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Abstract

Coherent imprecise probabilistic beliefs are modelled as incomplete comparative likelihood relations

admitting a multiple-prior representation. Under a structural assumption of Equidivisibility, we pro-

vide an axiomatization of such relations and show uniqueness of the representation. In the second

part of the paper, we formulate a behaviorally general axiom relating preferences and probabilis-

tic beliefs which implies that preferences over unambiguous acts are probabilistically sophisticated

and which entails representability of preferences over Savage acts in an Anscombe-Aumann-style

framework. The motivation for an explicit and separate axiomatization of beliefs for the study of

decision-making under ambiguity is discussed in some detail.



1. INTRODUCTION

In the wake of Ellsberg’s (1961) celebrated experiments, it is by now widely recognized that

decision makers are not always guided by a well-defined subjective probability measure. Ellsberg’s

challenge to received decision theory is particularly profound in that it puts into question not so much

particular assumptions on decision makers’ preference attitudes towards uncertainty, but the very

understanding of uncertainty itself. Even though much effort has gone into modelling of Ellsberg-

style “ambiguity”, the nature and role of probabilistic beliefs in such contexts is not yet understood

satisfactorily. This issue is central not just from the point of view of decision theory itself, but also

from that of its economic applications, since, in large part, economic models are models of agents’

beliefs, whether in macroeconomics, finance, game theory or elsewhere.

The modelling of an agents’ probabilistic beliefs under ambiguity can be approached in at least two

ways. First, one might try to define beliefs from preferences following Savage (1954). While Savage’s

own definition can be invoked even under ambiguity at a purely formal level, it is in general no longer

associated with well-defined probabilistic beliefs, as will be illustrated shortly in the context of the

Ellsberg paradox. The canonical relation between probabilistic beliefs and (betting) preferences that

obtains under expected utility breaks down, since betting preferences are now determined by beliefs

—however construed— and ambiguity attitudes.1 It is an open question whether and under what

circumstances Savage’s definition can be generalized satisfactorily. And, in any case, it seems likely

that even the “best possible” definition will be less canonical, that it will come with more strings

attached than Savage’s. In this paper, we therefore want to pursue a less ambitious goal: “Suppose

that we know that the decision-maker entertains a specified set of probabilistic beliefs. What is the

structure of such beliefs, and how do they (rationally) constrain his preferences?”2

To address these two questions, we propose to model probabilistic beliefs as comparative likelihood

relation D over events, with “A D B” denoting the judgement “A is at least as likely as B”, thereby

1For different reasons, a canonical definition of “revealed subjective probability” from choice-behavior fails to be

possible in the case of state-dependendent preferences; see Karni et al. (1983) and the subsequent literature.

Even in the context of Savage’s SEU theory, this “canonical” definition has been criticized as not necessarily

capturing the decision maker’s true beliefs (Shervish, Seidenfeld and Kadane (1990), Karni (1996), Grant-Karni

(2004) ); this criticism assumes, however, a non-behaviorist point of view to begin with.
2Note that an answer to the first question naturally entails an answer to the second: to answer the latter, one

simply needs to check whether the beliefs revealed by his preferences are consistent with the stated set of probabilistic

beliefs. By contrast, as we shall see shortly, an answer to the second question does not necessarily entail an answer

to the first. Thus, the second question is more modest and, arguably, more basic.
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following the lead of Keynes (1921), de Finetti (1931) and Savage (1954). This likelihood relation

shall be taken as an independent, non-behavioral primitive, leaving open the question whether/under

what circumstances it can in turn be derived from preferences. We will thus describe a decision

maker by two relations, a preference relation over acts together with a likelihood relation over

events. The likelihood relation can represent either “objective” probabilistic information or purely

subjective beliefs; these interpretations are fleshed out at the beginning of section 2. Under either

interpretation, we will assume the likelihood relation to be incomplete in order to make room for

preferences reflecting ambiguity, while preferences are assumed to be complete as usual.

Imprecise Probabilistic Beliefs in the Ellsberg Paradox

To illustrate the logic of the proposed preferences-plus-beliefs framework, let us consider the

classical two-color, two urn version of the Ellsberg paradox. One ball is drawn from each of two

urns both of which are composed of red and black balls only. The decision maker is told that the

first (“known”) urn contains as many red as black balls, but is told nothing about the composition

of the second (“unknown”) urn. We will focus here on the four events associated with the colors of

each draw: R and B (the ball drawn from the known urn is red / black), as well as R0 and B0 (the

ball drawn from the unknown urn is red / black). There is one fundamental piece of probabilistic

information, namely that the events R and B are equally likely (R ≡ B). According to the typically

observed choice pattern, betting on any color of the known urn is preferred to betting on any color

of the unknown urn:

R ∼ B Â R0 ∼ B0

in obvious notation3.

Comparative likelihood relations constrain betting preferences canonically: if A is at least as

likely as B, then betting on A must be weakly preferred to betting on B. If this condition is satisfied

for arbitrary events A and B, preferences and the specified information/beliefs will be said to be

compatible with each other. We shall refer to the underlying rationality principle that extends to

multi-valued acts as “Likelihood Consequentialism”.

In the above example, preferences are evidently compatible with the specified information that

R ≡ B. One may wonder, however, whether its is possible to attribute to the decision maker in

3In this notation, an event E is preferred to another event E0 if betting on E (receiving the better of two conse-

quences on E, and the worse on Ec) is preferred to betting on E0.
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addition a belief that red and black from the unknown urn are equally likely, R0 ≡ B0, as implied by

Savage’s definition of revealed likelihood. Clearly, this can be done only at the price of sacrificing

fundamental coherence properties of the “logic of probability”. For this logic evidently implies that

if a red and black draw from the unknown urn were judged equally likely, then all four possible

draws must be equally likely. But such a judgement would be incompatible with the observed

preference for betting on the known urn. A similar argument shows that the specified preferences

are not compatible with attributing a belief that R0 is strictly more likely than B0, nor with the

converse belief that B0 is strictly more likely than R0. Thus any coherent likelihood relation that is

compatible with the specified preferences must be incomplete even though the preference relation itself

is complete.

Incompleteness of the likelihood relation alongside a complete preference relation yields a very

intuitive account of the Ellsberg paradox, in that the absence of a likelihood comparison between

the colors from the unknown urn captures precisely the epistemic difference between the two urns

that motivates the preference for betting on the known urn. Indeed, this is not a novel interpretation

at all, but simply fleshes out formally the common verbal interpretation starting with Ellsberg (1963)

and Schmeidler (1989).

This beliefs-based approach does not represent the only possible explanation of the Ellsberg para-

dox. A frequently proposed alternative is derived from the claim that the decision maker has well-

defined global subjective probabilities, but simply “dislikes” betting on the unknown urn relative to

betting on the known urn.4 This alternative, preference-based account allows to maintain complete-

ness of the likelihood relation at the price of sacrificing Compatibility/Likelihood Consequentialism.

This is high price to pay as it severs radically the connection between belief and preference, whereas

here at least a unidirectional version of the classical relationship is preserved.

Representation of Coherent Likelihood Relations by Multiple Priors

The example also illustrates that the content and power of the restrictions induced by a set of

likelihood judgements depends critically on the nature of entailment relationships among them. The

key task of the present paper is therefore the characterization of “coherent” likelihood relations, that

is, of likelihood relations that incorporate all such entailments. For the limiting case of complete

relations, Savage (1954) achieved a characterization of this kind leading to a representation by a

4Segal (1987), Ergin-Gul (2004) and Chew-Sagi (2003) can be interpreted in this vein, as well as perhaps Tversky-

Wakker’s (1995) notion of “source preference”.
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numerical probability measure. This result was in fact a key step in deriving his celebrated Subjective

Expected Utility Theorem. Remarkably, by an appropriate choice of auxiliary conditions, Savage

was able to make do with a single rationality axiom, “Additivity”, according to which the judgment

that A is at least as likely as B entails and is entailed by the judgment that “A or C” is at least

as likely as “B or C”, for any event C disjoint from A and B. In exchange, Savage had to pay the

price of restricting attention to atomless (more precisely: “convex-ranged”) probability measures.

The main result of the present paper, Theorem 2, offers a counterpart to Savage’s result for

incomplete comparative likelihood relations; it appears to be the first result of its kind in the

literature. Without completeness, Additivity is no longer enough to fully capture the “logical syntax

of probability”; a second rationality axiom called “Splitting” is needed as well. This axiom requires

in particular that if two events A and B are each split into a more and a less likely “subevent”, and

if A is judged at least as likely as B, then the more likely subevent of A must be at least as likely

as the less likely subevent of B. Under appropriate auxiliary conditions, Theorem 2 shows that a

likelihood relation satisfies Additivity and Splitting if and only if it has a representation in terms of

a set of admissible probability measures (“priors”); according to this representation, an event A as

at least as likely as B if and only if A’s probability is at least as large as that of B, for any admissible

prior in the set. Likelihood relations for which such a multi-prior representation exists will be called

coherent.

As in Savage, and indeed in a somewhat more pronounced form, there is a price to be paid for the

simplicity in the rationality axioms underlying coherence due to the need for substantive structural

assumptions. Specifically, we assume that any event can indeed be split into two equally likely

subevents (roughly as in De Finetti 1931). Besides non-atomicity, Equidivisibility thus assumes a

minimal degree of completeness of the likelihood relation. It is satisfied, for example, in the presence

of a continuous random device, as assumed in the widely-used Anscombe-Aumann framework. In an

important sense, Equidivisibility is not really restrictive at all since any coherent likelihood relation

can be extended to a larger one incorporating a hypothetical random-device on a larger state space.

See section 2 for details and further examples.

Importantly, Equidivisibility ensures uniqueness of the multi-prior representation (within the class

of closed, convex sets of priors). We show by example (see section 2.4) that this assumption cannot

be greatly weakened without losing uniqueness. Without uniqueness, a representation of imprecise

beliefs by sets of priors could be viewed as more expressive than a representation in terms of com-

parative likelihood relations; this would cast doubt on the adequacy of such likelihood relations as
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the canonical primitive representing probabilistic beliefs.

