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Abstract
We show that local potential maximizer ([15]) with constant weights is stochas-

tically stable in the log-linear dynamics provided that the payoff function or the

associated local potential function is supermodular. We illustrate and discuss,

through a series of examples, the use of our main results as well as other concepts

closely related to local potential maximizer: weighted potential maximizer, p-

dominance. We also discuss the log-linear processes where each player’s stochastic

choice rule converges to the best response rule at different rates. For 2× 2 games,

we examine a modified log-linear dynamics (relative log-linear dynamics) under

which local potential maximizer with strictly positive weights is stochastically sta-

ble. This in particular implies that for 2 × 2 games a strict (p1, p2)-dominant

equilibrium with p1 + p2 < 1 is stochastically stable under the new dynamics.
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1 Introduction

In this paper we examine a dynamic strategy adjustment process in which players employ

the log-linear stochastic choice rule. Players are assumed to be myopic and adjust their

strategies at discrete times in response to a (distribution of) strategy profile prevailing in

the previous period.

The log linear choice rule is so called because the log likelihood ratio of choosing one

action over another, given other players’ actions, is linearly proportional to the difference

of payoffs they yield. The factor of proportionality is a crucial variable that parameterizes

the process ranging from the uniform choice rule to a deterministic best-response rule.

Thus the log-linear rule can be regarded as a perturbation of a best-response rule and

it is indeed this view that we take here. Our main aim is to characterize the long-run

behavior, stochastic stable states, of this process for a wider class of games than the

existing literature when the process is close to the one under a best-response rule.

A more intuitive description of the log-linear process is that, the better an action

(yielding a higher payoff), the exponentially more likely that it will be chosen. This is in a

prominent contrast to other perturbed best-response processes (e.g., [18], [10])1 in which

all “mistakes” are equally likely. While the long-run behavior of the log-linear process

and processes with uniformly likely mistakes agree in selecting the (weakly) risk-dominant

equilibrium in two-player two action symmetric games with two strict equilibria in pure

actions, their similarity ends there.2

One of the existing results that distinguishes the log-linear process from other per-

turbed best-response models is on the class of potential games ([12]) due to [2, 3]. If the

game being played is a potential game, then the strategy profile(s) that maximizes its

potential function will be observed almost always in the long run under any log-linear

process that is sufficiently close to a best-response process. While useful in certain eco-

nomic applications, the class of potential games is rather small.3 Our main result extends
1[10] studies perturbed Darwinian process. A Darwinian rule is any deterministic rule according to

which a better action is better represented in the next generation.
2The weakly risk-dominant equilibrium is stochastically stable under the process of [18] for the same

class 2× 2 games but without requiring symmetry.
3Indeed, generically a game is not a potential game.
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the characterization of the long run behavior of the log linear-process beyond the class of

potential games.4

The notion of potential game has been generalized in several directions. Weighted

potential games are discussed in [12].5 In a recent paper [1] provides an example of a

weighted potential game for which the unique stochastically stable state under the log-

linear dynamics differs from the action profile that maximizes the potential function. (See

Example 5.) An important source of this phenomenon is that multiplying payoffs by

a constant would also multiply the difference between payoffs (by the same constant)

and hence the log-likelihood ratio of transition probabilities. Thus different weights (on

a common potential function) for different players may result in a dynamic process for

which maximizers of (unweighted) potential function are not stochastically stable. This

example makes clear the strong cardinal nature of the log-linear choice rule and points us

to a type of notion that generalizes the potential games and functions yet preserves the

cardinality of payoff differences.

One possibility is to consider games in which payoff difference between two actions of

any player is bounded by the corresponding difference in a common function. Concepts

of this type were introduced and extensively discussed in connection to robustness of

equilibria against slight incomplete information as an approach to equilibrium selection.

(See, e.g., [8], [13], [6], [17] and [15].) Among them is a version of local potential function

and local potential maximizer due to [13], later generalized in [15]) and this is the central

concept employed in this paper.

A precise definition of local potential function and local potential maximizer will be

given in Section 3. Here we will discuss a special case which illuminate the nature of local

potential and its connection to log-linear process. A strategy profile, say s∗ = (s∗1, . . . , s
∗
I),

of a game in strategic form is said to be a local potential maximizer if one can find (a)

a (total) order on each player’s strategy set with s∗i being the unique maximum, and (b)

a real valued function, say v, defined on the set of strategy profiles with two properties.
4Our characterization, however, should not be regarded as a strict generalization of the result on

potential games. See Section 7.
5In fact, (exact) potential games are introduced as special cases of weighted potential games which in

turn are special cases of ordinal potential game.
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First, s∗ is the unique maximizer of v. Second, if one action of a player is greater than

another in the associated order, then the value of his payoff from the former action minus

the payoff from the latter action, given any of others’ strategies, is bounded from below

by the corresponding difference in the values of v.

We already know the stochastically stable state of the log-linear process for a common

interest game (potential game) where every player has an identical payoff function v. It

is s∗. Now the second requirement above implies that whenever the log likelihood ratio

of the log-linear choice probabilities between two actions in the common interest game is

positive (resp. negative) so is the corresponding log likelihood ratio for the original game.

Therefore, the two log-linear dynamics, one for v and the other for the original payoff

functions, moves (stochastically) in the same direction, i.e., towards s∗.

This simple observation suggests that the local potential maximizer, s∗, should also be

stochastically stable under the original payoff functions. We will show that this is indeed

the case but under an additional condition that either the original payoff functions or the

function v is supermodular. As the reader will see, supermodularity is needed to preserve

the stochastic ordering of the two processes when one considers higher order transitions.

The above observation also suggests a line of the proof: compare (in a stochastic order)

the two Markov processes. Indeed our proof uses only elementary tools of finite Markov

chains. This is in a marked contrast to the methods employed in other works in the

literature, i.e., (a finite version of) the stochastic potential/tree surgery technique of [7].

In a closely related work, [1] does employ this method. They provide an explicit formula

for the stochastic potential for the log-linear process as well as associated radius-coradius

results in the spirit of [5]. These results are applicable to any class of games and it is an

interesting open question whether our results can be obtained with this method as easily.6

A potential advantage of our methods, though arguably not universally applicable, is that

once stochastically stable states are known for one class of games, the results for another

class of games may be obtained by comparing the associated Markov chains. In addition,

finding a local potential maximizer is rather easy. Indeed, we provide a necessary and
6Especially when the population or a local interaction version of the game is considered in which the

state space is rather large. Our method almost trivially carries over to such setting. See Section 6. We

have verified that the results on potential games can indeed be obtained by this method with relative ease.
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sufficient condition for a game to have a local potential maximizer. This condition refers

only to the payoff functions of the game and computationally easy to verify. This is in

stark contrast with the stochastic potential/tree surgery technique developed in [7] and

applied to the log-linear dynamics by [1] which is known to be computationally difficult.7

As mentioned above, having an extension of potential maximizer that keeps track of

payoff differences is crucial to obtain the results of our type for the log-linear processes.

A more general, belief-based, notion of local potential maximizer has been introduced by

[15]. A similar but distinct notion of monotone potential maximizer, based on properties

of the best reply correspondence, is also given in the same work.8 These are in turn

closely related to the concept of p-dominance, a generalization of risk dominance ([4],[8]).

Equilibrium selection results have been obtained for these concepts in various contexts,

e.g., global games ([6]), robustness to incomplete information ([8], [15]), perfect foresight

dynamics ([16]).9 We demonstrate by a series of examples that none of these weaker

concepts guarantees stochastic stability under the log-linear dynamics. In particular, p-

dominance (hence monotone potential maximizer) is in general not sufficient for stochastic

stability.

One reason for the lack of connection between these concepts and stochastic stability

is that, as we alluded to above, the log-linear choice rule is sensitive to affine transfor-

mations of payoffs. Motivated by this observation, we modify the log-linear dynamics by

incorporating a notion of relative, rather than absolute, payoff differences. More precisely,

we define the relative log-linear choice rule under which the log likelihood ratio of choosing

one action over another, given other players’ actions, is linearly proportional to the relative

difference of payoffs they yield. This choice rule is invariant with respect to affine trans-

formations of payoffs. We show that in 2 × 2 games with two strict Nash equilibria, the

weighted version of local potential maximizers is stochastically stable under this modified
7See [18] and references therein for some aspects of computational complexity of this method.
8Both local and monotone potential maximizers are − under the usual monotonicity conditions described

in this paper− special cases of yet more general concept, generalized potential. See [15] for details.
9A comparison technique similar in spirit to ours has been employed in [16]. They show, e.g., that a

(strict) monotone potential maximizer is globally accessible (and linearly absorbing) under an additional

condition of supermodularity identical to ours (Theorem 2). We make further comments on this dynamics

in Section 7.
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dynamics. This in particular implies that in this class of games, p-dominant equilibria as

well as weighted potential maximizers are stochastically stable.

The rest of the paper is organized as follows. The basic setup is laid in Section 2.

The central concept of local potential is defined in Section 3. There we also provide a

necessary and sufficient condition for a subset of strategy profiles to be a local potential

maximizer with constant weights. We present our main result (Theorem 2) in Section 4.

In this section we will also present a series of examples illustrating the main result as well

as examples demonstrating stochastic stability (or the lack thereof) of related concepts

such as weighted potential maximizer and p-dominant equilibrium. The last part of this

section is devoted to the study of relative log-linear dynamics for 2× 2 games. The proof

of the main result is presented in Section 5. In Section 6 we present a population (or

random matching) as well as a local interaction version of the log-linear dynamics and the

corresponding results. Section 7 concludes the paper.

2 The Basic Model

Consider an I-person finite game in strategic form. The set of actions available to player

i = 1, . . . , I is Si and his payoff function is ui : S → R where S = S1 × · · · × SI .

The dynamic process under consideration runs in discrete time t = 0, 1, 2, . . . and its

state space is S. At t = 0 a strategy profile is selected according to an initial distribution.

At each subsequent period a single player is selected and is given an opportunity to revise

her strategy according to a stochastic choice rule. The probability that player i is given

this opportunity is denoted by ρi. We assume ρi > 0 for all i. Thus state can change from

s to s′ if, and only if, s′ = (s′i, s−i) for some i and s′i ∈ Si.

In this article we study the log-linear stochastic choice rule according to which the log

likelihood ratio between two actions is proportional to the difference between the payoffs

from these actions. The factor of proportionality is a nonnegative real number denoted by

β. Let pi(si | s : ui, β) be the probability that player i chooses si ∈ Si given a state s ∈ S.

The log-linear stochastic choice rule is characterized by

ln
pi(s′′i | s : ui, β)
pi(s′i | s : ui, β)

= β
(
ui(s′′i , s−i)− ui(s′i, s−i)

)
(2.1)
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for all s ∈ S and s′i, s
′′
i ∈ Si. Thus given a revision opportunity and a current state s,

player i is exponentially more likely to select s′′i than s′i whenever s′′i is a better reply to

s−i than s′i is. Equivalently,

pi(s′i | s : ui, β) =
eβui(s

′
i,s−i)

∑

s′′i ∈Si

eβui(s
′′
i ,s−i)

. (2.2)

It is clear from (2.1) and (2.2) that the log-linear rule pi( · | s : ui, β) is simply the uniform

distribution on Si when β = 0, and it converges as β → ∞ to the uniform distribution

over the best responses against s−i.

Note that we have taken β to be common to all players. In a later section we will

discuss the processes with β’s varying across player positions. We will also discuss later a

random matching version of the process.

The log-linear choice rules generate a (time-homogeneous) Markov chain on the set of

strategy profiles S where the transition probability from s to s′ is given by

qss′(u, β) =
I∑

i=1

I(s′−i = s−i)ρipi(s′i | s : ui, β) (2.3)

where u = (u1, . . . , uI), and I is the indicator function. Let Q(u, β) = (qss′(u, β))s,s′∈S be

the resulting transition matrix. Transition matrix when each player uses the best response

rule is denoted by Q∗(u). As we noted above Q(u, β) −−−→
β→∞

Q∗(u).

