∈W rank f ∗ just below his current match

x (w). Such completion of preferences guarantees that matching x∗ = x ∪ {(f ∗, w∗)} is
stable. We show that x∗ is a unique stable matching by contradiction: If it were not, then

by the Lattice Theorem (RS, Theorem 2.16), either the worker-pessimal stable matching xw

or the firm-pessimal stable matching xf would differ from x∗. For definiteness let xw 6= x∗.
By Theorem 2.22 in RS, the set of single agents is the same in xw as in x∗. Therefore,

worker w∗ must still be matched in xw, and since cannot be better off in than in x∗, we

must have xw (w∗) = f ∗. But this implies that any worker w 6= w∗ who is strictly worse off
in xw than in x∗ would have a strictly Pareto improving blocking by matching with firm

f ∗. It follows that all workers must be indifferent between xw and x∗, which implies that

xw = x∗, yielding a contradiction.

By the Lemma and the second part of Proposition 5, for any match-partitional budget
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equilibrium (B, x) on the first F − 1 firms and W − 1 workers we can construct a state R
in which the unique stable matching coincides with x and the unique supporting match-

partitional budget sets coincide with B for the first F −1 firms andW −1 workers (firm F
and workerW are matched with each other and their budget sets only include each other).

Letting for definiteness F ≤W , and considering an allocation x in which all the firms are
matched, we can let the budget set of any of the first F − 1 firms include any of the first
W −1 workers in addition to its current match (the workers’ match-partitional budget sets
are implied). Since any such budget equilibrium is a unique match-partitional equilibrium

in some state, we have

Corollary 7 The communication burden of stable one-to-one matching with strict prefer-

ences betweenW workers and F ≤W firms is at least (F − 1) (W − 2) bits. The nondeter-
ministic communication burden of stable many-to-one matching between W workers and F

firms on any preference domain that includes strict one-to-one preferences and guarantees

the existence of a stable matching is asymptotically equivalent to FW as F,W →∞.

Corollary 7 generalizes quadratic lower bounds obtained by Gusfield and Irving (1989)

for finding a stable one-to-one matching with F = W using particular querying languages.

Specifically, they only allow queries of the form “which partner has rank r in your pref-

erence ranking” (their Theorem 1.5.1) or “what rank partner i has in your preference

ranking” (their Theorem 1.5.2 ). Allowing general communication could in general reduce

the communication burden,39 but the corollary establishes that this is not the case.

The deterministic communication burden, i.e., that of actually of finding a stable

matching, can in principle be substantially higher. However, for the preference domain

on which the firms’ preferences are strict and substitutable (RS Definition 6.2), a stable

matching exists and can be found using only somewhat more communication. This can

39In fact, the proving method of Gusfield and Irving (1989) cannot be extended to general communica-

tion. Their proof uses a “fooling set” in which all firms have the same and known preferences over workers.

On this fooling set, we could use a simple protocol in which workers sequentially, in the reverse order of

their desirability, chose firms from those that remain available. This protocol finds a stable matching with

W steps and communicates at most log2 F bits per step.
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be done with a Gale-Shapley “deferred acceptance algorithm” (RS Theorems 6.7, 6.8),

which takes at most 3FW steps, at each of which a match is proposed, accepted, or re-

jected. Since a match is described with at most log2 (FW ) bits, we have a deterministic

protocol that communicates at most 3FW log2 (FW ) bits. This only slightly exceeds the

verification burden, and is exponentially less than full revelation of firms’ preferences over

combinations of workers.40

9 Deterministic Communication

Of course, any practical protocol must be deterministic: it must find a desirable allocation

without the benefit of an omniscient oracle. Such a protocol in general may need to reveal

more information than needed for verification. In fact, deterministic realization of an IM

choice rule sometimes require exponentially more communication than nondeterministic:

Example 3 Let N = 2 and X = {x ⊂ L : |x| = 2}, for some set L such that |L| = 3m.
We interpret the agents as managers in a firms and L as a set of workers, and allocation

x ∈ X as choosing a pair of workers for a certain task. Manager 1 receives payoff 1 if

the workers in x share a language, and payoff 0 otherwise. Manager 1 knows privately the

language spoken by each worker. Publicly it is only known that each worker speaks one

language, there are m languages spoken by a pair of workers, and m languages spoken by

a single worker. Manager 2 receives payoff 1 if x ⊂ y and payoff 0 otherwise, where y ⊂ L
is a particular group of 2m + 1 workers known privately to manager 2. The social goal

is to give both managers a payoff of 1, which describes a choice rule that is CU (letting

each manager’s blocking set be X) and thus intersection-monotonic. Note that a socially

desirable pair x always exists, and it can be verified simply by announcing it, which takes

2 log2 L bits. However, the deterministic communication complexity of finding such a pair

is asymptotically proportional to L, which follows from the problem’s equivalence to the

“Pair-Disjointness” problem analyzed by Kushilevitz and Nisan (1997, Section 5.2).