Preferences Constrained by Imprecise Probabilistic Beliefs

In the second part of the paper, we try to determine how specified imprecise probabilistic beliefs ra-

tionally constrain preferences. To do so, we propose an axiom called “Likelihood Consequentialism”

that extends the compatibility requirement that has been formulated above for betting preferences

in a natural way to general acts with multiple outcomes. It represents a minimal yet generally

applicable criterion of consequentialist rationality relating preferences to probabilistic beliefs. It is

minimal in that it does not constrain the DM’s risk or ambiguity attitudes in any substantive way,

thereby ensuring behavioral generality. In particular, it accommodates Allais- and Ellsberg-style

choice patterns, and is not tied to assumptions about functional form. As argued compellingly by

Machina-Schmeidler (1992) and Epstein-Zhang (2001), behavioral generality is important since issues

about the representation of probabilistic beliefs are more fundamental than particular behavioral

assumptions. We view the existence of substantive yet behaviorally general rationality restrictions

on preferences as a crucial advantage of likelihood relations as an epistemic primitive (in contrast

to, for example, a direct use of sets of priors).

While minimal, the restrictions on preferences entailed by Likelihood Consequentialism are sub-

stantial. In particular, we show that, given a likelihood relation satisfying the assumptions of The-

orem 2, Likelihood Consequentialism entails probabilistic sophistication over unambiguous (risky)

acts in the sense of Machina-Schmeidler (1992), that is: acts whose outcomes have well-defined prob-

abilities derived from the likelihood relation. Taking the argument further, we show that any such

preference ordering can be represented as a preference ordering over Anscombe-Aumann (1963) acts

with a mixture-operation that is defined in terms of the given likelihood relation. This construction

can be viewed as a decision-theoretic, belief-based foundation for the Anscombe-Aumann (1963)

framework. Our derivation not only clarifies the assumptions on preferences and beliefs implicit in

the Anscombe-Aumann model, it leads to an even more powerful structure since all uncertainty is

treated at the same level. Moreover, since it applies to any likelihood relation with a convex-ranged

representation, our derivation does not presuppose the existence of a continuous random device.

Likelihood relations represented by convex-ranged sets of priors promise to provide a fruitful

setting for further decision theoretic analyses. Indeed, in companion papers (Nehring 2001, 2004),

we use this framework to address three basic issues in the theory of decision making under ambiguity:

5



1. how to infer beliefs from preferences;

2. how to characterize decision-makers that depart from subjective expected utility exclusively

for reasons of ambiguity; and

3. how to define ambiguity attitudes in terms of betting preferences only to ensure behavioral

generality.

In each case, the additional structure provided by a convex-ranged sets of priors is crucial.

Related Literature

1. Our first main result, Theorem 2, builds on and can be viewed as the likelihood counterpart

of the multiple-prior representations of partial orderings due to Bewley (1986) and Walley (1991)

following Smith (1961). All of these, however, use preferences as their primitive5 and derive the

multiple-prior representation together with expected-utility maximization with respect to those pri-

ors, and thus fail to be behaviorally general. Mathematically, the objects of the present paper

(orderings over sets) have in general much less structure than the objects in these contributions

(orderings over random variables), which allow the use of vector-space techniques such as separation

theorems. This difference probably explains why there do not exist counterpart results for likelihood

relations in the literature up to now in spite of the suggestive parallelism. The key technical insight

of the present paper is precisely the realization that it is possible to formulate simple, epistemi-

cally well-motivated axioms that allow to canonically extend a likelihood ordering over events to an

ordering over real-valued functions, thereby making the existing characterizations applicable; the

construction of the extension itself is non-trivial.6

2. In terms of overall motivation of axiomatizing an epistemic primitive, a closely related contri-

bution in the literature is Koopman (1940a and b). Koopman presents an axiomatic treatment of

comparative conditional likelihood relations, whose primitive compares event pairs (“A given B is

at least as likely as C given D”). Koopman’s results are much weaker, however, than the results

of the present paper: while Koopman provides sufficient conditions for the existence of lower- and

5Walley and Smith do so by taking “acceptable gambles” as their primitive notion.
6Multiple-prior representations of complete preference orderings have obtained by Gilboa-Schmeidler (1989), Ghi-

rardato et al. (2004) and Casadesus et al. (2000); again, these are about preferences, not belief, and are behaviorally

quite restrictive.
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upper-probability functions that are additive on the class of events where the two coincide, he has

no representation theorem and no characterization of coherence. It is also not clear how conditional

likelihood comparisons are to be related to behavior.

3. There is a sizeable literature on comparative likelihood relations that is mainly focused on

the complete case; see Fishburn (1986) and Regioli (1999) for surveys. In the incomplete case, one

can use standard arguments from the theory of linear inequalities to obtain a characterization of

coherence for likelihood relations defined on arbitrary families of sets; see Walley (1991 p. 192-3) and

related earlier results by Heath-Suddert (1972) and, in the complete, finite-state case, Kraft-et-al

(1959). In view of the combinatorial complexity7 and algebraic character of the conditions, such

characterizations have generally not been considered to be of significant foundational interest (c.f.

e.g. Regioli 1999).

Furthermore, the important uniqueness issue has not been addressed before outside the complete

case. Indeed, it seems fairly remarkable a priori that likelihood relations can match multi-prior

representations in their expressiveness at all; we are not aware of any hint of this in the literature;

see, for example, the discussion in Walley (1991, pp. 191-197) which appears to suggest the opposite.

In sum, in spite of existence of the multi-prior representation results dating back to Smith (1961),

the extant results in the literature on likelihood relations do not seem to come close to those of the

present paper.

4. Some of the recent literature on decision making under ambiguity can be read as offering

proposals for characterizing a decision maker’s unconditional probabilistic beliefs directly through

definitions of “unambiguous events” revealed by the preference relation; see Epstein-Zhang (2001),

Ghirardato-Marinacci (2002) and Nehring (1999)). Of these, only Epstein-Zhang (2001) strives to be

behaviorally general. Any such definition can be used to define a compatibility requirements between

preferences and explicitly given unconditional probabilistic beliefs. In Appendix 1, we point out some

limitations of the Epstein-Zhang definition from this perspective.8 Thus, even for the special yet

fundamental case of unconditional probabilistic beliefs, no generally applicable criterion of preference

compatibility with such beliefs is available in the literature.

7In particular, the rationality axioms involve finite families of events whose cardinality is only bounded by the

cardinality of the state space; moreover these families need not have any simple set-theoretic structure.
8Epstein-Zhang’s (2001) primary goal appears to be a behavioral separation of risk and ambiguity, rather than a

behavioral definition of probabilistic unconditional beliefs.
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Overview

Section 2 characterizes likelihood relations with a convex-ranged multi-prior representation (The-

orem 2), illustrates the central structural assumption of Equidivisibility/convex-rangedness with a

number of examples, shows that uniqueness may easily be lost in its absence, and distinguishes

“coherent” (deductively closed) from “consistent” (non-contradictory) likelihood relations.

In Section 3, we formulate a behaviorally general rationality requirement relating preferences to

beliefs, “Likelihood Consequentialism”. It entails probabilistic sophistication over unambiguous acts

(Proposition 1) and leads to a representation of preferences in an Anscombe-Aumann framework

(Proposition 2). Even in simple cases such as preferences with a multi-prior representation, the im-

plications of Likelihood Consequentialism are not straightforward (Proposition ??). While bounded

rationality considerations may motivate a weakening of coherence to consistency, this may lead to

major losses in the bite of Likelihood Consequentialism (Example 5).

Section 4 mentions possible rationality conditions that go beyond Likelihood Consequentialism,

and discusses the applicability of this principle if preferences are state-dependent. We conclude by

pointing out how the analysis of this paper can be utilized from the standard strict behaviorist

position that does not admit beliefs as independent primitives.

The first part of the Appendix discusses the relationship of the present work to the work on

unambiguous events by Zhang (1999) and Epstein-Zhang (2001); the second part of the Appendix

contains all proofs.

2. COHERENT LIKELIHOOD RELATIONS

A decision maker’s probabilistic beliefs shall be modelled in terms of a partial ordering D on

an algebra of events Σ in a state space Ω, his “comparative likelihood relation”, with the instance

A D B denoting the DM’s judgment that A is at least as likely as B.We shall denote the symmetric

component of D (“is as likely as”) by ≡, and the asymmetric component by B . The comparative

likelihood relation can be viewed as representing a not necessarily exhaustive set of probabilistic

judgments attributed to the DM, his explicit probabilistic beliefs.
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2.1 The Likelihood Relation as a Primitive

The inclusion of beliefs among the primitives is a likely source of controversy, as it goes against

the grain of the reigning Ramsey-De Finetti-Savage tradition. Precisely because we do not want to

belittle the methodological and philosophical issues at stake, we defer their discussion to future work.

In its place, we submit that both common sense and the practice of economic modeling support an

independent, non-derived role for beliefs: as real-world actors, we prefer certain acts over others

because we have certain beliefs rather than others; as economic modelers, we typically attribute to

economic agents particular preferences over uncertain acts because we have some idea about the

beliefs that can be plausibly attributed to the agents in a particular situation. In both cases, we

think directly in terms of beliefs rather than preferences. This is the intuitive substance of including

the decision maker’s probabilistic beliefs among the primitives.

The likelihood relation can be given two primary interpretations. First, the likelihood relation may

summarize information about the unconditional, conditional or comparative probabilities available

to the decision maker. Such information arises naturally in various contexts. For example, as we shall

explain in section 2, the notion of an independent random device with known objective probabilities

that is at the heart of the Anscombe-Aumann (1963) framework can be usefully modeled in this

way. Similarly, information about the composition of urns in the context of Ellsberg experiments

represents important probabilistic information. Likewise, if the decision maker observes independent,

identical repetitions of a sampling experiment with unknown parameters (e.g. tosses of the same coin

with unknown bias), this information about the structure of the sampling process can be captured

by a comparative likelihood relation that embodies “exchangeability” a la de Finetti (1937). On the

information interpretation, a likelihood relation will be almost always incomplete, since the decision

maker will possess information only about the likelihood of some events but not of others.