It is straightforward to see that the Markov chain associated with Q(u, β) is irreducible.

Hence it possesses a unique invariant distribution µ(u, β) = (µs(u, β))s∈S , i.e., the unique

solution to µQ(u, β) = µ and (I + Q(u, β) + · · ·+ Q(u, β)t)/(t + 1) converges as t →∞ to

a matrix whose rows are identical to µ(u, β). So µs(u, β) is also the asymptotic average

frequency with which state s is visited. In addition, it is easy to verify that this chain

is aperiodic and hence Q(u, β)t also converges to the matrix with rows equal to µ(u, β).

In contrast the chain associated with Q∗(f) typically has multiple recurrence classes and

hence it possesses more than one invariant distribution. A well known result states that

limβ→∞ µ(u, β) exists and is an invariant distribution of the chain associated with Q∗(f)

(e.g., [18]).
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Definition 1 A state s ∈ S is stochastically stable if limβ→∞ µs(u, β) > 0.

Thus states that are not stochastically stable will be observed with a vanishing fre-

quency in the long run under a log-linear process that is sufficiently close to the best

response process, i.e., any log-linear process with large enough β.

3 Local Potential

In this section we discuss the main concept used in this paper: local potential (local

function and local potential maximizer, to be more precise). It generalizes the concept of

potential due to [12].

3.1 Potential Games

Recall that a game (Si, ui)i=1,...,I , as described above, is a potential game if there exists a

function (potential function) v : S → R with the property that

ui(s′i, s−i)− ui(si, s−i) = v(s′i, s−i)− v(si, s−i)

for all i, si, s′i and s−i.

For a potential game the log-linear process is a reversible Markov chain and its in-

variant distribution can be explicitly obtained by solving the detailed balance condition,

µsqss′(v, β) = µs′qs′s(v, β).10 Consequently, the set of stochastically stable states can be

explicitly characterized.

Theorem 1 ([2, 3]) Suppose that (Si, ui)i=1,...,I is a potential game with a potential func-

tion v. Then the invariant distribution of Q(v, β) is

µs(v, β) =
eβ v(s)

∑

s′∈S

eβ v(s′)
(3.1)

and s ∈ S is stochastically stable if, and only if, s maximizes v.
10We write qss′(v, β), Q(v, β) etc. for the log-linear processes where ui = v for every i = 1, . . . , I.
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3.2 Local Potential on an Ordered Domain

The original definition of local potential appears in [13] where a local potential maximizer

is defined as a single action profile that maximizes a local potential function. We employ a

version of local potential due to [15] that directly generalizes that in [13]. In this version, a

local potential function is defined to be a measurable function on the set of action profiles

S endowed with an algebra as explained below. A local potential maximizer is then defined

to be the unique element of the algebra on which the local potential function attains the

maximum.11 We will provide several examples of local potential maximizers in the next

section.

An ordered domain on S consists of, for each i = 1, . . . , I, a partition of Si, denoted

by {Si1, . . . , SiKi}, and a partial order ≤i on Si where si ≤i s′i if si = s′i or si ∈ Sik and

s′i ∈ Sik′ with k < k′. We write si <i s′i in the latter case. Let Si be the algebra on

Si generated by {Si1, . . . , SiKi}. We define a partial order ≤ on S by s = (s1, . . . , sI) ≤
s′ = (s′1, · · · , s′I) if si ≤i s′i for all i. For each collection of I integers k1, . . . , kI with

0 ≤ ki ≤ Ki, we let Sk1,...,kI
= S1k1 × · · · × SIkI

and call a set of this form a measurable

rectangle. Clearly, the family of measurable rectangles form a partition of S. Let S be the

algebra on S generated by this family. For each i the partial order ≤−i and the algebra

S−i on S−i are similarly defined.

Definition 2 A set S∗ ⊂ S is a local potential maximizer (LP-max) with respect to the

payoff functions u = (u1, . . . , uI) if there exist

(1) an ordered domain on S: {Si1, . . . , SiKi} , ≤i, i = 1, . . . , I

(2) a function v : S → R (a local potential function), and

(3) a collection of nonnegative numbers {wi(si, s
′
i) | si ≤i s′i} (weights) for each i = 1, . . . , I

such that

(a) S∗ is a measurable rectangle, S∗ = Sk∗1 ,...,k∗I ,

(b) v is S-measurable, i.e., v is constant on each measurable rectangle,
11In [15] a local potential on an ordered domain is defined as a special case of generalized potential. They

discuss how a payoff-difference based definition of local potential employed by us in this paper implies their

“belief based” definition.
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(c) argmax v = S∗,

(d) for every i and every s−i ∈ S−i,

(d-1) if k < k∗i , si ∈ Sik and s′i ∈ Sik+1, then

wi(si, s
′
i)

(
v(s′i, s−i)− v(si, s−i)

) ≤ ui(s′i, s−i)− ui(si, s−i),

(d-2) if k∗i < k, si ∈ Sik−1 and s′i ∈ Sik, then

wi(si, s
′
i)

(
v(s′i, s−i)− v(si, s−i)

) ≥ ui(s′i, s−i)− ui(si, s−i).

In order to show that a subset S∗ ⊂ S is a local potential maximizer, one must first

identify an appropriate partition on each Si and the induced algebra on S which includes

S∗ as an element, then find a local potential function which is maximized on S∗.

It is easy to verify ([15], Lemma 8) that if Sk∗1 ,...,k∗I is an LP-max with a local potential

v, then for every player i = 1, . . . , I,

(i) for every k < k∗i and every σ−i ∈ ∆(S−i) such that v(si, σ−i) ≤ v(s′i, σ−i) for any

si ∈ Sik and s′i ∈ Sik+1, we have

max
si∈Sik

ui(si, σ−i) ≤ max
s′i∈Sik+1

ui(s′i, σ−i)

(ii) for every k∗i < k and every σ−i ∈ ∆(S−i) such that v(s′i, σ−i) ≥ v(si.σ−i) for any

s′i ∈ Sik−1 and si ∈ Sik, we have

max
s′i∈Sik−1

ui(s′i, σ−i) ≥ max
si∈Sik

ui(si, σ−i)

In fact, in [15], an LP-max is defined to be the maximizer of a measurable function v

possessing the properties (i) and (ii). It can be shown ([15], Lemma 9) that if the partition

on each Si is the finest, i.e. {{si} | si ∈ Si}, then the two definitions are equivalent.12

For the main results of this paper, we are primarily interested in local potential maxi-

mizers with constant weights, in particular cases where weights wi(si, s
′
i) are independent

of (si, s
′
i) and of i, say wi( · , · ) ≡ r. Then, by renaming rv as a new v, conditions (b) and

(c) are satisfied, and condition (d) is equivalent to the following condition:

12[16] studies perfect foresight dynamics with a total order on each Si, hence the finest partition on Si.
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(e) For every i and every s−i ∈ S−i,

(e-1) if k < k′ ≤ k∗i , then for any si ∈ Sik and s′i ∈ Sik′

v(s′i, s−i)− v(si, s−i) ≤ ui(s′i, s−i)− ui(si, s−i),

(e-2) if k∗i ≤ k < k′, then for any si ∈ Sik and s′i ∈ Sik′

v(s′i, s−i)− v(si, s−i) ≥ ui(s′i, s−i)− ui(si, s−i).

Thus we may as well take wi( · , · ) ≡ 1 in this case.

From Definition 2 it may seem difficult to see whether a given game admits an LP-max

or how to find a local potential function.13 Below we provide a necessary and sufficient

condition for a subset of strategy profiles to be an LP-max with constant weights (i.e.

wi( · , · ) ≡ 1 for all i). The reader will see that the condition is easy to check and also

yields the formula for a local potential function.14

To explain the condition in words first, let us consider for simplicity an ordered domain

with the finest partition on each player’s strategy set. In addition suppose that s∗i is

the largest element in the given order on Si. The necessary and sufficient condition for

s∗ = (s∗1, . . . , s
∗
I) to be an LP-max with constant weights is as follows. Take any other

strategy profile s and consider any sequence of strategy profiles starting at s∗, ending at s,

and at each step one, and only one, player deviates to a strategy that is lower in the order

than the previous one. If the sum of payoff differences for the deviating players along any

such path is strictly positive, then, and only then, s∗ is an LP-max with constant weights.

Below we generalize this condition to the set-valued LP-max which is not necessarily a

product of the largest partition elements of each player’s strategy sets.

Fix an ordered domain over S, {Si1, . . . , SiKi}, i = 1, . . . , I. We will denote indices for

measurable rectangles by bold letters, e.g., k = (k1, . . . , kI) (of course, 1 ≤ ki ≤ Ki). We

will also use notations such as (k′i, k−i) in the usual manner.

13Though, given an ordered domain and a candidate for an LP-max, the problem is that of linear

programming.
14The reader will also notice the similarity between our characterization of the LP-max and the conditions

for a game to be a potential game provided by [12].
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For any pair of indices k = (k1, . . . , kI) and k′ such that k′ = (k′i, k−i) for some i

and k′i 6= ki, we define

∆(k , k′) = min
[
ui(si, s−i)− ui(s′i, s−i)

]
(3.2)

where min is taken over all si ∈ Siki , s′i ∈ Sik′i and s−i ∈ Sk−i . Thus ∆(k , k′) is the

smallest gain (or the largest loss) to player i when deviating unilaterally from some strategy

profile in a rectangle Sk to another in Sk′ . We say that a (finite) sequence of indices

κ = (k0, k1, . . . , kL) is a path of unilateral deviations if k` = (k`
i , k`−1

−i ) for some i and

k`
i 6= k`−1

i for each ` = 1, . . . , L. For a path of unilateral deviations κ = (k0, k1, . . . , kL)

we set

Λ(κ ) =
L∑

`=1

∆(k`−1, k`). (3.3)

We say that a path of unilateral deviations κ = (k0, k1, . . . , kL), where k` = (k`
1, . . . , k

`
I),

is individually monotonic if k0
i ≥ k1

i ≥ · · · ≥ kL
i or k0

i ≤ k1
i ≤ · · · ≤ kL

i for all i. The set

of all individually monotonic paths of unilateral deviations starting at k (k0 = k ) and

ending at k′ (kL = k′) is denoted by Π(k , k′).

Proposition 1 S∗ ⊂ S is a local potential maximizer with respect to u = (u1, . . . , un) and

with wi( · , · ) ≡ 1 for all i = 1, . . . , n if, and only if,

(a) there exists an ordered domain {Si1, . . . , SiKi}, i = 1, . . . , I, such that S∗ is a mea-

surable rectangle: S∗ = Sk∗, and

(b) Λ(κ ) > 0 for every κ ∈ Π(k∗, k ), k 6= k∗.

In addition, under (a) and (b), the function v : S → R defined by

v(s) =





0 if s ∈ Sk∗,

− min
κ∈Π(k∗,k )

Λ(κ ) if s ∈ Sk , k 6= k∗
(3.4)

provides an appropriate local potential function.

The proof of this proposition is given in Appendix A. We will utilize the proposition in

the examples of the next section.
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4 Stochastic Stability of Local Potential Maximizer

We first state our main result.

Theorem 2 Suppose that Sk∗1 ,...,k∗n is a local potential maximizer with respect to u =

(u1, . . . , un) with a local potential v : S → R and wi( · , · ) ≡ 1 for all i = 1, . . . , n. If

u or v is supermodular then s ∈ S is stochastically stable with respect to the log-linear

process only if s ∈ Sk∗1 ,...,k∗n, i.e., the support of limβ→∞ µ(u, β) is contained in Sk∗1 ,...,k∗n.

To be clear, the supermodularity of ui or v stated in the theorem is with respect to

the partial orders on Si associated with an ordered domain which makes S∗ an LP-max.