40Even if a firm’s preference relation is known to be strict and substitutable, the communication burden

of describing such a relation is still exponential in W , as shown by Echenique (2004, Corollary 5).
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However, in some well-known social choice problems the gap between deterministic

and nondeterministic communication burdens proves to be small. This is trivially true

when even nondeterministic communication proves almost as hard as full revelation (e.g.,

in the surplus-maximizating combinatorial allocation problem considered in Subsection

8.2). More interestingly, the gap is also small in some cases in which much less commu-

nication than full revelation suffices. For example, in a convex economy with the “gross

substitute” property, Walrasian tatonnement converges quickly to a Walrasian equilibrium,

which verifies Pareto efficiency (Mas-Colell et al. (1995, Section 17.H)). Similarly, in the

many-to-one matching problem with strict substitutable preferences, a Gale-Shapley de-

ferred acceptance algorithm converges quickly to a “match-partitional” equilibrium, which

verifies stability (Roth and Sotomayor (1990, Section 6.1)). In both these mechanisms, at

each step, the designer offers budget sets for the agents, and the agents report their optimal

choices from their respective budget sets. If the choices are inconsistent, the designer ad-

justs the budget sets to be “closer” to being an equilibrium. A “substitutability” condition

on the agents’ preferences allows to construct an adjustment process that is monotonic, and

therefore converges quickly (enormously faster than full revelation). Some of the agents in

such mechanisms even have the incentives to report truthfully (e.g., nonatomic agents in

Walrasian tatonnement, the proposing agents in a deferred acceptance algorithm).

10 Conclusion

The “market design” literature has examined the attainment of socially desirable allo-

cations using “price discovery” mechanisms, such as ascending auctions, tatonnement,

and deferred acceptance algorithms. However, this literature has not answered two fun-

damental questions: (1) Why and when is the focus on “price discovery” mechanisms

justified? and (2) How should the “necessary” price space for a given problem be con-

structed? Instead, a few papers have proposed ad hoc price spaces for specific problems

and established fundamental welfare theorems for them–see, e.g., Milleron (1972), Mas-

Colell (1980), Bikhchandani and Mamer (1997), Bikhchandani and Ostroy (2002), Kelso

and Crawford (1982), Hatfield and Milgrom (2004).
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The present paper answers both questions by analyzing the minimal information that

must be communicated in order to solve a given social choice problem when the preference

information is distributed among the agents. The analysis answers (1) by characterizing

the social choice problems for which any minimally informative verifying message is a

price equilibrium (more generally “budget equilibrium”), and answers (2) by constructing

the minimally informative verifying price equilibria for any given social choice problem.

Thus, the paper provides a justification for and characterizes the scope of the “market

design” approach (as opposed to more general mechanism design), and characterizes the

form of “prices” that must be discovered to solve a given social choice problem. Contrary

to widespread belief, prices are necessary not in order to incentivize the agents, but in

order to aggregate distributed information about their preferences into a socially desirable

decision.

To be sure, the paper does not fully solve the general “market design” problem of

solving a given social choice problem with a practical mechanism that is deterministic

and incentive-compatible. However, the paper has two important implications for this

problem. The first implication is that in some social choice problems (such as the efficient

combinatorial allocation problem), the space of prices that must be discovered proves to

be prohibitively large, and the communication of such prices proves to be almost as hard

as full revelation of preferences. In such cases, the designer of a practical mechanism must

either moderate her goals or restrict attention to a smaller preference domain. The second

implication is for the problems for which the required space of supporting prices proves

to be manageable, and their communication proves much simpler than full revelation. For

such problems, the characterization of the price space offers some clues for the design of

practical mechanisms that must find an equilibrium from this space. In some important

cases, mentioned in Section 9, a price (budget set) adjustment process can be constructed to

converge quickly to a verifying budget equilibrium and to provide agents with the incentives

for truthful reporting. Identifying more general approaches to constructing deterministic

and incentive-compatible mechanisms solving a given social choice problem with minimal

communication is an important question for further research.
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Figure 1: Nondeterministic communication 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2: The Communication Welfare Theorem 
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Figure 3: Intersection-Monotonicity of Coalitionally Unblocked Rules 
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Figure 5: Agent 1-wise Stretching 
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