Secondly, the likelihood relation can serve to represent the decision maker’s subjective beliefs,

whether or not these are based on “given” information. Here, beliefs as an independent (non-

behavioral) datum are to be understood as “propositional attitudes”, that is: as dispositions to

affirm certain likelihood-judgments in thought or in speech, in addition to preferences which can be

viewed as dispositions to act. The beliefs need not be specified exhaustively. That is, the decision

maker may “have” further beliefs that have not yet elicited and recorded in D, but which may
be verified either by further elicitation (e.g. via interrogation) or revelation through preferences.

Indeed, probabilistic information in the sense above can be understood as a special case of non-
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exhaustively specified probabilistic beliefs. To highlight the generally non-exhaustive character of

the specified likelihood relation, we sometimes refer to it as describing the decision maker’s explicit

probabilistic beliefs.

2.2 Savage’s Probability Theorem

As a reference point, we briefly review Savage’s Probability Theorem which delivers a unique

representation of complete comparative likelihood relations in terms of finitely additive probabilities.

The following axioms are canonical for comparative likelihood in any context; disjoint union is

denoted by “+”.

Axiom 1 (Weak Order) D is transitive and complete.

Axiom 2 (Nondegeneracy) Ω B ∅.

Axiom 3 (Positivity) A D ∅ for all A ∈ Σ.

Axiom 4 (Additivity) A D B if and only if A+C D B+C , for any C such that A∩C = B∩C = ∅.

Additivity is the hallmark of comparative likelihood. Normatively, it can be read as saying that

in comparing two events in terms of likelihood, states common to both do not matter. It is well-

known that, on finite state-spaces, Additivity is far from sufficient to guarantee the existence of

a probability-measure representing the complete comparative likelihood relation; see Kraft-Pratt-

Seidenberg (1959). Savage (1954) realized, however, that Additivity suffices for the characterization

of convex-ranged probability measures;9 the probability measureπ is convex-ranged if, for any

event A and any α ∈ (0, 1), there exists an event B ⊆ A such that π(B) = απ(A). Evidently,

convex-ranged probability measures exist only when the state-space is infinite. We state a version of

his result for the sake of comparison. It requires two more axioms; the event A is non-null if A B ∅.

Axiom 5 (Fineness) For any non-null A there exists a finite partition of Ω {C1, ..., Cn} such that
for all i ≤ n, A D Ci .

Axiom 6 (Tightness) For any A,B such that B B A there exist non-null events C and D such

that B\D B A ∪C.
9This result was in fact a crucial first step in his famous characterization of SEU maximization, Addivity of the

“revealed likelihood relation” being a consequence of the Sure-Thing Principle.
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Theorem 1 (Savage) Let Σ be a σ-algebra. The likelihood relation D satisfies Axioms 1 through

6 if and only if there exists a (unique) finitely additive, convex-ranged probability measure π on Σ

such that for all A,B ∈ Σ :
ADB if and only if π(A) ≥ π(B).

An important feature of Savage’s result is the uniqueness of the representing probability. It justifies

the view that the comparative likelihood relation captures the DM’s beliefs fully. Uniqueness is non-

trivial and holds only rarely in finite state-spaces.

2.3 Dropping Completeness

To allow for imprecision in explicit beliefs, likelihood relations will now allowed to be incomplete.

Axiom 7 (Partial Order)10 D is transitive and reflexive.

A main achievement of Savage’s Probability Theorem is its reliance on Additivity as the sole

axiom capturing the logical syntax of probability. If the completeness assumption is dropped, this

seems no longer feasible. For example, while under completeness, one can use Additivity to infer

that if two events are equally likely to their respective complements, they must be equally likely to

each other, this no longer follows without completeness. Yet such an implication seems necessary

for a proper likelihood interpretation of the relation. More generally, the following second rationality

axiom called “Splitting” seems intuitively compelling.

Axiom 8 (Splitting) If A1 +A2 D B1 +B2, A1 D A2 and B1 D B2, then A1 D B2.

In words: If two events are split into two subevents each, then the more likely subevent of the

more likely event is more likely than the less likely subevent of the less likely event. In the proof of

the following Theorem, we will only make use of the special case in which the two events are split

into equally likely subevents.

Significantly, Splitting is not a conceptually independent addition to Additivity, but merely com-

pensates for the missing completeness of the likelihood relation, in that any additive completion of

a given likelihood relation satisfies Splitting automatically.

Fact 1 For any weak order D, Additivity implies Splitting.
10Technically, the proper label would be “preorder”.
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Fact 1 shows that Splitting appeals to the same ordinal, qualitative intuition that makes the

Additivity axiom so compelling. By contrast, the linear-programming inspired conditions of Heath-

Suddert (1972) and Walley (1991 p. 192-3) already appeal to a cardinal notion of subjective proba-

bility, as a result of which their foundational value seems to be rather limited.

By themselves, Additivity plus Splitting are not enough to deliver an interesting representation,

as the case of complete likelihood relations on a finite state-space shows. We thus make the following

structural assumption, according to which any event can be split into two equally likely parts.11

Axiom 9 (Equidivisibility) For any A ∈ Σ, there exists B ⊆ A such that B ≡ A\B.

Very broadly, Equidivisibility can be viewed as an assumption that the likelihood relation is

sufficiently rich in likelihood comparisons. The axiom can be motivated, for example, by the existence

of a rich set of independent random events. To see this, let T be an event with an unambiguous

probability of 0.5, i.e. such that T ≡ T c. Then A is naturally viewed as independent from T if this

judgment is maintained conditional on the occurrence of A, that is if A∩T ≡ A∩T c. Clearly A∩T
and A ∩ T c split A into two equally likely parts. Note that the plausibility of the existence of such

events does not depend on whether or not the event A itself is unambiguous.

Finally, Savage’s Fineness and Tightness axioms are no longer adequate to obtain a real-valued

representation. In their stead, a condition expressing the notion of “continuity in probability” is

needed. It relies on the following notion of a “small”, “ 1K − ”event: A is a 1
K−event if there exist

K mutually disjoint events Ai such that A E Ai for all i. A sequence of events {An}n=1,..,∞ is

converging in probability to the event A if, for all K ∈ N there exists nK ∈ N such that for all

n ≥ nK the symmetric difference An4A is a 1
K−event.

Axiom 10 (Continuity) For any sequences {An}n=1,..,∞ and {Bn}n=1,..,∞ converging in proba-

bility to A and B respectively,

An D Bn for all n implies A D B.

These axioms ensure the existence of a multi-prior representation, i.e. the existence of set of

finitely additive probability measures Π ⊆ ∆(Σ) such that, for all A,B ∈ Σ :

ADB if and only if π(A) ≥ π(B) for all π ∈ Π. (1)

11Equidivisibility is non-trivially weaker than the similar older assumptions of De Finetti (1931) and Koopman

(1940a), according to which any event can be split in arbitrarily many (e.g. 17) equally likely parts.
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Likelihood relations for which such a representation exists will be called coherent.

Note that if D satisfies (1) for some set of priors Π, then it satisfies (1) also for the closed convex
hull of Π (in the product or “weak∗”-topology which will be assumed throughout). Thus, it is

without loss of generality to assume Π to be a closed convex set; let the class of all closed (hence

compact), convex subsets of ∆(Σ) be denoted by K(∆(Σ)).

Note also that all axioms except Equidivisibility but including Continuity12 are implied by the

existence of a multi-prior representation. Equidivisibility imposes further constraints on the set of

priors Π. On σ-algebras, it is equivalent to the following “convex-rangedness” condition on Π; if

Σ is merely an algebra, it is equivalent to “dyadic convex-rangedness”.13 Let D denote the set of

dyadic numbers between 0 and 1, i.e. of numbers of the form α = c
2k
, where k and c are non-negative

integers such that c does not exceed 2k.

Definition 1 A set of priors Π is convex-ranged if, for any event A ∈ Σ and any α ∈ (0, 1), there
exists an event B ∈ Σ, B ⊆ A such that π(B) = απ(A) for all π ∈ Π. The set Π is dyadically
convex-ranged if this holds for all α ∈ D.

Note that while convex-rangedness of Π implies the convex-rangedness of every π ∈ Π, the converse
is far from true. Moreover, as established by Fact 5 in the Appendix14, on σ-algebras dyadic convex-

rangedness and convex-rangedness coincide.

The following is the main result of the paper.

Theorem 2 A relation D on an event algebra Σ has a multi-prior representation with a dyadically
convex-ranged set of priors Π if and only if it satisfies Partial Order, Positivity, Nondegeneracy,

Additivity, Splitting, Equidivisibility and Continuity. The representing Π is unique in K(∆(Σ)).
12The necessity of Continuity follows from observing that, for any D with representing set Π, any π ∈ Π and any

1
K
−event A, π(A) ≤ 1

K
; if Π is convex-ranged as defined just below, the converse holds as well.

In contrast to Continuity, neither Tightness nor Fineness are entailed by coherence, even under completeness.

While Tightness is implied by coherence and Equidivisibility, Fineness is not; indeed, it is not difficult to verify that

a coherent and equidivisible relation is fine if and only if, for all A ∈ Σ : minπ∈Π π (A) = 0 implies maxπ∈Π π (A) = 0,

which in turn is equivalent to the condition that all admissible priors π ∈ Π have the same null-events. While vacuously

satisfied in the precise case of a singleton set Π, this condition is clearly quite restrictive when beliefs are imprecise.
13The generality added by allowing Σ to be an algebra is significant since algebras can often be described explicitly

while σ-algebras typically cannot. We note that Savage’s Theorem has only very recently been extended to algebras

by Kopylov (2003).