In particular, we say that ui is supermodular if

ui(s′i, s−i)− ui(si, s−i) ≤ ui(si, s
′
−i)− ui(si, s

′
−i)

for all si, s
′
i ∈ Si with si < s′i (i.e., si ∈ Sik, s′i ∈ Sik′ with k < k′) and all s−i, s

′
−i ∈ S−i

with s−i < s′−i (i.e., s−i ∈ Sk−i , s′i ∈ Sk′−i
with k−i < k′−i).

We will present the proof of the theorem in the next section. The rest of this section

is devoted to examples illustrating the theorem (Section (4.1)) and discussion of concepts

related to local potential maximizer such as weighted potential ([12]) and p-dominance

([14]) (Section (4.2)). Motivated by examples in Section (4.2), we will consider in Section

(4.3) the relative log-linear dynamics for 2×2 games and show that in contrast to the orig-

inal log-linear dynamics, stochastically stable states are invariant to affine transformations

of payoffs under this dynamics.

4.1 Examples Illustrating the Main Theorem

If the local potential maximizer is a singleton, then it is clearly the unique stochastically

stable state provided, of course, that the conditions of the theorem are met.

Example 1 The 3× 3 game on the left below appears in [18].
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0 1 2

0 6, 6 0, 5 0, 0

1 5, 0 7, 7 5, 5

2 0, 0 5, 5 8, 8

Game u = (u1, u2)

0 1 2

0 6 5 0

1 5 7 5

2 0 5 8

Local potential v

It is easy to verify that the function v : S → R exhibited on the right matrix is a local

potential function for u with weights wi( · , · ) ≡ 1 for i = 1, 2. The strategy pair (2, 2) is the

unique local potential maximizer relative to the ordered domain with the finest partition

{Si1, Si2, Si3} = {{0} , {1} , {2}}, i = 1, 2. In addition, v is supermodular. Therefore, (2, 2)

is the unique stochastically stable state under the log-linear process. In contrast, [18] has

shown that (1, 1) is stochastically stable in his version of adaptive learning process. ¤

In the next example, the set of stochastically stable states coincides with the local

potential maximizer that is not a singleton.

Example 2 Consider a 3 × 3 game below. Note that this game is not a potential game

in the sense of [12] as there is a best response cycle.

0 1 2

0 1, 1 0, 0 0, 0

1 0, 0 3, 2 2, 3

2 0, 0 2, 3 3, 2

Game u = (u1, u2)

0 1 2

0 1 0 0

1 0 2 2

2 0 2 2

Local potential v

It is easy to check that {1, 2}×{1, 2} is an LP-max with constant weights, a local poten-

tial function given on the right matrix and an ordered domain {Si1, Si2} = {{0} , {1, 2}},
i = 1, 2. Note that with respect to this ordered domain, each u1 and u2 as well as the

local potential function v are supermodular. It is also easy to see that {1, 2} × {1, 2} is a

recurrent class of the best response dynamics. Hence the set of stochastically stable states

is precisely {1, 2} × {1, 2}. ¤
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The set of stochastically stable states may be a proper subset of the local potential

maximizer. It is easy to see that the local potential maximizer is closed under unilat-

eral best response deviations and hence it contains a recurrent class of the best response

dynamics. But the local potential maximizer can contain a transient state for the best

response dynamics, i.e., a strategy profile such that no path of unilateral best response

deviation starting from it ever comes back to it. If the local potential maximizer contains

a unique recurrent class, then stochastically stable states are precisely those belonging to

that recurrent class.

Example 3 This is the cyclic matching pennies due to [8].

0 1 2

0 1, 1, 1 0, 0, 0 0, 0, 0

1 0, 0, 0 0, 0, 0 0, 0, 0

2 0, 0, 0 0, 0, 0 0, 0, 0

0

0 1 2

0 0, 0, 0 0, 0, 0 0, 0, 0

1 0, 0, 0 2, 2, 2 2, 3, 3

2 0, 0, 0 3, 3, 2 3, 2, 3

1

0 1 2

0 0, 0, 0 0, 0, 0 0, 0, 0

1 0, 0, 0 3, 2, 3 3, 3, 2

2 0, 0, 0 2, 3, 3 2, 2, 2

2

Game u = (u1, u2, u3)

0 1 2

0 1 0 0

1 0 0 0

2 0 0 0

0

0 1 2

0 0 0 0

1 0 2 2

2 0 2 2

1

0 1 2

0 0 0 0

1 0 2 2

2 0 2 2

2

Local potential v

The payoff functions ui, i = 1, 2, 3, are supermodular. With respect to an ordered

domain {Si1, Si2, Si3} = {{0} , {1, 2}}, i = 1, 2, 3, it is easy to verify that the product set

{1, 2} × {1, 2} × {1, 2} is a local potential maximizer with constant weights and a local

potential function v as above.15 However, within this set (1, 1, 1) and (2, 2, 2) are clearly
15It can be shown that there is no singleton action profile that is an LP-max even with non constant

weights. See [8].

15



transient states for the best response process. Hence the set of stochastically stable states

is ({1, 2} × {1, 2} × {1, 2}) \ {(1, 1, 1), (2, 2, 2)}. ¤

As an application of the main theorem to a class of games, we next consider a ver-

sion of unanimity games.16 The payoff functions of a unanimity game are supermodular.

Using Proposition 1, we will provide a necessary and sufficient condition for a unanimous

agreement to be a singleton LP-max with constant weights and hence stochastically stable.

Example 4 Each player has two actions, Si = {0, 1}. Let 0 = (0, . . . , 0) and 1 =

(1, . . . , 1). The payoffs are such that ui(0) > 0, ui(1) > 0 and ui(s) = 0 for all s 6= 0,1.

Thus there are two strict equilibria, 0 and 1. Note that each ui is supermodular.

Claim 1 The singleton set {1} (resp. {0}) is an LP-max with constant weights if, and

only if ui(1) > uj(0) (resp. ui(0) > uj(1)) for all i and j 6= i. Consequently, if ui(1) >

uj(0) (resp. ui(0) > uj(1)) for all i and j 6= i, then s = 1 (resp. s = 0) is stochastically

stable.

Proof. First note that since {1} must be a measurable rectangle, the only candidate

for the ordered domain over S is the finest partition. Without loss of generality let

{Si1, Si2} = {{0}, {1}}, i = 1, ..., I. Set k∗ = (2, 2, . . . , 2) so that Sk∗ = {1}. Pick any

individually monotonic path of unilateral deviations κ = (k0, k1, . . . , kL) with k0 = k∗

and kL 6= k∗. Let k1 = (k1
i , k∗−i) (= (1, k∗−i)) and kL = (kL

j , kL−1
−j ). Note that

∆(k0, k1) = ui(1) and ∆(kL−1, kL) = −uj(0) or 0 depending on kL = (1, 1, . . . , 1) or

not. Also, ∆(k`−1, k`) = 0 for 1 < ` < L. Hence,

Λ(κ ) =
L∑

`=1

∆(k`−1, k`) =





ui(1)− uj(0) if kL = (1, 1, . . . , 1),

ui(1) otherwise.

Note that if kL = (1, 1, . . . , 1), then it must be that j 6= i. Since choices of i and j are

arbitrary the conclusion follows from Proposition 1. Q.E.D.

It follows from this claim that if one of the strict equilibria is an LP-max with constant

weights, then it is strictly preferred to the other strict equilibrium by all but, possibly, one
16This class of games is also studied in [15] and [16].
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player. It is now straightforward to check that 1 = (1, 1, 1) is the LP-max with constant

weights in the three-player unanimity game below.

0 1

0 6, 2, 2 0, 0, 0

1 0, 0, 0 0, 0, 0

0

0 1

0 0, 0, 0 0, 0, 0

1 0, 0, 0 3, 8, 8

1
¤

4.2 Non-constant Weights, p-dominance

One may wish to extend our main theorem to games with a local potential maximizer

allowing for non-constant weights and, perhaps, with additional conditions such as u

exhibiting diminishing marginal returns. The following example, due to [1], shows that

this is not possible.

Example 5 The 2-by-2 game on the left matrix is a weighted potential game where the

potential function is given by v on the right matrix with weights w1 = 1 for player 1 and

w2 = 1
4 for player 2.

0 1

0 2, 2 0, 0

1 0, 0 10, 1

u = (u1, u2)

0 1

0 2 −6

1 0 4

v

The strategy pair (1, 1) uniquely maximizes v. With respect to the ordered domain

{Si1, Si2} = {{0} , {1}}, i = 1, 2, the singleton set {(1, 1)} is indeed a local potential

maximizer where the local potential function is v and the weights are w1( · , · ) ≡ 1 and

w2( · , · ) ≡ 1
4 . 17 Using the tree surgery argument ([7]; [18], [10]), it has been shown in [1]

17It is easy to verify that there is no LP-max with constant weights for this game. For example, take any

ordered domain with {(1, 1)} as a measurable rectangle, say, {Si1, Si2} = {{0} , {1}}, i = 1, 2, so S2,2 =

{(1, 1)}. For a path κ = ((2, 2), (2, 1), (1, 1)) ∈ Π((2, 2), (1, 1)), we have Λ(κ ) = (1−0)+(0−2) = −1 < 0.
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that the strategy pair (0, 0) uniquely minimizes the stochastic potential (see Appendix B)

and hence it is the unique stochastically stable state. ¤

From the proof of our main theorem in the next section, it can be easily verified that if

we allow the parameter β to vary across players, β1 = β and β2 = 4β for this example, then

the potential maximizer becomes stochastically stable, i.e., limβ→∞ µ(1,1)

(
u, (β, 4β)

)
= 1.

More generally, let b = (β1, . . . , βn) where βi ≥ 0 and let Q(u,b) be the transition matrix

for the log-linear process where the parameter β for player i’s stochastic choice rule (2.1)

(resp. (2.2)) is replaced by βi. Again Q(u,b) is irreducible and aperiodic, and its unique

invariant distribution is denoted by µ(u,b).

Proposition 2 Suppose that S∗ is an LP-max with respect to u = (u1, . . . , uI) with a

local potential v : S → R and wi( · , · ) ≡ wi, i = 1, . . . , I. If u or v is supermodular then

s is stochastically stable with respect to the log-linear process with b =
(

β
w1

, . . . , β
wI

)
only

if s ∈ S∗, i.e., the support of limβ→∞ µ(u,b) is contained in S∗.

The concept of p-dominance ([8]) is related to (though distinct from) that of LP-max.

Let p = (p1, . . . , pI) with 0 ≤ pi ≤ 1, i = 1, . . . , I. A strategy profile s∗ ∈ S is a p-dominant

(resp. strict p-dominant) equilibrium if, for every player i, s∗i is a (resp. the unique) best

response to any mixture over S−i that puts probability at least (resp. strictly greater than)

pi on s∗−i. If s∗ is a p-dominant equilibrium with p1 + · · ·+ pI < 1, then the singleton set

{s∗} is an LP-max with respect to the ordered domain {Si1, Si2} = {Si \ {s∗i } , {s∗i }} for

each i = 1, . . . , I and a local potential function

v(s) =





1−
I∑

i=1

pi if s = s∗

−
∑

i:si=s∗i

pi otherwise.

Hence, by Proposition 1, S2,2 = {(1, 1)} cannot be an LP-max with constant weights. Argument for other

ordered domains is similar. One can verify by a similar argument that {(0, 0)} is not an LP-max with

constant weights and hence its stochastic stability does not follow from our result.
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(Morris and Ui, 2005, Lemma 7) possibly with nonconstant weights. For the game of

Example 5, (1, 1) is a
(

1
6 , 2

3

)
-dominant equilibrium and hence {(1, 1)} is an LP-max with

a local potential function given in the matrix below.

0 1

0 0 −2
3

1 −1
6

1
6

v

One can easily verify that the weights are w1( · , · ) ≡ 12 and w2( · , · ) ≡ 3.18

As we saw above, the unique stochastically stable state is (0, 0). Thus a strategy profile

being p-dominant with p1 + · · · + pI < 1 is no guarantee for stochastic stability.19 For

a 2 × 2 games, however, it can be shown, using the tree surgery argument, that (p1, p2)-

dominance with max {p1, p2} < 1
2 is sufficient for stochastic stability. The proof of this

fact is presented in Appendix B. The proof also shows that that if s∗ is a strict (p1, p2)-

dominant equilibrium with max {p1, p2} < 1
2 , then it is the unique stochastically stable

state.

It should be remarked that the condition max {p1, p2} < 1
2 does not imply that a

(p1, p2)-dominant equilibrium is an LP-max with constant weights as the next example

demonstrates.20

Example 6 Consider a 2× 2 game given by
18This local potential function is an affine transformation of the one in Example 5: multiply by 12 and

add 2. The weights have been multiplied by 12 accordingly.
19In fact, (1, 1) is a strict

(
1
6
, 2

3

)
-dominant equilibrium. A strategy profile s∗ is a strict p-dominant

equilibrium if, for each player i, s∗i is the unique best response to any mixed actions of others that put a

probability strictly greater than pi. So strict p-dominance with p1 + · · ·+pn < 1 does not ensure stochastic

stability, either.
20Again, adding strict p-dominance is of no help, either, as the equilibrium considered in the example

is indeed strict (p1, p2)-dominant with p1, p2 < 1
2
.
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0 1

0 2, 2 0,−2

1 0,−2 3, 3

u = (u1, u2)

Strategy profile (1, 1) is a strict
(

2
5 , 4

9

)
-dominant equilibrium and hence it is the unique

stochastically stable state. However, {(1, 1)} cannot be an LP-max with constant weights.

Indeed, if {(1, 1)} is an LP-max, the ordered domain must be the one with the fines

partitions, say, {Si1, Si2} = {{0} , {1}}, i = 1, 2. For the path κ = ((2, 2), (1, 2), (1, 1)) ∈
Π((2, 2), (1, 1)) we have Λ(κ ) = (3 − 0) + (−2 − 2) = −1 < 0 and so by Proposition 1,

{(1, 1)} cannot be an LP-max with constant weights. ¤

For 2× 2 symmetric games, it can be shown that if s∗ ∈ S is a strict (p1, p2)-dominant

equilibrium with p1 + p2 < 1, then {s∗} is a local potential maximizer with constant

weights and a supermodular local potential function, and hence stochastically stable by

Theorem 2. A risk-dominant equilibrium is a special case.

The next example shows that neither of the results for 2× 2 games mentioned above

can be extended to a larger class of games. Specifically, it shows (a) p-dominance with

pi < 1
2 (or even pi < 1

|S−i|) for all i is not sufficient for stochastic stability, and (b) even

for symmetric games, the same condition does not guarantee that the equilibrium is an

LP-max with constant weights or stochastically stable.

Example 7 Consider a 3× 3 symmetric game given by

0 1 2

0 −1,−1 −1, 4 3, 2

1 4,−1 2, 2 0, 0

2 2, 3 0, 0 x, x

where 4 < x < 5. It is easily verified that (2, 2) is a
(

2
x+2 , 2

x+2

)
-dominant equilibrium.

Note that 2
x+2 < 1

3 as 4 < x. However, it is neither an LP-max (with constant weights)
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nor stochastically stable. The latter claim, as well as stochastic stability of (1, 1), can be

demonstrated by the tree surgery argument as in [1]. (See also Appendix B).

To see that {(2, 2)} is not an LP-max with constant weights, take any ordered domain

with {(2, 2)} is a measurable rectangle, say, {Si1, Si2, Si3} = {{0} , {1} , {2}}, i = 1, 2, so

S3,3 = {(2, 2)}. For a path κ = ((3, 3), (1, 3), (1, 2)) ∈ Π((3, 3), (1, 2)), we have Λ(κ ) =

(x − 3) + (2 − 4) = x − 5 < 0. Hence, by Proposition 1, S3,3 = {(2, 2)} cannot be an

LP-max with constant weights. Argument for other ordered domains is similar. One can

verify by a similar argument that {(1, 1)} is not an LP-max with constant weights and

hence its stochastic stability does not follow from out result. ¤

This example also demonstrates that the set of stochastically stable states for the

log-linear process is sensitive to the addition of strictly dominated actions. Indeed if we

eliminate the strictly dominated action 0 for each player, then the resulting 2× 2 game is

a potential game and the potential maximizer (2, 2) is stochastically stable. As mentioned

in the example, addition of a strictly dominated action 0 changes the unique stochastically

stable state to (1, 1).

4.3 The Relative Log-linear Dynamics

Examination of examples in the last section reveals that the log-linear process introduced

by [2, 3] is sensitive to affine transformations of payoffs i.e. such a transformation may

affect the set of stochastically stable states. This lack of invariance is a significant reason

why local potential maximizers with non-constant weights are generally not stochastically

stable under this process. To illustrate this point formally we modify the log-linear stochas-

tic choice rule (recall (2.1), (2.2)) by incorporating a notion of relative losses. Under the

modified rule, called relative log-linear choice rule, the log likelihood ratio of choosing one

action over another, given other players’ actions, is linearly proportional to the relative

difference of payoffs they yield. While studying this dynamics in full generality is beyond

the scope of this paper, we study in this section its properties and relation to local poten-

tial maximizer in a class of 2-by-2 games: strategy sets are S1 = S2 = {0, 1} and payoff

functions (u1, u2) are such that (0, 0) and (1, 1) are both strict equilibria.
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The relative log-linear stochastic choice rule for players 1 is characterized by

ln
pr
1( 1 | s : u1, β)

pr
1( 0 | s : u1, β)

= β

(
u1(1, s2)− u1(0, s2)

D1

)
(4.1)

where D1 = [u1(1, 1)− u1(0, 1)] + [u1(0, 0)− u1(1, 0)] is the sum of the payoff losses when

deviating from each equilibrium. Note that D1 > 0 as (0, 0) and (1, 1) are assumed to be

strict equilibria. Similarly, for player 2,

ln
pr
2( 1 | s : u2, β)

pr
2( 0 | s : u2, β)

= β

(
u2(s1, 1)− u2(s1, 0)

D2

)
(4.2)

where D2 = [u2(1, 1)− u2(1, 0)]+[u2(0, 0)− u2(0, 1)] > 0. We let Qr(u, β) be the resulting

transition matrix and µr(u, β) its unique invariant distribution.

Note that, unlike the original log-linear choice rule (2.1), the log likelihood ratios

(4.1) and (4.2) under the relative log-linear rule remain unchanged if we apply an affine

transformations to the corresponding player’s payoffs.

Given a payoff function ui, i = 1, 2, define the relative payoff function of player i by

ur
i (s) =

ui(s)
Di

. (4.3)

Note that

ln
pr

i ( 1 | s : ui, β)
pr

i ( 0 | s : ui, β)
= ln

pi( 1 | s : ur
i , β)

pi( 0 | s : ur
i , β)

so the relative log-linear dynamics for the game u = (u1, u2) is identical to the original

log-linear dynamics for the “relative game” ur = (ur
1, u

r
2). In particular we have

µr(u, β) = µ(ur, β) for every β ≥ 0. (4.4)

For instance, it is straightforward to see that if u = (u1, u2) is a weighted potential game,

then ur = (ur
1, u

r
2) is a (exact) potential game. Hence, given Theorem 1, we can easily show

that the maximizer of a potential function for u is stochastically stable under the relative

log-linear dynamics. Recall from Example 5 that under the original log-linear dynamics, a

potential maximizer for a weighted potential game is not necessarily stochastically stable.

More generally, we show below that if u admits a local potential function with strictly

positive weights, then ur admits a local potential function with constant weights with the

same maximizer, which, by Theorem 2, is stochastically stable.
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Proposition 3 If {s∗} (s∗ ∈ {0, 1}×{0, 1}) is a local potential maximizer with respect to

u = (u1, u2) with strictly positive weights, then s∗ is the unique stochastically stable state

under the relative log-linear process, i.e. Support
(
limβ→∞ µr(u, β)

)
= {s∗}.

Proof. If the singleton set {s∗} is a local potential maximizer, then it must be a strict

equilibrium and so s∗ is either (0, 0) or (1, 1) by assumption. Let s∗ = (1, 1). (The proof

for the case s∗ = (0, 0) is identical.) In this case, the ordered domain must be the one with

the finest partitions. Without loss of generality consider {Si1, Si2} = {{0} , {1}}, i = 1, 2.

Let v : S → R be the local potential function for u = (u1, u2) with (1, 1) being the unique

maximizer together with strictly positive weights21 wi = wi(0, 1) > 0, i = 1, 2. We then

have

w1

(
v(1, s2)− v(0, s2)

) ≤ u1(1, s2)− u1(0, s2) for all s2 = 0, 1, (4.5)

w2

(
v(s1, 1)− v(s1, 0)

) ≤ u2(s1, 1)− u2(s1, 0) for all s1 = 0, 1. (4.6)

Define vr : S → R by

vr(s) =
v(s)

[v(1, 1) + v(0, 0)]− [v(0, 1) + v(1, 0)]
. (4.7)

Note that because {(1, 1)} is the LP-max, we have v(1, 1) > v(0, 1) and, since (0, 0) is a

strict equilibrium by assumption,

w1(v(1, 0)− v(0, 0)) ≤ u1(1, 0)− u1(0, 0) < 0.

So v(0, 0) − v(1, 0) > 0. Thus the denominator in the above expression for vr is strictly

positive. Hence {(1, 1)} is also the unique maximizer of vr.

We now show that in the game with relative payoffs ur = (ur
1, u

r
2) as defined in (4.3),

{(1, 1)} is an LP-max with constant weights and a local potential function vr as de-

fined in (4.7). Since ui, i = 1, 2 is supermodular22 with respect to the ordering 0 <i 1,

so is ur
1, i = 1, 2. The desired conclusion then follows from Theorem 2 that implies

21Recall from Definition 2 that weights wi(si, s
′
i) are defined only for pairs of strategies with si ≤i s′i.

22Since (0, 0) and (1, 1) are strict equilibria, we have u1(1, 0) − u1(0, 0) < 0 < u1(1, 1) − u1(0, 1) and a

similar inequality holds for u2.
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Support
(
limβ→∞ µ(ur, β)

)
= {(1, 1)}, and hence Support

(
limβ→∞ µr(u, β)

)
= {(1, 1)} by

(4.4).

We verify the necessary inequalities, Definition 2 (3)-(d), for player 1. The argument

for player 2 is identical. Rewrite (4.5) explicitly:

0 < w1[v(1, 1)− v(0, 1)] ≤ u1(1, 1)− u1(0, 1), (4.8)

0 < u1(0, 0)− u1(1, 0) ≤ w1[v(0, 0)− v(1, 0)]. (4.9)

We thus have

vr(1, 1)− vr(0, 1) =
w1[v(1, 1)− v(0, 1)]

w1[v(1, 1)− v(0, 1)] + w1[v(0, 0)− v(1, 0)]
by (4.7)

≤ u1(1, 1)− u1(0, 1)
[u1(1, 1)− u1(0, 1)] + [u1(0, 0)− u1(1, 0)]

by (4.8), (4.9)

= ur
1(1, 1)− ur

1(0, 1) by (4.3),

and

vr(1, 0)− vr(0, 0) =
−w1[v(0, 0)− v(1, 0)]

w1[v(1, 1)− v(0, 1)] + w1[v(0, 0)− v(1, 0)]
by (4.7)

≤ −[u1(0, 0)− u1(1, 0)]
[u1(1, 1)− u1(0, 1)] + [u1(0, 0)− u1(1, 0)]

by (4.8), (4.9)

= ur
1(1, 0)− ur

1(0, 0) by (4.3).