14Fact 5 is presented as a corollary of Lemma 13.
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We shall sketch the proof idea of Theorem 2 with a bit of “reverse engineering”. The key is the

derivation of a vector-space-like structure of the event-space resulting from the convex-rangedness

of the set of priors. Specifically, one can extend every coherent likelihood relation represented by

the convex-ranged set of priors Π to a partial ordering on the domain Z of finite-valued functions

Z : Ω→ [0, 1] by associating with each function Z an equivalence class [Z] of events A ∈ Σ as follows.
Let A ∈ [Z] if, for some appropriate partition of Ω {Ei}, Z =

P
zi1Ei , and such that, for all i ∈ I

and π ∈ Π : π (A ∩Ei) = ziπ (Ei) . It is easily seen that for any two A,B ∈ [Z] : π (A) = π (B) for

all π ∈ Π, and thus A ≡ B. One therefore arrives at a well-defined partial ordering on Z, denoted
by bD, by setting

Y bDZ if and only if A D B for some A ∈ [Y ] and B ∈ [Z].

It is easily verified that this ordering satisfies the following two conditions:

(Additivity) Y bDZ if and only if Y +X bDZ +X for any X,Y,Z , (2)

and

(Homogeneity) Y bDZ if and only if αY bDαZ for any Y,Z and α ∈ (0, 1].

Moreover, it is positive, non-degenerate and continuous.15 In the sequel, we shall refer to partial

orderings on Z satisfying these five conditions as coherent expectation orderings. By well-known

results due to Walley (1991) and Bewley (1986, for finite state-spaces), coherent expectation order-

ings admit a unique representation in terms of a closed, convex set of priors; cf. Theorem 3 in the

appendix.

The actual proof of Theorem 2 proceeds by constructing this extension from the given likelihood

relation and by deriving the properties of the induced relation from the axioms on the primitive

relation. In a final step, we invoke the just-quoted Theorem to obtain the desired multi-prior

representation. The proof is non-trivial and requires a surprising amount of work due to the gap

between the ordinally formulated axioms and the cardinal character of the derived conditions.16

15See Appendix, Lemma 9, for formal definitions.
16In principle, one could conceive of coherent expectation orderings as epistemic primitives. This, however, would

run into the following two problems. On the one hand, the meaning of a comparison of random variables in terms

of their expectation seems intuitively not clear; it seems doubtful that a non-behavioral epistemic primitive can be

based on a complex, mathematically structured implicit expectation operation. It is thus not suprising that Walley

(1991), for example, consistently adopts a behavioral interpretation of coherent expectation orderings (respectively

their counterpart in his work, “lower previsions”) in terms of acceptability of gambles.Moreover, unless one assumes

expected-utility maximization, as both Walley and Bewley do, the link between expectation orderings and preferences
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2.4 Uniqueness of the Multi-prior Representation and the Expressive Adequacy of

Likelihood Relations

The uniqueness part of the multi-prior representation in Theorem 2 is non-trivial and significant,

as it ensures the expressive adequacy of likelihood relations as an epistemic primitive. Indeed, it is

not at all obvious a priori that likelihood relations are sufficiently expressive as primitive carriers

of imprecise probabilistic beliefs. Indeed, in finite state spaces, likelihood relations seem evidently

defective in this regard, and there is no indication in the existing literature that this situation can

be remedied in a systematic fashion in infinite state spaces.

Analogously to the complete case in which uniqueness of the representing prior is a natural heuris-

tic criterion of adequate expressiveness, uniqueness of the representing closed and convex set of priors

is a natural yardstick of adequate expressiveness in the more general incomplete case. While it can

be shown that Equidivisibility is not strictly necessary to achieve uniqueness, it does not seem possi-

ble to weaken this assumption greatly and still obtain uniqueness in a robust manner. In particular,

non-atomicity-like conditions in the manner of Savage’s Fineness and Tightness conditions are not

nearly enough as shown by the following example.

Let Σ denote the Borel-σ-algebra on the unit interval with Lebesgue measure λ, and fix K > 1,

and define a coherent likelihood relation DKas follows:

A DK B if and only if λ(A\B) ≥ Kλ(B\A). (3)

With K > 1, DK is clearly not equidivisible; in particular, DK does not admit any unambiguous

event with probability different from 0 or 1. It is easily verified that the associated set of admissible

priors Π(DK) (which we shall also denote as Π
K
1 ) consists of all probability measures π with Lebesgue

density φ such that ess supω∈[0,1] φ (ω) ≤ K ess infω∈[0,1] φ (ω);
17 in particular, the extreme points of

ΠK1 consist of all probability measures πD with density φD, where D ranges over Σ with 0 < λ(D) <

1, and φD is given by

φD(ω) =

⎧⎨⎩ K
1+(K−1)λ(D) if ω ∈ D,

1
1+(K−1)λ(D) if ω /∈ D.

Let ΠK2 ⊆ ΠK1 denote the closed, convex hull of {πD|λ(D) = 1
K+1}; the following Fact states that

ΠK2 induces the same likelihood relation DK . Yet, as described in the following Fact that is easily

is not clear. Expectation orderings are thus not viable as a behaviorally general vehicle for describing a decision

maker’s imprecise probabilistic beliefs.

17ess sup and ess inf denote the essential supremum and essential infimum, respectively.
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verified, ΠK1 and ΠK2 induce different lower probability functions denoted by π−1,K and π−2,K .

Fact 2 i) D(ΠK2 )=D
K ;

ii) For all A ∈ Σ : π−1,K(A) =
λ(A)

1+(1−λ(A))(K−1) ;

iii) For all A ∈ Σ : π−2,K(A) =

⎧⎨⎩ K+1
2K λ(A) if λ(A) ≤ K

K+1 ,

1− K+1
2 (1− λ(A)) if λ(A) ≥ K

K+1 .

The lower probabilities π−1,K(A) and π−2,K(A) are shown in the following figure as functions of

λ(A) for K = 3, with π−1,K above π−2,K and touching at λ = 3
4 .
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Fig. 1: Two Different Lower Probabilities

For K > 1, DK clearly satisfies Savage’s Fineness and Tightness conditions. Note that if K is

close to 1, all admissible probabilities are uniformly close to the Lebesgue measure; nonetheless,

uniqueness is lost.

2.5 Examples of Equidivisibility

The key structural assumption behind Theorem 2, Equidivisibility, is fairly strong. While it implies

Fineness in the presence of Continuity, the converse is not close to being true as just illustrated,

unless the likelihood relation is complete. Whereas Fineness is in substance a strong non-atomicity
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condition, Equidivisibility assumes in addition that the likelihood relation is sufficiently complete.

It is further illuminated by means of the following specific examples.

Example 1 (Limited Imprecision, Social Belief Aggregation). One way to make the

intuition of a limited extent of overall ambiguity precise is to assume that Σ is a σ-algebra and that

Π is the convex hull of a finite set Π0 of non-atomic, countably additive priors. Due to Lyapunov’s

(1940) celebrated convexity theorem, Π is convex-ranged. The priors π ∈ Π0 can be interpreted
as a finite set of hypotheses a decision-maker deems reasonable without being willing to assign

probabilities to them.

Finitely generated sets of priors also occur naturally in social belief aggregation, where DI repre-

sents the unanimity likelihood ordering induced by the finite set of individuals’ likelihood orderings

Di that are assumed to be precise with representing measures µi. Assume that social decisions are

based on a precise likelihood ordering DI represented by some measure µI that respects unanimity

in beliefs. Then Theorem 2 implies that Π(DI) = co{µi}i∈I ; the “social prior” µI must therefore be
a convex combination of individual priors.18

Example 2 (Missing Information).

In some situations, ambiguity may only concern certain aspects of the state-space, and beliefs

conditional on knowing these aspects may be precise. Formally, suppose that conditional on each

event A in some finite partition P of Ω, the DM’s beliefs are described by a convex-ranged probability
measure µA; that is, for any π ∈ Π and any A ∈ P, π(./A) = µA or π(A) = 0. Then Π is clearly

convex-ranged, however imprecise the DM’s beliefs about the events in P may be.

Example 3 (External Randomization Device)

As a variant of example 2, consider state-spaces with a continuous randomization device in the

manner of Anscombe-Aumann. Specifically, consider a state space that can be written as Ω =

Ω1 ×Ω2, where the space Ω1 is the space of “generic states” , and Ω2 that of independent “random
states” with associated algebras Σ1 and σ-algebra Σ2. The “continuity” and stochastic independence

of the random device are captured by a coherent likelihood relation DAA defined on the product

algebra Σ = Σ1 × Σ2 that satisfies the following two conditions, noting that any A ∈ Σ1 × Σ2 can
be written as A =

P
i Si × Ti, where the {Si} form a finite partition of Ω1.

18This corollary to Theorem 2 is related to a result by Gilboa-Samet-Schmeidler (2004), who derive from social

respect for unanimous indifferences a representation of the social prior as an affine linear combination of individual

priors.
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AA1) The restriction of DAA to {Ω1} × Σ2 satisfies all of Savage’s axioms (axioms 1
through 6).

AA2)
P

i Si × Ti DAA

P
i Si × T 0i if and only if, for all i ∈ I, Ω1 × Ti DAA Ω1 × T 0i .

While the first condition ensures the existence of a convex-ranged probability measure π2 over

random events, the second describes their stochastic independence. By AA1 and AA2, it is easily

verified that DAA satisfies all the assumptions of Theorem 2 including Equidivisibility. Hence there

exists a unique set of priors ΠAA representing DAA; indeed, ΠAA is simply the set of all product-

measures of the form π1 × π2, where π1 can be any finitely additive measure on Σ1, reflecting the

stochastic independence of the random device.

The relation DAA may play the role of a background context that allows the specification of beliefs

about “generic” events (Anscombe-Aumann’s horse-races) which may be the only events of direct

interest. For example, the belief that an event A has unconditional probability α can be expressed

as the likelihood judgement A ≡ Ω1 × T, where T is any random event with π2 (T ) = α. More

generally and interestingly, for two generic events A ⊆ E ∈ Σ1, the belief that A has probability α

given the E can be expressed as the likelihood judgement A × Ω2 ≡ E × T, where T is again any

random event with π2 (T ) = α.19

The example of an external randomization device is also important because it counters the po-

tential impression that convex-rangedness is an empirically rather restrictive assumption, in that it

is evidently possible to embed any coherent likelihood relation in a larger likelihood relation on a

larger state-space that incorporates the device.