This completes the proof. Q.E.D.

Strictly positive weights in the statement of Proposition 3 can actually be dispensed

with for the class of games under consideration. This is due to the fact that we assumed

that (1, 1) is a strict Nash equilibrium and so without loss of generality weights can be

assumed to be strictly positive. However, if one wants to extend this proposition to a

wider class of games, this condition will be required.23

As we noted in Section 4.2, if s∗ is a strict (p1, p2)-dominant equilibrium with p1+p2 <

1, then the singleton set {s∗} is an LP-max with respect to the finest partition of strategy

sets in the case of 2-by-2 games, and with strictly positive weights ([15, Lemma 7]). Thus

we obtain the following corollary to Proposition 3.
23[16] define a strict local potential maximizer to be a local potential maximizer with strictly positive

weights.
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Corollary 1 Suppose that s∗ is a strict (p1, p2)-dominant equilibrium with p1 + p2 < 1.

Then it is the unique stochastically stable state under the relative log-linear dynamics, i.e.,

Support
(
limβ→∞ µr(u, β)

)
= {s∗}.

5 Proof of the Main Theorem

The proof of Theorem 2 is carried out in a series of steps in which we examine the re-

lationship between the Markov process where players share common payoff function v,

a local potential function, (v-process), and the Markov process with payoff functions

u = (u1, . . . , ui) of the given game (u-process). The stochastically stable states of the

former process is known from Theorem 1 as it is the log-linear process for a common

interest game, hence equivalent to a potential game. They are precisely those strategy

profiles that maximize v, i.e., the local potential maximizer. In order to show that the

local potential maximizer is also stochastically stable under the u-process, we compare the

transition matrices for the two processes, not only in the limit as β → ∞, but for each

β < ∞.

5.1 Stochastic Orders

We say that a set Ti ⊂ Si (resp. T ⊂ S) is increasing if si ∈ Ti and si ≤i s′i imply s′i ∈ Ti

(resp. s ∈ T and s ≤ s′ imply s′ ∈ T ). Note that a set Ti ∈ Si is increasing if, and only if

Ti = ∅ or Ti =
Ki∪
k=j

Sik for some 0 ≤ j ≤ Ki. It is easy to see that T ∈ S is increasing if,

and only if, it is a union of sets of the form T1× · · · × Tn where each Ti ∈ Si is increasing.

In particular, if T ∈ S is increasing then Ti = {si ∈ Si | (si, s−i) ∈ T for some s−i} belongs

to Si and is increasing for every i. For any finite set X we denote the set of probabilities

on X by ∆(X). For any µi, νi ∈ ∆(Si), we write µi ≤Si νi if µi(Ti) ≤ νi(Ti) for any

increasing set Ti ∈ Si. Similarly, for any µ, ν ∈ ∆(S), we write µ ≤S ν if µ(T ) ≤ ν(T )

for any increasing set T ∈ S. The next lemma is standard. We provide a proof for the

reader’s convenience.

Lemma 1 For any µi, νi ∈ ∆(Si), µi ≤Si νi if, and only if, Eµi [φ] ≤ Eνi [φ] for every
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Si-measurable nondecreasing function φ : Si → R, i.e.,

∑

si∈Si

µi(si)φ(si) =
Ki∑

k=0

µi(Sik)φk ≤
Ki∑

k=0

νi(Sik)φk =
∑

si∈Si

νi(si)φ(si)

where φ(si) = φk whenever si ∈ Sik, and φ0 ≤ · · · ≤ φKi. Similarly, for any µ, ν ∈ ∆(S),

µ ≤S ν if, and only if, Eµ[φ] ≤ Eν [φ] for any S-measurable increasing function φ : S → R.

Proof. Suppose that Eµi [φ] ≤ Eνi [φ] for every Si-measurable increasing function φ :

Si → R. Let Ti ∈ Si be an increasing set. Then the characteristic function of Ti, χTi , is

Si-measurable, nondecreasing, and µi(Ti) = Eµi [χTi ] ≤ Eνi [χTi ] = νi(Ti).

Conversely, suppose that µi ≤Si νi. For any increasing set Ti ∈ Si we have Eµi [χTi ] ≤
Eνi [χTi ]. Thus for any collection of increasing sets T 1

i , . . . , Tm
i ∈ Si, any nonnegative

constants a1, . . . , am, and any real number b, we have

Eµi

[ m∑

k=1

akχT k
i
− b

]
≤ Eνi

[ m∑

k=1

akχT k
i
− b

]
.

Any function φ : Si → R takes finite number of values, say a1 < a2 < · · · < am. If φ is

Si-measurable and nondecreasing, then T k
i = {si ∈ Si |φ(si) ≥ ak} ∈ Si is an increasing

set and Si = T 1
i ⊃ T 2

i ⊃ · · · ⊃ Tm
i . Finally, note that φ =

∑m
k=1(ak − ak−1)χT k

i
where

a0 = 0. The proof for ≤S is similar. Q.E.D.

Let P and Q be transition matrices of Markov chains on S. Denote the “s-th row” of

P and Q by p( · | s) and q( · | s), respectively. We write P ≤S Q if p( · | s) ≤S q( · | s) for all

s ∈ S.

Lemma 2 If P ≤S Q, then µP ≤S µQ for any µ ∈ ∆(S).

Proof. Let T ∈ S be an increasing set. Then

(
µP

)
(T ) =

∑

s′∈T

∑

s∈S

µsp(s′ | s) =
∑

s∈S

µsp(T | s) ≤
∑

s∈S

µsq(T | s) =
(
µQ

)
(T )

where the inequality follows from p( · | s) ≤S q( · | s). Q.E.D.
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5.2 Comparison of Markov Chains Q(u, β) and Q(v, β)

Now suppose that Sk∗1 ,...,k∗n is a local potential maximizer with respect to u = (u1, . . . , un)

with a local potential function v : S → R and wi( · , · ) ≡ 1 for all i = 1, . . . , n. The main

idea of the proof is as follows. We split the Markov chain under the local potential function

v, Q(v, β), into two processes Q−(v, β) and Q+(v, β) which share the same invariant

distribution whose support is contained in the LP-max. The Markov chain under the

original payoff functions, Q(u, β), is shown to be “sandwiched” between Q−(v, β) and

Q+(v, β) in the stochastic order. Under the additional assumption of supermodularity

(of v or each ui) this order is preserved for the corresponding t-step transition matrices.

Letting t tend to infinity the invariant distribution for Q(u, β) is shown to be similarly

sandwiched between the invariant distributions for Q−(v, β) and Q+(v, β) for every β > 0.

The proof is complete by letting β →∞.

Set S−i = ∪
k≤k∗i

Sik and S− = S−1 × · · · × S−n . Define a modified log-linear choice rule

p−i (s′i|s : fi, β), where fi = ui or v, by

p−i (s′i|s : fi, β) = I(s′i ∈ S−i )
pi(s′i|s : fi, β)
pi(S−i |s : fi, β)

(5.1)

or, more specifically,

p−i (s′i|s : fi, β) =





eβfi(s
′
i,s−i)

∑

s′′i ∈S−i

eβfi(s
′′
i ,s−i)

if s′i ∈ S−i

0 otherwise.

(5.2)

Let Q−(f, β) = (q−ss′(f, β))s,s′∈S where q−ss′(f, β) is computed by substituting (5.1) into

(2.3). Thus Q−(f, β) is the transition matrix for a log-linear process where transitions to

states outside of S− are prohibited.

Similarly, let S+
i = ∪

k∗i≤k
Sik, S+ = S+

1 × · · · × S+
n and define

p+
i (s′i|s : fi, β) = I(s′i ∈ S+

i )
pi(s′i|s : fi, β)
pi(S+

i |s : fi, β)
=





eβfi(s
′
i,s−i)

∑

s′′i ∈S+
i

eβfi(s
′′
i ,s−i)

if s′i ∈ S+
i

0 otherwise.

(5.3)
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The corresponding transition probability is denoted by q+
ss′(f, β) and we set Q+(f, β) =

(q+
ss′(f, β))s,s′∈S .

For each s ∈ S, let qs(f, β) = (qss′(f, β))s′∈S , q−s (f, β) = (q−ss′(f, β))s′∈S and q+
s (f, β) =

(q+
ss′(f, β))s′∈S be the “s-th row” of Q(f, β), Q−(f, β) and Q+(f, β), respectively. By a

slight abuse of notation we denote by Q(v, β) etc. when every player has the same payoff

function v.

Measurability of the local potential function v implies a special structure of the tran-

sition matrix Q−(v, β) (and Q+(v, β), Q(v, β)). First, if s and s′ belong to the same

measurable rectangle, then (s′′i , s−i) and (s′′i , s
′
−i) belong to the same measurable rectan-

gle (possibly different from the one containing s and s′). So

ln
p−i (s′′i | s : v, β)
p−i (s′′i | s′ : v, β)

= β[v(s′′i , s−i)− v(s′′i , s
′
−i)] = 0

for any i and s′′i ∈ Si, and hence

p−i ( · | s : v, β) = p−i ( · | s′ : v, β) for all i. (5.4)

Therefore we have

q−s (v, β) = q−s′ (v, β) (5.5)

whenever s and s′ belong to the same measurable rectangle.

Proposition 4 Q−(v, β) ≤S Q−(u, β) ≤S Q(u, β) ≤S Q+(u, β) ≤S Q+(v, β).

Proof. We only show Q−(v, β) ≤S Q−(u, β) ≤S Q(u, β) as the proof for Q(u, β) ≤S
Q+(u, β) ≤S Q+(v, β) is similar.

Let us first verify that Q−(v, β) ≤S Q−(u, β), i.e., q−s (v, β) ≤S q−s (u, β) for all s ∈ S.

Since q−ss′(f, β) =
∑n

i=1 ρiI(s′i = si)p−i (s′i|s : f, β) where f = v or u, it suffices to show

that p−i ( · | s : v, β) ≤Si p−i ( · | s : ui, β) for all i and s. Take Sik, Sik′ ∈ Si with k ≤ k′. If

k∗i < k′, then by the definition of p−i we have

p−i (Sik|s : v, β)p−i (Sik′ |s : ui, β) = 0 = p−i (Sik|s : v, β)p−i (Sik′ |s : ui, β).
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Suppose that k′ ≤ k∗i . Then Remark (3′-1) implies that

eβv(s′i,s−i)

eβv(si,s−i)
≤ eβui(s

′
i,s−i)

eβui(si,s−i)

for any si ∈ Sik, s′i ∈ Sik′ and s−i ∈ S−i, which in turn implies that

p−i (Sik′ | s : v, β)
p−i (Sik | s : v, β)

=

∑

s′i∈Sik′

eβv(s′i,s−i)

∑

si∈Sik

eβv(si,s−i)
≤

∑

s′i∈Sik′

eβui(s
′
i,s−i)

∑

si∈Sik

eβui(si,s−i)
=

p−i (Sik′ | s : ui, β)
p−i (Sik | s : ui, β)

for any s ∈ S. Thus, viewed as probabilities on {Si1, . . . , SiKi}, p−i ( · | s : v, β) is smaller

than p−i ( · | s : ui, β) in the likelihood ratio order. Hence, if Ti ∈ Si is an increasing set,

then p−i (Ti, | s : v, β) ≤ p−i (Ti | s : ui, β) follows by the standard argument.