2.6 Coherence and Consistency: Deductive Closure versus Non-Contradiction

By requiring deductive closure under inferences from the logic of probability, coherence is a strong

notion of epistemic rationality . A weaker notion of “consistency” would merely require the absence

of contradictions with respect to the logic of probability.20 Equipped with a notion of coherence, one

can define a likelihood relation as consistent if it contains some coherent superrelation. Given the

19Unconditional and conditional probabilities can be expressed as likelihood judgements in a similar manner when-

ever the likelihood relation has a convex-ranged representation. In fact, the possibility of doing so for arbitrary

events is essentially equivalent to the definition of convex-rangedness, and underscores the need for Equidivisibility

(or something very close to it) to ensure adequate expressiveness of the likelihood relation.
20The notions of coherence and consistency are analogues of the notions of “coherence” and “avoiding sure loss”

for lower previsions defined in Walley (1991).
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formal identification of coherence with the existence of a multi-prior representation, this amounts

to a formal definition of D as consistent if and only if there exists a finitely additive probability

measure π such that, for all A,B ∈ Σ,

A D B implies π (A) ≥ π (B) . (4)

It is natural to think of the probabilistic information as presented to the decision maker in the form

of a consistent likelihood relation D (as sketched in the penultimate paragraph of Example 3 above),
and its epistemic content being given by the body of all deductive inferences from it. This can

formally be defined as the smallest coherent superrelation of D denoted by Dcoh. Letting ΠD denote

the set of all priors satisfying (4), it is easily verified that

A Dcoh B if and only if π (A) ≥ π (B) for all π ∈ ΠD .

If D is equidivisible, in view of Theorem 2, Dcoh coincides with the smallest superrelation satisfying

Transitivity, Positivity, Additivity, Splitting and Continuity Dt&p&a&s&c. Moreover, D is consistent
if and only if Dt&p&a&s&c is non-degenerate. We thus have:

Corollary 1 An equidivisible likelihood relation D is consistent if and only if Dt&p&a&s&c is non-

degenerate; in this case Dt&p&a&s&c=Dcoh .

3. DECISION MAKING IN THE CONTEXT OF PROBABILISTIC BELIEFS

3.1. Likelihood Consequentialism

Consider now a decision maker described by a preference ordering over acts and explicit beliefs

over events. Let X be a set of consequences. An act is a mapping from states to consequences,

f : Ω→ X that is measurable with respect to an algebra of events Σ; the set of all acts is denoted

by F ; for simplicity, we will assume all acts to be finite-valued throughout. A preference ordering %
is a weak order (complete and transitive relation) on F . We shall write [x1 on A1;x2 on A2; ...] for

the act with consequence xi in event Ai; for the act [x on A; y on A
c] we will also use the shorthand

xAy. More generally, the act h that agrees with f on A and with g on Ac will be denoted by fAg.

As usual, constant acts [x,Ω] are typically referred to by their constant consequence x.

The DM also has probabilistic beliefs described non-exhaustively by a consistent (typically: co-

herent) comparative likelihood relation D on Σ. The relation D will be referred to as the epistemic
context of the decision situation. Thus, a decision-maker in an epistemic context is described by
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the pair (%,D). A coherent context D will be referred to as convex-ranged if it has a convex-ranged
multi-prior representation on the event-algebra Σ.21

We propose as a fundamental principle of consequentialist rationality that consequence valuations

and likelihood comparisons, when available, should be decisive in determining the ranking of acts;

put somewhat differently, the judged (comparative) likelihood of events is the only attribute of

events that should matter in comparing the consequence incidences f−1(x) and g−1(x) of the various

consequences of different acts; other conceivable factors such as familiarity with a type of event or

felt competence in assessing it should not matter rationally. We shall refer to this as the Principle

of Likelihood Consequentialism.

The task is to formalize this principle in terms of axioms on the relation between preferences and

beliefs in maximal behavioral generality, that is in particular: without imposing restrictions on risk-

preferences. By way of motivation, begin by considering preferences over bets, i.e. comparisons of

pairs of the form ([x on A; y on Ac], [x on B; y on Bc]) . Here, Likelihood Consequentialism implies

canonically that betting on the weakly more likely event is to be weakly preferred, as expressed by

the following condition. For all A,B ∈ Σ and x, y ∈ X such that x Â y :

[x on A; y on Ac] % [x on B; y on Bc] whenever A D B. (5)

Note that condition (5) can be viewed as a unidirectional version of Savage’s behavioral definition

of revealed likelihood. Condition (5) asks to be complemented by an analogous condition entailing

strict rather than weak preferences. At first sight it seems natural to formulate such a condition by

simply replacing D with its asymmetric component B. However, if D is incomplete, the resulting

condition would however be overly restrictive, as illustrated by the following example.22

Example 4. Let X = {x, y} with x Â y, and assume that acts (bets) are ranked according to

the lower probability minπ∈Π π(f
−1 (x)) of the superior outcome, i.e. that

[x on A; y on Ac] % [x on B; y on Bc] iff min
π∈Π

π(A) ≥ min
π∈Π

π(B).

21Convex-rangedness can be derived from Theorem 2 if Σ is a σ-algebra. It may also follow from the specific

structure of the likelihood relation; for example, any superrelation of the ”Anscombe-Aumann relation” DAA in

example 3 has a convex-ranged representation, even though the domain of DAA, the product-algebra Σ1×Σ2, is not

a σ-algebra if the generic state space Ω1 is infinite.

22I thank Simon Grant for emphasizing this point.
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Suppose that D is such that there exists an event E with maxπ∈Π π(E) > 0 while minπ∈Π π(E) = 0.

In this case [x on E; y on Ec] ∼ [x on ∅; y on Ω] even though E B ∅, violating the envisaged
asymmetric counterpart to condition (5).

The difficulty illustrated in Example 4 can be overcome by making use of the uniform (rather

than merely asymmetric) component BB of a coherent likelihood relation defined as follows.

Definition 2 (Uniformly More Likely) A BB B (“A is uniformly more likely than B”) if and

only if there exists finite partitions of A and Bc, A = Σi∈IAi and Bc = Σj∈JBj , such that A\Ai D
B ∪Bj for all ∈ I and j ∈ J .

The following Fact shows that teh definition indeed capture the notion of “uniformy more likely

events” if the context is in fact coherent and equidivisible.

Fact 3 For any consistent likelihood relation D, A BB B implies minπ∈ΠD [π (A)− π (B)] > 0.

The converse holds if D is coherent and equidivisible.

Definition 2 leads to the following asymmetric counterpart of condition (5). For all A,B ∈ Σ and
x, y ∈ X such that x Â y :

[x on A; y on Ac] Â [x on B; y on Bc] whenever A BB B. (6)

The following axiom called “Likelihood Consequentialism” extends these conditions to multi-

valued acts. The idea is that if two acts differ only in the states in which two particular consequences

are realized, then the likelihood comparison of the corresponding events is a decisive criterion for

their preference comparison.

Axiom 11 (Likelihood Consequentialism) For all f ∈ F , x, y ∈ X and events A,B ∈ Σ :

i) [x on A\B; y on B\A; f(ω) elsewhere] % [x on B\A; y on A\B; f(ω) elsewhere] if A D B and x % y, and

ii) [x on A\B; y on B\A; f(ω) elsewhere] Â [x on B\A; y on A\B; f(ω) elsewhere] if A BB B and x Â y.

If (%,D) satisfies Likelihood Consequentialism, we shall also say that preferences are compatible
with the context D. Note that, exploiting transitivity and considering the case B = ∅, Likelihood
Consequentialism entails the following weak version of Savage’s axiom P3.

Axiom 12 (Eventwise Monotonicity) For all acts f ∈ F , consequences x, y ∈ X and events

A ∈ Σ :
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i) [x on A; f(ω) elsewhere] % [y on A; f(ω) elsewhere] whenever x % y, and

ii) [x on A; f(ω) elsewhere] Â [y on A; f(ω) elsewhere] whenever x Â y and A BB ∅.

Of particular interest are preferences over acts whose outcomes have well-defined probabilities;

such acts will be called unambiguous. Compatibility of preferences with a convex-ranged likelihood

relation implies probabilistic sophistication of preferences over unambiguous acts in the sense of

Machina-Schmeidler (1992). To make this precise, we need the following definitions. Say that

B ∈ Σ is unambiguous given A if, for some α ∈ [0, 1], π(B) = απ(A) for all π ∈ Π. Let ΛA denote
the family of events B ∈ Σ that are unambiguous given A; clearly, ΛA is closed under finite disjoint

union and complementation, but not necessarily under intersection. In the terminology of Zhang

(1999), each ΛA is a λ-system with the property that B ∈ ΛA iff B ∩ A ∈ ΛA. An event A is

null if A ≡ ∅, or, equivalently, if π (A) = 0 for all π ∈ Π. For any non-null A and any arbitrary

π ∈ Π, let π(./A) denote the restriction of the conditional probability measure π(./A) to ΛA. We
will say that B is unambiguous if it is “unambiguous given Ω”, and write Λ for ΛΩ, as well as π for

π(./Ω). An act f ∈ F is unambiguous if, for all x ∈ X, {ω ∈ Ω | f (ω) = x} is unambiguous; let
Fua denote their set. A “lottery” q is probability distribution on X with finite support, and will be

written as q = (qx)x∈X , where q
x denotes the probability of obtaining x under q; let L denote their

set. The unambiguous act f induces the lottery π ◦ f−1 with
¡
π ◦ f−1

¢x
= π ({ω ∈ Ω | f (ω) = x}) .

The lottery p stochastically dominates the lottery q if, for all y ∈ X,
P

x:x%y p
x ≥

P
x:x%y q

x; p

stochastically dominates q strictly if at least one of these inequalities is strict. An ordering %L is
monotone (with respect to stochastic dominance) if, for all p, q ∈ L, p %L q whenever p stochastically

dominates the lottery q, and p ÂL q whenever p stochastically dominates the lottery q strictly.

Definition 3 (Probabilistic Sophistication on Unambiguous Events) The preference order-

ing % is probabilistically sophisticated on unambiguous events if there exists a monotone ordering

%L on L such that, for all f, g ∈ Fua,

f % g if and only if π ◦ f−1 %L π ◦ g−1.