We now turn to the proof of Q−(u, β) ≤S Q(u, β), i.e., q−s (u, β) ≤S qs(u, β) for all

s ∈ S. Again, it is enough to show that p−i ( · | s : ui, β) ≤Si pi( · | s : ui, β). Let Ti ∈ Si be

an increasing set. ¿From the definition of S−i ∈ Si, it is easily seen that either Ti∩S−i = ∅
or Ti ∪ S−i = Si. If Ti ∩ S−i = ∅, then p−i (Ti | s : ui, β) = 0 ≤ pi(Ti | s : ui, β). If

Ti ∪ S−i = Si, then Ti \ S−i = Si \ S−i . So (omitting reference to s, ui, β)

pi(Ti)pi(S−i ) = [pi(Ti ∩ S−i ) + pi(Ti \ S−i )]pi(S−i )

= [pi(Ti ∩ S−i ) + (1− pi(S−i ))]pi(S−i )

= (1− pi(S−i ))pi(S−i ) + pi(S−i )pi(Ti ∩ S−i ) ≥ pi(Ti ∩ S−i )

and hence p−i (Ti) ≤ pi(Ti). Q.E.D.

Lemma 3 Let T ∈ S be an increasing set and for each i = 1, . . . , n and s ∈ S let

Ti(s) = {s′i ∈ Si | (s′i, s−i) ∈ T}. Then,

(a) the functions φi : S → R defined by φi(s) = p−i (Ti(s) | s : v, β) and φ : S → R defined

by φ(s) =
∑

s′∈T q−ss′(v, β) are S-measurable, and

(b) if, in addition, the local potential function v : S → R is supermodular, then both φi

and φ are nondecreasing.
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Proof. Since

φ(s) =
∑

s′∈T

q−ss′(v, β) =
∑

s′∈T

n∑

i=1

ρiI(s′−i = s−i)p−i (s′i | s : v, β)

=
n∑

i=1

ρi

∑

s′∈T

I(s′−i = s−i)p−i (s′i | s : v, β)

=
n∑

i=1

ρi

∑

s′i∈Ti(s)

p−i (s′i | s : v, β) =
n∑

i=1

ρiφi(s),

it is enough to prove the claims only for φi.

(a) Suppose that s and s′ belong to the same measurable rectangle. Then (s′′i , s−i)

and (s′′i , s
′
−i) belong to the same measurable rectangle for any s′′i ∈ Si. Since T ∈ S, this

implies that Ti(s) = Ti(s′). Hence φi(s) = φi(s′) by (5.4).

(b) Now suppose that s ≤ s′ and s̄i ∈ Sik̄, ŝi ∈ Sik̂ with k̄ ≤ k̂. Since v is assumed to

be supermodular, we have

v(ŝi, s−i)− v(s̄i, s−i) ≤ v(ŝi, s
′
−i)− v(s̄i, s

′
−i)

and so
eβv(ŝi,s−i)

eβv(s̄i,s−i)
≤ eβv(ŝi,s

′
−i)

eβv(s̄i,s′−i)

which in turn implies that

p−i (Sik̂ | s : v, β)
p−i (Sik̄ | s : v, β)

=

∑

ŝi∈Sik̂

eβv(ŝi,s−i)

∑

s̄i∈Sik̄

eβv(s̄i,s−i)
≤

∑

ŝi∈Sik̂

eβv(ŝi,s
′
−i)

∑

s̄i∈Sik̄

eβv(s̄i,s
′
−i)

=
p−i (Sik̂ | s′ : v, β)
p−i (Sik̄ | s′ : v, β)

.

This shows that, viewed as probabilities on {Si1, . . . , SiKi}, p−i ( · | s : v, β) is smaller

than p−i ( · | s′ : v, β) in the likelihood ratio order. Hence it follows by the standard argument

that p−i (Ti | s : v, β) ≤ p−i (Ti | s′ : v, β) for any increasing set Ti ∈ Si. Since T ∈ S is

increasing, it is easy to see that Ti(s) ∈ Si and Ti(s) is increasing for any s ∈ S. In

addition, Ti(s) ⊂ Ti(s′) whenever s ≤ s′. Hence

φi(s) = p−i (Ti(s) | s : v, β) ≤ p−i (Ti(s) | s′ : v, β) ≤ p−i (Ti(s′) | s′ : v, β) = φi(s′)

as claimed. Q.E.D.
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Corollary 2 Suppose that v is supermodular. Then for any µ, ν ∈ ∆(S) with µ ≤S ν, we

have µQ−(v, β) ≤S νQ−(v, β) and µQ+(v, β) ≤S νQ+(v, β).

Proof. Let p = µQ−(v, β) and q = νQ−(v, β), and let T ∈ S be an increasing set. Then

p(T ) =
∑

s′∈T

∑

s∈S

µsq
−
ss′(v, β) =

∑

s∈S

µs

∑

s′∈T

q−ss′(v, β) =
∑

s∈S

µsφ(s) = Eµ[φ]

where φ(s) is defined as in Lemma 3. Similarly, q(T ) = Eν [φ]. Since µ ≤S ν and φ is

S-measurable and nondecreasing by Lemma 3, we have p(T ) ≤ q(T ) by Lemma 1. Hence

p ≤S q. The proof for Q+(v, β) is similar and omitted. Q.E.D.

Proposition 5 Suppose that either v is supermodular or ui is supermodular for each

i = 1, . . . , n. Then for any µ, ν ∈ ∆(S) with µ ≤S ν we have µQ−(v, β) ≤S νQ−(u, β) ≤S
νQ(u, β) and µQ(u, β) ≤S µQ+(u, β) ≤S νQ+(v, β).

Proof. We carry out the proof only for Q−. Take µ, ν ∈ ∆(S) with µ ≤S ν and let T ∈ S
be an increasing set. Suppose first that v is supermodular. Then µQ−(v, β) ≤S νQ−(v, β)

by Corollary 2, and νQ−(v, β) ≤S νQ−(u, β) ≤S νQ(u, β) by Proposition 4 and Lemma

2. Hence µQ−(v, β) ≤S νQ−(u, β) ≤S νQ(u, β).

Next, suppose that each ui is supermodular. Let p = µQ−(v, β), q = νQ−(u, β) and

let T ⊂ S be an increasing set. For each s ∈ S let R(s) be the measurable rectangle

containing s. Define a function ψ : S → R by ψ(s) = minŝ∈R(s)

∑
s′∈T q−ŝs′(u, β). Then (i)

Q−(v, β) ≤ Q−(u, β) (Lemma 4) and (5.5) imply that φ(s) ≤ ψ(s) for every s ∈ S where φ

is defined as in Lemma 3, and, (ii) by an argument similar to that in the proof of Lemma
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3 it follows that ψ is S-measurable and nondecreasing. Hence,

p(T ) =
∑

s′∈T

∑

s∈S

µsq
−
ss′(v, β) =

∑

s∈S

µs

∑

s′∈T

q−ss′(v, β)

=
∑

s∈S

µsφ(s)

≤
∑

s∈S

µsψ(s) by (i)

≤
∑

s∈S

νsψ(s) by µ ≤S ν, (ii), and Lemma 1

≤
∑

s∈S

νs

∑

s′∈T

q−ss′(u, β) by the definition of ψ

=
∑

s′∈T

∑

s∈S

νsq
−
ss′(u, β) = q(T )

which shows that µQ−(v, β) ≤S νQ−(u, β). Together with νQ−(u, β) ≤S νQ(u, β) by

Lemma 2, the proof is complete. Q.E.D.

The following Lemma is a straightforward variation of a result by [3].

Lemma 4 (a) Q−(v, β) has a unique invariant distribution given by

µ−s (v, β) =





eβv(s)

∑

s′∈S−
eβv(s′)

if s ∈ S−

0 otherwise

(5.6)

and, similarly, Q+(v, β) has a unique invariant distribution given by

µ+
s (v, β) =





eβv(s)

∑

s′∈S+

eβv(s′)
if s ∈ S+

0 otherwise

(5.7)

(b)

lim
β→∞

µ−s (v, β) = lim
β→∞

µ+
s (v, β) =





1
|Sk∗1 ,...,k∗n |

if s ∈ Sk∗1 ,...,k∗n

0 otherwise
(5.8)
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Proof. We carry out the proof only for Q−(v, β) as the proof for Q+(v, β) is similar.

(a) Observe first that Q−(v, β) has a unique recurrence class S− and it is aperiodic.

Hence, Q−(v, β) has a unique invariant distribution whose support is S−. To see that

µ−(v, β) defined by (5.6) is indeed an invariant distribution, hence the unique one, it is

enough to check that it satisfies the detailed balance condition, i.e. µ−s (v, β)q−ss′(v, β) =

µ−s′(v, β)q−s′s(v, β) for any s, s′ ∈ S. This condition is trivially fulfilled if s or s′ does not

belong to S−. So assume they do belong to S−. The condition is clearly fulfilled if s = s′,

and also if s and s′ differ in more than one coordinate, since, then, q−ss′(v, β) = q−s′s(v, β) =

0. Now assume that s and s′ differ exactly in one coordinate, say i, that is, si 6= s′i and

s−i = s′−i. Then

µ−s (v, β)q−ss′(v, β) =
eβv(s)

∑

s′′∈S−
eβv(s′′)

ρi
eβv(s′i,s−i)

∑

s′′i ∈S−i

eβv(s′′i ,s−i)

=
eβv(s′)

∑

s′′∈S−
eβv(s′′)

ρi
eβv(si,s

′
−i)∑

s′′i ∈S−i

eβv(s′′i ,s′−i)
= µ−s′(v, β)q−s′s(v, β)

as claimed.

(b) Since v(s) > v(s′) for every s ∈ Sk∗1 ,...,k∗n and s′ /∈ Sk∗1 ,...,k∗n , it follows that

limβ→∞ µ−s (v, β) > 0 only if s ∈ Sk∗1 ,...,k∗n . If s, s′ ∈ Sk∗1 ,...,k∗n , then S-measurability of

v implies that µ−s (v, β) = µ−s′(v, β) and so (5.8) follows. Q.E.D.

We are now ready to complete the proof of Theorem 2. Recall that Q(u, β) is irreducible

and aperiodic, and its unique invariant distribution is denoted by µ(u, β).

Proof of Theorem 1. It is enough to show that µ−(v, β) ≤S µ(u, β) ≤S µ+(v, β). Indeed,

these inequalities together with Lemma 4-(b) imply that the support of limβ→∞ µ(u, β) is

contained in both S− and S+, and hence in S− ∩ S+ = Sk∗1 ,...,k∗n .

By Proposition 4 we have Q−(v, β) ≤S Q(u, β). Suppose that v or u is supermod-

ular. Let µ, ν ∈ ∆(S) be such that µ ≤S ν. Then µQ−(v, β) ≤S νQ(u, β) by Propo-

sition 5. Repeated application of Proposition 5 leads to µQ−(v, β)k ≤S νQ(u, β)k for

every k = 1, 2, . . .. Letting k → ∞ and noting that each row of limk→∞Q−(v, β)k and
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limk→∞Q(u, β)k is identical to µ−(v, β) and µ(u, β), respectively, we obtain µ−(v, β) ≤S
µ(u, β). A similar argument shows µ(u, β) ≤S µ+(v, β). Q.E.D.

6 More General Forms of Interaction

We have so far considered the log-linear process on a strategic form game with a fixed set

of players. In this section we consider the log-linear process on a population version of the

basic game as well as a model where interactions among players are specified by a finite

graph, as in [3]. We will demonstrate that our main results still hold in this set up.

Recall that our basic game is a finite I-person game G in strategic form with strategy

sets Si and payoff functions ui : S → R, i = 1, . . . , I, where S = S1 × · · · × SI . Each

i = 1, . . . , I will now be referred to as a player position.

6.1 Log-linear Dynamics on a Population Game

A population game Γ associated with G is a finite I ×N -person game in strategic form.

At each of I player positions there is a population of N players.24 Players at the same

position i have the identical strategy set, Si. An i-strategy profile is a profile of strategy

choices by N players at position i, i.e., a N -tuple σi = (si1, . . . , siN ) ∈ Σi = SN
i . A

population strategy profile is an I×N -tuple σ = (σ1, . . . , σI) where each σi is an i-strategy

profile.