Note that, by the convex-rangedness of D, the mapping f 7→ π ◦ f−1 is onto; the ordering %L in
this representation is therefore uniquely defined. Following Machina-Schmeidler (1992), %L can be
viewed as capturing the decision-makers’ risk preferences that become analytically separate from his

beliefs and, in the present more general context, from his preferences over non-unambiguous acts.

Proposition 1 If the weak order % is compatible with the coherent and convex-ranged likelihood

relation D , it is probabilistically sophisticated on unambiguous events.
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If the set of unambiguous events was an algebra rather than a λ-system, Proposition 1 could be

derived straightforwardly by copying from the proof of Machina-Schmeidler’s (1992) main result.

Their proof does not apply as is, since the set of unambiguous events is not necessarily closed under

intersection. However, convex-rangedness entails “enough” intersection closedness to make use of

their proof nonetheless.23

3.2 Application to Multi-Prior Preferences

Even in very simple cases, the constraints entailed by imprecise probabilistic beliefs are non-trivial.

Consider, for example, the multi-prior model with preferences given by

f % g iff min
π∈Ψ

X
x∈X

u (x)π ({ω : f (ω) = x}) ≥ min
π∈Ψ

X
x∈X

u (x)π ({ω : g (ω) = x}) , (7)

for some utility function u : X → R and some closed, convex set of probability measures Ψ; for

axiomatizations of the multi-prior model in a Savage context which is pertinent here, see Casadesus

et al. (2000) and Ghirardato et al. (2003). When are multi-prior preferences with representation

(u,Ψ) compatible with imprecise probabalistic beliefs represented by the set Π? The answer to this

question is not obvious, either on direct “intutitive grounds”, nor given the formal definition of

compatibility proposed in this paper; whatever the correct answer is, it cannot be taken ready-made

from the literature.

In particular, compatibility with Π (in the sense of this paper) does not imply that Ψ ⊆ Π. To
see this, consider the singleton case Π = {π}, with π convex-ranged. According to Proposition 1,

Compatibility with D{π} is equivalent to probabilistic sophistication with respect to π. On the other
hand, for Ψ ⊆ Π = {π}, that is: for Ψ to be equal to {π}, preferences must maximize expected
utility. But it is well-known24 that probabilistic sophistication with respect to π does not entail

expected utility maximization in the multi-prior model.

Quite generally, for the “natural characterization” Ψ ⊆ Π to obtain with convex-ranged Π, the
decision maker must be an expected utility maximizer with respect to unambiguous acts; more

interestingly, this condition also turns out to be sufficient for this characterization.

Proposition 2 Let % be a preference relation with multi-prior representation (u,Ψ) given by (7)

and D be a coherent and convex-ranged likelihood relation with representation Π. Then Ψ ⊆ Π if
23Proposition 1 and its proof have sigificant parallels to a recent (and prior) purely behavioral result of Kopylov

(2003).

24See in particular Marinacci (2002).
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and only if % is compatible with D and satisfies Savage’s Sure-Thing Principle P225 on the set of

unambiguous acts Fua.

The characterization of Likelihood Consequentialism in the general multi-prior model without the

assumption of expected utility maximization on unambiguous acts is an interesting open question.

3.3 Likelihood Consequentialism when the Context is Merely Consistent

The behavioral implications of probabilistic beliefs such as Proposition 1 depend crucially on their

coherence. Since coherence is a demanding assumption on the decision-maker’s rationality (or better,

his “epistemic competence”) in view of its built-in deductive closure requirement, from a bounded

rationality perspective it is interesting to study the preference implications of probabilistic beliefs

that are consistent rather than coherent. As the following example shows, this leads to major losses

in the predictive and normative power of Likelihood Consequentialism.

Example 5. Consider a state space with external randomization (Ω1 × Ω2,Σ1 × Σ2) as in
Example 3. Let DAA the likelihood relation representing the information about the random device,

with π2 denoting the probability measure over random events Σ2. Also, let D1 denote a likelihood
relation over Σ1 × {Ω2} satisfying all the Savage axioms (axioms 1 through 6) with representing
prior π1. It is easily seen that the coherent hull of the combined relation DAA ∪ D1 denoted by
(DAA ∪ D1)coh is complete and represented by the product measure π1 × π2. Hence, in view of

Proposition 1, Likelihood Consequentialism applied to the relation (DAA ∪ D1)coh boils down to
probabilistic sophistication with respect to the measure π1 × π2.

By contrast, Likelihood Consequentialism applied to the relation DAA ∪ D1 entails far less. In
particular, there exist preferences that are separately probabilistically sophisticated over the set of

acts that are measurable with respect to Σ1×{Ω2}(=: F1) and {Ω1}×Σ2 (=: F2), but that are not
probabilistically sophisticated over F1 ∪F2.

Fact 4 There exist preference relations that are compatible with the relation DAA ∪ D1 but fail to
be probabilistically sophisticated on F1 ∪ F2.

Fact 4 is verified in the Appendix. Indeed, the preferences constructed there exhibit the Ellsberg

paradox on F1 ∪ F2. More specifically, we show that the property asserted by Fact 4 holds for

25Savage’s Sure-Thing Principle P2 is the following condition:

For all acts f, f 0, g, g0 ∈ F and all A ∈ Σ, [f on A, g on Ac] % [f 0 on A, g on Ac] if and only if [f on A, g0 on

Ac] % [f 0 on A, g0 on Ac].
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any non-SEU “second-order probabilistically sophisticated CEU” preference ordering as defined in

Ergin-Gul (2004). Preferences of this kind are paradigmatic examples of the preference- rather than

belief-based account of the Ellsberg paradox that was mentioned in the introduction and will be

discussed further below in section 4.3.

Example 5 shows that probabilistic beliefs lose much of their explanatory/predictive power if they

are allowed to be consistent yet incoherent. The example also shows that in the absence of coherence

there may not be a well-defined notion of risk. Indeed, it is not even obvious how to define the set

of unambiguous events without coherence. In the present example, it seems natural to consider at

least all events in the union of Σ1×{Ω2} and {Ω1}×Σ2 as unambiguous. But then preferences over
unambiguous acts are not probabilistically sophisticated.

3.4 An Epistemic Interpretation of the Anscombe-Aumann Framework

Likelihood Consequentialism will now be combined with the mixture-space construction of section

2 to obtain an epistemic interpretation of the Anscombe-Aumann (1963) framework. While this

framework is often used in the analysis of decision making under ambiguity, it is generally viewed

as theoretically less fundamental and transparent than the Savage framework; sometimes it is even

viewed with outright suspicion (see, e.g., Epstein (1999)).

The Anscombe-Aumann (1963) framework is distinguished by taking acts to be mappings from

states to probability distributions of consequences, rather than simply as mappings from states to

consequences as in the Savage (1954) framework. These probability distributions are interpreted as

objective probabilities of the realizations of an external random device (“roulette lotteries”) that

is not part of the explicitly modeled state space. We will show that if a preference relation over

Savage acts is compatible with a coherent convex-ranged epistemic context D, it can be canonically
extended to a preference relation over Anscombe-Aumann (AA-) acts over the same state space; in

particular, an external randomization device need not be added.

Formally, an AA-act F is a finite-valued Σ-measurable mapping from the state space Ω to the

set of probability distributions on X with finite support L. Let FAA denote the set of such acts.

Denoting elements of ∆(X) by q = (qx)x∈X , one can write F = [q1 on A1; q2 on A2; ...] in analogy

to the notation for Savage acts. Given a convex-ranged epistemic context D, any AA-act F can be

identified with a class [F ] of Savage acts by the following stipulation: f ∈ [F ] if, for any i such that
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Ai is non-null,

f|Ai is ΛAi-measurable and π(./Ai) ◦ f−1 = qi.
26

Thus [F ] consists of all Savage acts that yield the consequence probabilities specified by F as

unambiguous conditional probabilities with respect to the given context.

Preferences over Savage acts % induce a preference relation over AA acts %AA on FAA according

F %AA G :⇔ f % g for some f ∈ [F ] and g ∈ [G].

If preferences are compatible with the convex-ranged likelihood ordering D, this relation is a well-
behaved, uniquely defined weak order order. This claim is entailed by the following generalization of

Proposition 1. Say that %AA is monotone (with respect to stochastic dominance) if it is monotone

pointwise, i.e. if F %AA G whenever F (ω) stochastically dominates G (ω) for all ω ∈ Ω, and
if F ÂAA G whenever in addition F (ω) stochastically dominates G (ω) strictly on some non-null

event A. Note that monotonicity implies that f ∼AA g for any f, g ∈ [F ], since such f, g mutually

stochastically dominate each other.

Proposition 3 If % is compatible with the coherent and convex-ranged likelihood relation D, then
%AA is a uniquely defined monotone weak order on FAA .

A key feature of the above construction is its applicability to general convex-ranged belief contexts;

the existence of an independent random device as implied by Anscombe-Aumann’s (1963) “horse-

lottery” interpretation is not assumed.27 This added generality is of value for example in contexts

of social aggregation, when D is the unanimity relation of individuals’ revealed likelihood relations
as in Example 1 above. Proposition 3 shows that the AA structure comes for free in such settings.

In the special case in which the context represents the independent random device (i.e. if D=DAA),

all information about the underlying Savage preferences is summarized by preferences over the subset

FAA
1 of acts in FAA that depend on the realization of the “generic uncertainty” Σ1 (the outcome of

the horse race) only28. Restricting attention to the AA-acts in FAA
1 has the pragmatic advantage

of a more parsimonious representation; it also allows at a formal level a different treatment of the

two different sources of uncertainty. For example, Schmeidler’s (1989) comonotonic independence

26More explicityl, the second condition requires that, for any x ∈ X and any π ∈ Π, π(f−1({x}) ∩Ai/Ai) = qxi .
27Like Proposition 1, Proposition 3 also applies to superrelations of DAA defined on the product-algebra Σ1 × Σ2

in the context of External Randomization (Example 3).