Denote by di(σi) =
(
di(si |σi)

)
si∈Si

the empirical distribution of strategies in Si derived

from σi, i.e.,

di(si |σi) =
ni(si |σi)

N

where ni(si |σi) is the number of players at position i using strategy si in σi. For each

strategy profile σ = (σ1, . . . , σn) let d(σ) = (d1(σ1), . . . , dn(σn)). Given a strategy profile

σ =
(
(s11, . . . , s1N ), . . . , (sI1, . . . , sIN )

)
the payoff to a player n at position i is

Uin(σ) = ui(sin, d−i(σ−i)) ≡
∑

s−i∈S−i

d−i(s−i |σ−i)ui(sin, s−i) (6.1)

24It is only for simplicity of exposition that we assume equal number of players at each position.
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where d−i(s−i |σ−i) =
∏

j 6=i dj(sj |σj). An interpretation is that player n at position i

faces I − 1 players drawn uniformly and independently from each position j 6= i, and

players at the same position i have the identical payoff function ui.

The state space of the dynamic process is the set of (population) strategy profiles,

Σ = Σ1 × · · · × ΣI = SN
1 × · · · × SN

I .

At each period t ≥ 1 a single player from one, and only one, position is chosen with

a positive probability and is given an opportunity to revise her strategy according to the

log-linear stochastic choice rule. The probability that a player n at position i receives a

revision opportunity is denoted by ρin and ρin > 0 for all i and n.

If the state in the previous period is σ = (σ1, . . . , σI) where σi = (si1, . . . , siN ), and

if a player n at position i receives a revision opportunity and revises her strategy from

sin to s′in, then the new state is σ′ = (σ′i, σ−i) where σ′i = (s′in, σi(−n)). For any two

strategy profiles σ and σ′ we write σ
i, n−−→ σ′ if they differ at a single component, i.e., if

σ′ =
(
(s′in, σi(−n)), σ−i

)
for some i, n and s′in ∈ Si.

From the way each player’s payoff is defined in (6.1) it is clear that the log-linear

choice rule depends only on the position of the player but not on the individual name

of the player. Thus let pi(si |σ : ui, β) be the probability that any player at position i

chooses si ∈ Si given a state σ ∈ Σ. As in (2.1) and (2.2),

ln
pi(s′i |σ : ui, β)
pi(si |σ : ui, β)

= β
(
ui(s′i, d−i(σ−i))− ui(si, d−i(σ−i))

)
(6.2)

for all σ ∈ Σ and si, s
′
i ∈ Si or, equivalently,

pi(s′i |σ : ui, β) =
eβui(s

′
i,d−i(σ−i))

∑

si∈Si

eβui(si,d−i(σ−i))
. (6.3)

The corresponding probability of transition from σ to σ′ is given by

qσσ′(u, β) =
∑

i, n

I(σ
i, n−−→ σ′)ρinpi(s′in |σ : ui, β). (6.4)

Let Q(u, β) be the corresponding transition matrix of this Markov chain. Also let Q∗(u)

be the transition matrix corresponding to the best response choice rule. Note that the

log-linear process operates on the population game Γ, but the transition probabilities and
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matrices are labeled by payoff functions of the underlying game G. The population version

of the Markov chain is still irreducible and aperiodic. The unique invariant distribution

of Q(u, β) is again written as µ(u, β). Stochastic stability of a state σ ∈ Σ is defined in an

identical manner as before.

Potential Games. Suppose that the basic game G is a potential game with a potential

function v. In the associated population game Γ, if σ =
(
(sik, σi(−k)), σ−i

)
and σ′ =(

(s′ik, σi(−k)), σ−i

)
, then d−i(σ′−i) = d−i(σ−i) and

di(s′ik |σ′i) =
ni(s′ik |σi) + 1

N
, di(sik |σ′i) =

ni(sik |σi)− 1
N

.

It easily follows that

Uik(σ′)− Uik(σ) = N
{
v(d(σ′))− v(d(σ))

}
.

where v(d(σ)) =
∑

s∈S d(s |σ)v(s). That is, σ 7→ N(v ◦ d)(σ) is a potential function of

the population game Γ.

Clearly, a strategy profile σ in Γ maximizes the potential function N(v ◦ d) if, and

only if, the empirical distribution d(σ) puts positive probability only on those strategy

profiles in G that maximize its potential function v, i.e., if, and only if, the support of

d(σ) is contained in argmax v. Consequently, the set of stochastically stable states can be

explicitly characterized simply by restating Theorem 1.

Corollary 3 (Blume, 1997) Suppose that G is a potential game with a potential func-

tion v and hence Γ is a potential game with a potential function N(v ◦ d). Then the

invariant distribution of Q(v, β) is

µσ(v, β) =
eβ Nv(d(σ))

∑

σ∈Σ

eβ Nv(d(σ))
(6.5)

and σ ∈ Σ is stochastically stable if, and only if, Support
(
d(σ)

) ⊂ argmax v.

Example 8 Suppose that G is a two-person three-action game with a potential function
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0 1 2

0 1 0 0

1 0 1 1

2 0 1 1

Then the stochastically stable states are
(
(N, 0, 0), (N, 0, 0)

)
where every player at each

position plays strategy 0, and
(
(0, N − L,L), (0, N −M, M)

)
with 0 ≤ L,M ≤ N where

strategies 1 and 2 coexist at each position. When N = 1, there are five stochastically

stable states:
(
(1, 0, 0), (1, 0, 0)

)
,
(
(0, 1, 0), (0, 1, 0)

)
,
(
(0, 1, 0), (0, 0, 1)

)
,
(
(0, 0, 1), (0, 1, 0)

)
,

and
(
(0, 0, 1), (0, 0, 1)

)
.

Local Potential. From the discussion of the potential games above it is clear that if S∗

is a local potential maximizer of the underlying game G with a local potential function v,

then

Σ∗ =
{
σ ∈ Σ |Support

(
d(σ)

) ⊂ S∗
}

is a local potential maximizer of the population game Γ with a local potential function

N(v ◦ d).25 The next result is thus a restatement of Theorem 2.

Corollary 4 Suppose that S∗ is a local potential maximizer in G with respect to u =

(u1, . . . , un) with a local potential v : S → R and wi( · , · ) ≡ 1 for all i = 1, . . . , n. If u or

v is supermodular then the set of stochastically stable states for the log-linear process on

Γ is contained in Σ∗, i.e., Support
(
limβ→∞ µ(u, β)

) ⊂ Σ∗.

The population version of Proposition 2 (when β’s differ across player positions or even

across individual players) is now obvious and is omitted.

6.2 The Log-linear Dynamics on Local Interaction Game

A local interaction over a basic I-person game G is described by a multipartite graph

G = (N1, . . . , NI , E) where Ni ∩Nj = ∅ for any i and j 6= i, and E ⊂ N ≡ N1 × · · · ×NI .

25The choice of an ordered domain on Σ should be obvious.
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Each element of Ni represents an individual who plays a role of player i in G. Each

element in E (edges) represents a profile of I players, one from each Ni, who interact to

play G.26 We assume that every individual in every Ni participates to play G at least

once. That is, the projection of E to the i-th coordinate is Ni itself. For each i and

n ∈ Ni, let E−i(n) be the collection of I − 1 players who interact with player n. That is,

E−i(n) = {e−i ∈ N−i | (n, e−i) ∈ E}. (As usual, N−i = ×j 6=iNj etc.)

The local interaction game G(G) is an |N |-person game where player n ∈ Ni has the

strategy set Si. Players’ choices of strategies are summarized by a configuration φ =

(φ1, . . . , φI) where φi : Ni → Si represents choices of strategies by players in Ni. Given a

configuration φ, the payoff to player n ∈ Ni is

Un(φ) =
∑

e−i∈E−i(n)

ui(φi(n), φ−i(e−i)) (6.6)

The log-linear dynamics on G(G) is defined just as that on G. The state space is now

the set of all configurations, Φ = SN1
1 × · · · × SNI

I .

Potential Games. Suppose that G is a potential game. If v : S → R is a potential

function for G, then it is easy to verify that V : Φ → R defined by

V (φ) =
1
I

I∑

i=1

∑

n∈Ni

∑

e−i∈E−i(n)

v
(
φi(n), φ−i(e−i)

)
(6.7)

is a potential function for G(G). Clearly, V is maximized at any configuration φ =

(φ1, . . . , φI) such that for every edge e = (e1, . . . , eI) ∈ E, the strategy profile φ(e) =

(φ1(e1), . . . , φI(eI)) maximizes v. Let Φ∗ be the set of such configuration.

26In [3] a local interaction over a two-player symmetric game is modeled by a an undirected graph (N, E)

where E ⊂ N ×N , E is disjoint from the diagonal, and every node is connected to at least one other node.

The payoff to n ∈ N at a configuration φ : N → S is given by

gn(φ) =
∑

m∈N

1
(
(n, m) ∈ E

)
u(φ(n), φ(m)).

It easy to convert this setup to a bipartite graph (N1, N2, E).
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Corollary 5 (Blume, 1997) Suppose that G is a potential game with a potential func-

tion v and hence G(G) is a potential game with a potential function V defined by (6.7).

Then the invariant distribution of the log-linear dynamics on G(G) with parameter β is

µφ(V, β) =
eβ V (φ)

∑

φ′∈Φ

eβ V (φ′)
(6.8)

and the set of stochastically stable states is precisely Φ∗.

Needless to say, precise form of Φ∗ depends on the form of interaction, i.e., the graph

G. But if there is a unique strategy profile s∗ that maximizes a potential function v for

the basic game G, then Φ∗ is a singleton set {φ∗} where φ∗(e) = s∗ for every e ∈ E.

Local Potential. From the discussion of the potential games above it is clear that if S∗

is a local potential maximizer of the underlying game G with a local potential function v,

then

Φ∗ = {φ ∈ Φ | ∀ e ∈ E, φ(e) ∈ S∗}
is a local potential maximizer of the population game G(G) with a local potential function

V defined by (6.7).27 The next result is thus a restatement of Theorem 2.

Corollary 6 Suppose that S∗ is a local potential maximizer in G with respect to u =

(u1, . . . , un) with a local potential v : S → R and wi( · , · ) ≡ 1 for all i = 1, . . . , n. If u or

v is supermodular then the set of stochastically stable states for the log-linear process on

G(G) is contained in Φ∗.

Again, the population version of Proposition 2 (when β’s differ across player positions

or even across individual players) is obvious and is omitted.

7 Concluding Remarks

We close with a few remarks. First, in [15, Proposition 3], an LP-max (not necessarily with

constant weights) is shown to be robust to incomplete information under an additional

27Again, the choice of an ordered domain on Φ should be obvious. Recall that Φ = SN1
1 × · · · × SNI

I .
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assumption that either the local potential or the payoff functions exhibit diminishing

marginal returns. Under the same additional condition, [16, Lemma 4.5, Corollary 4.6]

shows that an LP-max (singleton in their setup) is globally accessible for all sufficiently

small degree of friction under the perfect-foresight dynamics. We note that an LP-max

with a constant weight as in our theorem would also be robust and globally accessible

even if neither ui’s nor v exhibit diminishing marginal returns. Indeed, one can show

that an LP-max with a constant weight is a monotone potential maximizer as defined in

[15] without diminishing marginal return assumption. A monotone potential maximizer is

robust to incomplete information ([15]) as well as linearly absorbing and globally accessible

([16]).

A simple case of monotone potential maximizer can be described as follows. A strategy

profile s∗ is a monotone potential maximizer if one can find (a) a total order on each

player’s strategy set with s∗i as the maximum and (b) a real valued function v defined on

the set of strategy profiles with two conditions. First, s∗ uniquely maximizes the value of

v. Second, against any conjecture on other players’ strategies, a player has an action that

is a best response in the given game and is at least as large in an order found in (a) as

some best response action in the common interest game with payoff function v. Features of

perfect foresight dynamics distinct from the log-linear dynamics are that, first, the relevant

solution (stability) concepts are invariant to affine transformation of the underlying game

and, second, that it preserves the order of best responses as described above under the

two games and, consequently, relevant stability properties of an action under common

interest game is inherited by the given game under consideration ([16]). Neither of these

properties, appropriately translated, holds under the log-linear dynamics.