28Technically, FAA
1 is the subset of Σ1 × {Ω2}-measurable acts in FAA.
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axiom is meaningful only restricted to FAA
1 rather than all of FAA.29 While we view the case

of D=DAA as an important special case, the applicability of the general construction to general

convex-ranged likelihood relations has the substantial advantage of not having to assume there to be

anything special about “randomness” as a distinct kind of uncertainty; for example, the construction

applies equally well to superrelations of DAA that incorporate additional “objective” information

or “subjective” beliefs. Thus, our framework is attuned to the traditional Bayesian view that all

probability is of one cloth.

Much of the formal power of the AA framework stems from the existence of a mixture operation

on acts. This operation has a counterpart in the present epistemically enriched Savage framework

as follows. We begin by defining “equal” (“fifty-fifty”) mixtures. Consider f ∈ [F ] and g ∈ [G]; we
need to define a class of Savage acts f ⊕ g that is contained in [12F +

1
2G]

30 with a natural mixture

interpretation. This can be done by borrowing the notion of an independent even-chance event from

section 2.

Definition 4 (Equal Mixture) h ∈ f ⊕ g if h = [f on T, g on T c] for some event T ∈ Λ such
that T ≡ T c and such that f−1(x) ∩ T ≡ f−1(x) ∩ T c and g−1(x) ∩ T ≡ g−1(x) ∩ T c for all x ∈ X.

The restriction on T asserts that T is stochastically independent of the outcome incidences f−1(x)

and g−1(x); this ensures that in fact h ∈ [12F +
1
2G], as desired. The definition of equal mixtures

of Savage acts can be extended to dyadic mixtures αf ⊕ (1 − α)g contained in [αF + (1− α)G]

(with α a dyadic number in (0, 1)) in straightforward inductive manner. For example, the mixture

3
4f ⊕

1
4g can be defined as the composite mixture f ⊕ (f ⊕ g).31

The availability of an interpretable mixture-definition shows that the formal power of the Anscombe-

Aumann framework can be replicated in the present explicitly epistemic framework. Indeed, the epis-

temic framework is more powerful since it allows to treat all uncertainty on par. This is of advantage

when further belief-based restrictions on preferences are introduced, as illustrated by the compan-

ion papers (Nehring (2001, 2004)). The epistemic framework has also the advantage of greater

29For if comonotonic independence was required of the latter, it would entail full independence, i.e. SEU; this

follows from Sarin-Wakker (1992) and, more directly, Nehring (2004).

30The latter is defined pointwise as usual.
31This construction parallels Ghirardato et al. (2003). Note, however, in the present setting there is no natural

limit construction that would allow one to define arbitrary real-valued mixtures. However, since the dyadic numbers

are dense in the reals, this does not seem to be problematic if preferences are appropriately continuous. Alternatively,

one could directly define real-valued mistures by considering independent events T with arbitrary real probabilities

π (T ) .
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transparency in that all axioms can be formulated as restrictions of preferences over a standard,

conceptually primitive object (i.e. Savage acts), possibly conditioned on epistemic data captured by

the context D, rather than on a complex and, from the present point of view, non-primitive object

such as Anscombe-Aumman acts.32

Earlier representations of the Anscombe-Aumann framework in a Savage setting have been ob-

tained by Pratt-Raiffa-Schleifer (1964) and Klibanoff (2001a); in contrast to ours, the former assumes

expected utility maximization, the latter utility sophistication. Our representation is more general

also in that it applies to any convex-ranged context, and therefore does not assume the existence of

a subjective randomization device as given by the context DAA defined in section 2.

Machina’s (2004) work on “Almost-Objective Uncertainty” also reproduces the power of the

Anscombe-Aumann framework in an enriched Savage setting in which the state space has the struc-

ture of a Euclidean manifold; like ours, he does not assume expected utility maximatization on

unambiguous events. Machina derives the existence of “almost” unambiguous and conditionally

unambigiuous events from epistemically motivated restrictions on preferences. However, these as-

sumptions are imposed directly in the form of a smoothness condition, while we model the underlying

beliefs directly as a likelihood relation, and obtain analogous preference restrictions Likelihood Con-

sequentialism. One can show that the epistemic substance of Machina’s preference restrictions can

be modeled via likelihood relations that are “almost” convex-ranged.33

An altogether different route to mimicking the Anscombe-Aumann framework in a subjective

setting based on a rich set of consequences rather than states is proposed by Ghirardato et al. (2003);

since the mixture operation in their proposal is defined in utility terms, the implied interpretation of

conditions on AA-preferences in their approach is very different from that in the present epistemically

approach.

While these contributions have their distinct merits, none of them shares one key, motivating

32This complexity is a potential source of intransparency. For example, Eventwise Monotonicity of AA-preferences

is much stronger than Eventwise Monotonicity of Savage preferences; moreover, while it does not constrain preferences

over lotteries (constant AA-acts) in the standard product set-up (when imposed on FAA
1 ), it implies the Independence

axiom over lotteries when imposed on FAA.
33We intend to establish a more precise and fruitful connection to Machina’s contribution in future work. While

our derivation is behaviorally general, Machina assumes that preferences are “event-smooth” which is behaviorally

restrictive; event-smoothness excludes, for example, the minimum expected-utility model due to Gilboa-Schmeidler

(1989). Finally, Machina exploits the specific structure of uniformly continuous densities on the real line (or, more

generally, on Euclidean manifolds); by contrast, our approach is applicable to arbitrary state spaces.
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advantage of the present, epistemic approach, namely its ability to record and derive the implications

of additional beliefs beyond those giving rise to the AA structure in the first place.34

4. DISCUSSION

4.1 Ordinal vs. Cardinal Information about Consequence Valuations

It might be argued that Likelihood Consequentialism is too weak a rationality criterion since it

exploits ordinal information about consequences only. Indeed, much stronger normative restrictions

can be obtained if one exploits cardinal information about comparisons of utility differences. A theory

of “Expected Utility in the Presence of Ambiguity” along such lines is developed in the companion

paper Nehring (2004). It is not pursued here, since these stronger constraints on the relation between

preferences and beliefs conflict with the desideratum of behavioral generality adopted in this paper.

4.2 Non-Exhaustive vs. Exhaustive Interpretation of Belief Context

Stronger rationality restrictions on behavior can also be derived when the likelihood relation is as-

sumed to be an exhaustive representation of the decision-maker’s beliefs under which incompleteness

of the likelihood relation reflects deliberate suspensions of judgement. For it may then be argued

that symmetries in the likelihood relation should be mirrored isomorphically in symmetries in prefer-

ences/choices; see Jaffray (1989), Nehring (1991, 2000) and Walley (1991, p. 227-228) for arguments

along these lines. On the more general non-exhaustive interpretation adopted here, these isomor-

phism conditions are inappropriate since subrelations of a given relation may exhibit symmetries

that differ from the original ones.

4.3 State-Dependent Preferences and Intrinsic Event Attitudes

Conversely, Likelihood Consequentialism might be criticized as too strong a rationality require-

ment, for example for reasons of state-dependence of preference. We will however argue that in

many (perhaps in all) cases, such objections can be overcome by a more refined modeling.

For Likelihood Consequentialism to be a normatively compelling axiom, consequences must be

34Recall the discussion at the end of Example 3 above.
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properly individuated, in the sense that a given consequence x is equivalent for the decision-maker

in any state in all valuation-relevant aspects35; we will refer to this as the case of “state-independent

preferences”. State-dependence of preferences can be modeled by including aspects of the state into

the description of the consequences. For example, when states describe the DM’s health, gaining

1000$ when healthy may not be worth as much as gaining 1000$ when sick; this difference can be

accounted for by distinguishing the consequences (1000$,healthy) and (1000$,sick). In such cases,

one needs to abandon the assumption that the set of possible consequences is identical across states;

that is, one would define Savage acts as mappings from f : ω →
Y
ω∈Ω

Xω. Note that Likelihood

Consequentialism remains meaningful but loses some power; it becomes vacuous in the limiting case

in which the state-specific consequence sets Xω are pairwise disjoint.

In the latter case, one arrives at substantive restrictions on preferences by postulating a non-

behavioral judged consequence-ordering %[X] on X = ∪ω∈ΩXω that is sufficiently rich in indiffer-

ences to permit cross-state comparisons of consequences. A number of works on state-dependent

preferences from Fishburn (1973) to Karni (2003) employ (non-behavioral) devices that entail such

an ordering. Likelihood Consequentialism continues to be meaningful, with %[X] taking the role of
%|X .

State-dependence of preference is of interest in the present context especially since it allows to

capture many — and arguably all — instances of an apparent “intrinsic” attitude towards events.

For instance, Chew and Sagi (2003) suggest that decision makers may have a taste for betting on

particular types of events that overrides their likelihood assessments.36 For example, on February 1,

2003, a DMmay have attributed equal probability to Saddam Hussein’s surviving a US led invasion of

Iraq, and to the Iraqui soccer team winning against Brazil. However, the DM may have preferred to

bet on the Iraqui soccer team rather than on Saddam Hussein; he may, for example, have expected

taking special joy from winning a bet on an underdog team, but regretting having profited from

an unjust cause. On their face, such preferences might appear to challenge the normative appeal

of Likelihood Consequentialism in that non-likelihood features of events seem to be legitimately

valued by the DM. However, this challenge loses its force once one recognizes that the bets do not

really involve the same (properly individuated) consequences. For the bets clearly entail different

psychological outcomes in various states (the joy, the regret); while these matter to the decision

35As argued forcefully by Broome (1991), the validity of any normative axiom hinges on the proper individuation

of consequences.

36Ergin-Gul (2004) make a related argument contrasting objective and subjective probabilities.
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maker, they are not captured by a description (“individuation”) of consequences in terms of net

wealth alone. Again, Likelihood Consequentialism continues to apply once acts are described in

terms of properly individuated consequences.37

4.4 Epistemic Contexts from a Purely Behavioral Viewpoint

We have interpreted the likelihood relation D as describing a (possibly non-exhaustive) list of

the decision-maker’s dispositions to affirm particular likelihood comparisons. From the point of

view of the decision-maker himself, it seems eminently sensible to posit probabilistic beliefs as

distinct entities in this way, for otherwise it is difficult to see how the decision-maker can invoke

particular beliefs as grounds for the evaluation of uncertain prospects. Indeed, a substantial part

of the discipline of “decision analysis” is devoted to articulating the decision-maker’s beliefs and

bringing them to bear on the decision-problem at hand.