Next, it should be noted that our main result (Theorem 2) is not a generalization of

Theorem 1 for potential games. While it is true that any potential maximizer is also a

local potential maximizer with constant weights in a trivial sense, our result applies if an

additional condition of supermodularity is met. Aside from the logical implication of our

theorem, this should not be surprising in light of our proof method which indeed relies

crucially on the result on potential games.

Finally, we end with a general remark concerning our proof method: comparison of
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Markov chains. 28 This technique may be useful to characterize the long-run behavior of

other dynamic processes. Indeed, if one knows what is the invariant distribution of some

given dynamic process on a game with payoffs u′ = (u1,
′ , . . . , u′I), and if u = (u1, . . . , uI)

and u′ are ordered in some appropriate sense − e.g., under the log-linear dynamics and

u′ = v is a local potential function for u− then one could infer information on the invariant

distribution for the given dynamics but this time with payoff functions u. Thus, our

technique seems to be applicable to generalize existing equilibrium selection results in the

literature on stochastic (perturbed) best response dynamics (e.g. [18], [10]). While the

above statements must remain at an intuitive level for now, a formalization of this general

idea is an interesting project for further investigation.

28See for instance [9], [11].
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Appendix

A Proof of Proposition 1

Suppose that conditions (a) and (b) of the proposition are satisfied. We will verify that

the function v defined by (3.4) is an appropriate local potential function. It is clear from

the definition that v is constant on each measurable rectangle and, by (b), its maximum

value is attained uniquely on S∗ = Sk∗ where k∗ = (k∗1, . . . , k
∗
I ). It remains to show

that v satisfies condition (3)-(d) ((d-1) and (d-2)) in Definition 2 with constant weights,

wi( · , · ) ≡ 1 for all i. As noted in the discussion following Definition 2, when weights

are constant the conditions (d-1) and (d-2) are equivalent to (e-1) and (e-2). So we shall

verify the latter conditions. Fix a player i and s−i ∈ S−i. Let k−i ∈ ×j 6=i {1, . . . ,Kj} be

the index of the rectangle containing s−i, i.e., s−i ∈ Sk−i .

To verify (e-1) take ki < k′i ≤ k∗i , si ∈ Siki and s′i ∈ Sik′i . Let k = (ki, k−i) and

k′ = (k′i, k−i) so that (s′i, s−i) ∈ Sk and (s′i, s−i) ∈ Sk′ . Let κ′ = (k∗, k1, . . . , k′) be

a path that attains the minimum value of Λ over Π(k∗, k′) so that v(si, s−i) = −Λ(κ′).

Consider a path κ = (κ′, k ) (κ′ followed by k ). Since κ′ is an individually monotonic

path of unilateral deviations terminating at k′ = (k′i, k−i) with k′i ≤ k∗i , it must be that

k∗i ≥ k1
i ≥ · · · ≥ k′i. In addition, k′i > ki and k = (ki, k′−i), and hence κ ∈ Π(k∗, k ). By

the definition of v we thus have v(si, s−i) ≥ −Λ(κ ). Therefore,

v(s′i, s−i)− v(si, s−i) ≤ Λ(κ )− Λ(κ′)

= ∆(k′, k ) by (3.3)

≤ ui(s′i, s−i)− ui(si, s−i) by (3.2).

So (e-1) holds. The argument for (e-2) is similar and is omitted.

Conversely, assume that S∗ is an LP-max with constant weights. Let {Si1, . . . , SiKi},
i = 1, . . . , I, and v : S → R be associated ordered domain and local potential function

where S∗ = Sk∗ with k∗ = (k∗1, . . . , k
∗
I ). Condition (a) is trivially satisfied by the definition

of LP-max. So it suffices to show that (b) holds. We will write the value of v on a

measurable rectangle Sk by vk . Note that vk∗ > vk for every k 6= k∗.
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Consider k1 = (k1
i , k∗−i) where k1

i = k∗i − 1 or k∗i + 1. By Definition 2 (3)-(d-1),(d-2)

we have

ui(s0
i , s

0
−i)− ui(s1

i , s
0
−i) ≥ vk0 − vk1

for every s0
i ∈ Sik∗i , s1

i ∈ Sik1
i

and s∗−i ∈ Sk∗−i
. By taking the minimum over s0

i , s1
i and s0

−i

we conclude (recall (3.2))

∆(k∗, k1) ≥ vk∗ − vk1 .

Now, if κ = (k∗, k1, . . . , kL) is an individually monotonic path of unilateral deviations,

then by repeating the above argument −noting that k∗i ≤ · · · ≤ kL
i or k∗i ≥ · · · ≥ kL

i for

all i− we see that

Λ(κ ) =
L∑

`=1

∆(k`−1, k`) ≥ vk∗ − vkL > 0.

This completes the proof. Q.E.D.

B p-dominance and Stochastic Stability in 2× 2 Games.

We show that, for 2 × 2 games, a (p1, p2)-dominant equilibrium with max {p1, p2} < 1
2 is

stochastically stable. The proof uses the tree surgery results for the log-linear dynamics

developed by [1] which we explain first.29

For each state s ∈ S, a revision s-tree is a tree with S as the set of nodes such that

from any other state in S there is a unique path of unilateral deviations terminating at

s. Thus a revision s-tree is a tree rooted at s and an edge (s′, s′′) belongs to it only if

s′′ = (s′′i , s
′
−i) for some i and s′′i 6= s′i. The set of all revision s-trees is denoted by T (s).

Define the waste associated with an edge (s′, s′′) in a revision s-tree T by30

w(s′, s′′) = max
ŝi∈Si

ui(ŝi, s
′
−i)− ui(s′′i , s

′
−i)

29Here we tailor the notations to our setup where only one player revises a strategy at a time. More

general form of revision opportunities are considered in [1].
30The waste corresponds to the resistance in the language of perturbed Markov chains. In the adaptive

learning model of [18] (resp. [10]) the number of mistakes (resp. mutations), i.e. non best response choices

of actions, needed to move from one state to another is taken as the resistance.

43



where i is the player who unilaterally deviates from s′ to s′′. The waste of a revision s-tree

T is defined as the sum of the wastes associated with all edges in T ,

w(T ) =
∑

(s′,s′′)∈T

w(s′, s′′). (B.1)

The stochastic potential of a state s is then defined as

π(s) = min
T∈T (s)

w(T ). (B.2)

A state is stochastically stable if, and only if, it has the smallest stochastic potential among

all states.

Theorem 3 ([1]) The set of stochastically stable states for the log-linear dynamics is

precisely argminπ.

Now consider a 2× 2 game given by the bimatrix below.

0 1

0 a00, b00 a01, b01

1 a10, b10 a11, b11

Suppose that (1, 1) is a (p1, p2)-dominant equilibrium, i.e.,

pa11 + (1− p)a10 ≥ pa01 + (1− p)a00 for all p ≥ p1,

pb11 + (1− p)b01 ≥ pb10 + (1− q)b00 for all p ≥ p2.
(B.3)

where pi < 1
2 , i = 1, 2. Taking p = 1 in the two inequalities above we see that (1, 1) is

an equilibrium. Note that if there is a strict equilibrium different from (1, 1), it must be

(0, 0). If (0, 0) is not a strict equilibrium, i.e., a00 ≤ a10 or b00 ≤ b01, then (1, 1) is reached

with a positive probability from any other state under the best response dynamics. Hence

every recurrence class of the best response dynamics includes (1, 1) (so there can be only

one recurrence class) and hence (1, 1) is stochastically stable.31

31Note that the argument so far depends only on (1, 1) being an equilibrium.

44



Suppose that (0, 0) is a strict equilibrium, i.e., a00 > a10 and b00 > b01. ¿From (B.3)

the lower bounds on p1 and p2 for (1, 1) to be (p1, p2)-dominant are

p∗1 =
a00 − a10

(a00 − a10) + (a11 − a01)
,

p∗2 =
b00 − b01

(b00 − b01) + (b11 − b10)
.

(B.4)

(Note that 0 < p∗i < 1, i = 1, 2.) Therefore, the condition pi < 1
2 , i = 1, 2, amounts to

a00 − a10 < a11 − a01 and b00 − b01 < b11 − b10. This in particular implies that a01 < a11

and b10 < b11 and so (1, 1) must be a strict equilibrium.32

For stochastic stability it suffices to consider only revision (0, 0)-trees and (1, 1)-trees

since (0, 0) and (1, 1) are the only recurrence classes (absorbing states) in the best response

dynamics. There are only two revision trees to consider for each of them. See Figure 1.

Numbers attached to each arrow is the waste of the edge. From the figure it is clear

that w(0, 0) = min {a11 − a01, b11 − b10} and w(1, 1) = min {a00 − a10, b00 − b01}. Hence

w(1, 1) < w(0, 0) and so (1, 1) is stochastically stable.

The above argument sheds yet more light on the cardinal nature of the log-linear

process. Note that (0, 0) in the above game is (p∗∗1 , p∗∗2 )-dominant where

p∗∗1 =
a11 − a01

(a11 − a01) + (a00 − a10)
, p∗∗2 =

b11 − b10

(b11 − b10) + (b00 − b01)
.

so that p∗1 + p∗∗1 = 1 and p∗2 + p∗∗2 = 1. It is easy to see that p∗1 + p∗2 < 1 is equivalent

to min {p∗1, p∗∗2 } < min {p∗∗1 , p∗∗2 }.33 As we saw in Example 5 (and comments following it)

this does not guarantee the stochastic stability of (1, 1). In that example,

p∗∗1 =
10

10 + 2
=

5
6
, p∗∗2 =

1
1 + 2

=
1
3
,

p∗1 =
2

10 + 2
=

1
6
, p∗2 =

2
1 + 2

=
2
3
,

32Here we showed that if (1, 1) is (p1, p2)-dominant with p1, p2 < 1/2 and if (0, 0) is a strict equilibrium,

then (1, 1) must also be strict. In contrast a strict p-dominant equilibrium is always a strict equilibrium

for any game.
33This is equivalent to (1, 1) being risk dominant. See [4] and [18, Section 7].
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and p∗1 + p∗2 = 5
6 < 1 and indeed min {p∗1, p∗2} = 1

6 < 1
3 = min {p∗∗1 , p∗∗2 }. However, the

stochastic potentials of (0, 0) and (1, 1) are, as we saw from Figure 1,

w(0, 0) = min {a11 − a01, b11 − b10} = min {Ap∗∗1 , B p∗∗2 } = 1,

w(1, 1) = min {a00 − a10, b00 − b01} = min {Ap∗1, B p∗2} = 2.

where A = (a11 − a01) + (a00 − a10) and B = (b11 − b10) + (b00 − b01). Consequently

(0, 0) is stochastically stable. Thus normalizing constants (A and B) exert an influ-

ence on stochastically stable states under the log-linear process. As we showed above,

a stronger condition such as max {p1, p2} < 1
2 is needed to ensure an equivalence be-

tween min {p∗1, p∗2} < min {p∗∗1 , p∗∗2 } (risk dominance) and w(1, 1) < w(0, 0) (stochastic

stability).34

34In contrast, [18] shows that the risk dominance suffices for stochastic stability in his version of adaptive

learning dynamics.
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0,0 0, 1

1, 0 1, 1

0,0 0, 1

1, 0

1,1

0, 0 0, 1

1, 0 1,1

0, 0 0, 1

1, 0

¾

6 6 6

¾

?

b11 − b10

-
? ?

-

0

0

00

0

a11 − a01

0

¾

-

0

0

b00 − b01

a00 − a10

(a) Revision (0, 0)-trees

(b) Revision (1, 1)-trees

Figure 1: Revision trees for computing stochastic potential
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