By contrast, economics as an empirical discipline takes the point of view of an outside observer. We

would submit that also from this “third-person” point of view, the study of a decision-maker’s beliefs

via direct questioning should not be taboo, notwithstanding its clear limitations38. Nonetheless, in

contrast to this position, many economists subscribe to the behaviorist view according to which

statements about beliefs as independent propositional attitudes are non-observable and thus lack

empirical content. Does this position render the notion of decision-making in an epistemic context

empirically empty?

37We have appealed to the informal notion of “proper individuation”/“state-independent preferences” without

characterizing it in behavioral terms. This seems unavoidable, since it is unclear what behavioral conditions could

take its place. Clearly, Eventwise Monotonicity is not sufficient as a behavioral criterion, since it captures at most

the ordinal implications of state independence. One natural candidate for a sufficient condition is the Certainty

Independence condition of Ghirardato et al. (2002), since Certainty Independence secures the separation of a state-

independent utility function from event attitudes in a strong sense; Certainty Independence can be viewed as a cardinal

strengthening of Savage’s axiom P4 (Nehring 2004). However, Certainty Independence or even P4 are not necessary

for state-independence, since P4 may fail due to prize-dependent ambiguity attitudes; see Klibanoff et al. (2005) for

a worked-out model with this feature.

Furthermore, adapting a recent argument by Karni (1996), it can be argued that in principle no behavioral condition

can yield more than a “prima-facie” criterion. Roughly speaking, Karni argued that under SEU, preferences identify

statewise utilities only up to positive affine transformations state-by-state; thus, if the “true” consequence utilities

are not constant across states, Savage’s “revealed likelihood” relation differs from the agent’s true likelihood. In the

present setting, this amounts to saying that Likelihood Consequentialism will be violated.

38See also Karni (1996) for a defense of the use of verbal testimony in the decision sciences.
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Evidently Likelihood Consequentialism as a relation between preferences and likelihood judge-

ments loses empirical content once the latter cease to be an empirically meaningful entity on their

own. Empirical content can be regained, however, if Likelihood Consequentialism is absorbed into

a behavioral definition of compatibility with an epistemic context: simply say that a preference re-

lation % satisfy Compatibility-with-D if the pair (%,D) satisfies Likelihood Consequentialism. Here
the likelihood relation is “imputed” by the analyst without any truth-claims regarding the beliefs

as such.

The analogy with continuity conditions on preferences may be helpful. Just as “Compatibility-

with-D” conditions, continuity conditions refer in their statement to an “imputed” topology τ that
is itself not derived from behavior. Just like the truth-value of “continuity-relative-to τ”, that of

“Compatibility-with-D” is determined by preferences alone; the behavioral content of either type of
condition is therefore clear-cut.39

One can summarize this behaviorist use of likelihood relations by saying that the context D
represents an “epistemic constraint on preferences” rather than an independent “epistemic primi-

tive”. From this point of view, results such as Theorem 2 can be viewed as meta-propositions that

demarcate for which relations D the preference condition “Compatibility-with-D” is epistemically
meaningful.

39Indeed, it is easily verified that, given an ordering over outcomes (constant acts), “Compatibility-with-D” boils
down to the requirement that the preference relation % contain a partial ordering %D that mirrors the structure of

D.
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APPENDIX

A.1 Unambiguous Events

Comparison to Zhang (1999).–

Consider the restriction D|Λ of any likelihood relation D satisfying the assumptions of Theorem 2

on Σ to the family of unambiguous events Λ. By construction, D|Λ is complete (on Λ) ; Theorem 2

implies that D|Λ can be represented by a (dyadically) convex-ranged, finitely additive set function
π on Λ; moreover, π can be extended to some finitely additive probability measure π on all of Σ.

Zhang (1999) considered likelihood relations defined on arbitrary given lambda-systems as primi-

tives and characterized those relations that are representable by a convex-ranged, countably additive

set function on Λ. Zhang’s result is a key ingredient in Epstein-Zhang’s (2001) characterization of

revealed unambiguous events discussed below. His result is not directly comparable to the corollary

to Theorem 2 described in the preceding paragraph, as it derives a weaker conclusion from weaker

premises. Zhang’s assumptions on the likelihood relation are weaker in that they apply only to

Λ and not to (an incomplete relation defined on) some super-algebra Σ; on the other hand, his

conclusion is weaker as well in that it does not imply representation by an additive set-function

that can be extended to all of Σ. It is not known under which conditions such an extension exists;

Epstein (1999) and Nehring (1999) provide counterexamples in finite state-spaces. In cases in which

such an extension does not exist, the likelihoood relation DΛ (viewed as an incomplete relation on
Σ) is inconsistent in the terminology of section 2.5; by consequence, it stands to reason that such

likelihood relations do not represent a well-defined set of probabilistic beliefs.

Comparison to Epstein-Zhang (2001).–

It is also of interest to compare the present definition of unambiguous events based on explicit

beliefs Λ (“explicitly unambiguous events”) to the preference-based definition proposed by Epstein-

Zhang (2001) ΛEZ . A central issue arising from any behavioral definition is the extent to and sense

in which preferences over unambiguous acts reveal the decision-maker’s unconditional probabilistic

beliefs. Epstein-Zhang (2001) provide a partial answer by showing under certain assumptions on

preferences and a richness assumption on the endogenously defined family ΛEZ that preferences

over unambiguous acts are probabilistically sophisticated with respect to an additive set-function

on ΛEZ .

For simplicity, we shall confine the following discussion to the case of two consequences (#X =
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{x, y} with x Â y). In this setting, the act “betting on A” [x on A, y on Ac] will be denoted simply

by the set A. Using this notation, an event T is EZ-unambiguous (T ∈ ΛEZ) if, for all A,B disjoint

from T , A % B if and only A+ T % B + T , and if the same holds for T c instead of T .

Two questions arise naturally. First, if preferences are compatible with explict beliefs, are the

explicitly unambiguous events also EZ-unambiguous; in other words: will “truly” unambiguous

events be revealed as such by the EZ definition? Not necessarily; indeed, this happens only if

betting preferences and beliefs are related by the following “Union Invariance” condition: for all

T ∈ Λ0 and all A,B disjoint from T , A % B if and only A+ T % B + T . While this condition has

intuitive appeal, it is clearly a substantive restriction on ambiguity attitudes.40

Conversely, given a preference relation % with EZ-unambiguous events ΛEZ , does there exist

necessarily exist a coherent epistemic context D compatible with % such that ΛEZ ⊆ Λ, where Λ
is the family of unambiguous events associated with that context? Again the answer appears to be

negative in general, and is definitively negative in finite settings.41 First, in view of the discussion

of Zhang (1999) above, the likelihood relation revealed on ΛEZ may be inconsistent, hence there

simply may not exist any coherent context with associated Λ such that ΛEZ ⊆ Λ and such that
preferences over EZ-unambiguous acts %|ΛEZ are compatible with D . Second, in cases in which such

a context exists, it will contain substantial further likelihood comparisons over ambiguous events,

entailing substantial further restrictions on preferences over bets on ambiguous events. While the

EZ definition of unambiguous events entails substantial restrictions on these preferences of its own

through the Union Invariance condition, it is not clear and seems a priori doubtful that these would

be strong enough to encompass all of the restrictions entailed by D in general. Thus, it remains

an interesting question for future research under which conditions a DM’s preferences over EZ-

unambiguous events reflect genuine (coherent) probabilistic beliefs over these events in the sense of

this paper.

40In a similar vein, Klibanoff et al. (2005) have pointed out that the Epstein-Zhang definition makes substantive

implicit assumptions about the decision-maker’s ambiguity attitudes.
41Note that, the Epstein-Zhang (2001) definition applies (and is meant to apply by Epstein and Zhang) whether or

not the resulting family ΛEZ is rich; in particular, it applies to finite state-spaces.
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A2. Proofs

Proof of Fact 1.

Take any events A1,A2, B1, B2 such that A1 + A2 D B1 + B2, A1 D A2 and B1 D B2, while not

A1 D B2. By completeness, B2 B A1, and thus by transitivity, B2 B A2 and B1 B A1. Thus by

Strong Additivity (Lemma 1), B1 +B2 B A1 +A2, the desired contradiction.

Lemma 1 (Strong Additivity) A D B and C D D such that A ∩ C = B ∩D = ∅ implies A+ C D
B +D; moreover, A+ C B B +D if in addition A B B or C B D.

This Lemma is standard in derivations of Savage’s Theorem; our proof is an adaptation of Fishburn

(1970, p. 196). From Additivity, one infers immediately that

A+ (C\B) D B + (C\B) = B ∪ C = C + (B\C) D D + (B\C) ,

hence A+(C\B) D D+(B\C) by transitivity. Applying Additivity and transitivity once more and
noting that B ∩C is disjoint from both A and D, one obtains the desired conclusion:

A+ C = A+ (C\B) + (B ∩ C) D D + (B\C) + (B ∩ C) = D +B.

The second part of the Lemma follows from an exactly parallel argument. ¤¥

Proof of Theorem 2.

Necessity of all axioms is straightforward. For sufficiency, let E be any non-null event in Σ, and

α = c
2k
be any dyadic number. We begin by defining, from likelihood judgments, a family αE of

events A that in the multi-prior representation to be obtained will have the property that, for all

π ∈ Π, π (A) = απ (E) . Specifically, let αE be the set of all A such that there exists a partition of

E into 2k subsets Ai ∈ Σ such that Ai ≡ Aj for all i, j and A =
P

i≤cAi.

We have the following lemmas.

Lemma 2 A ∈ 1
2k
E if and only if there exists E0 ∈ 1

2k−1E such that A ∈ 1
2E

0.

The “only-if” part follows directly from Strong Additivity (Lemma 1).

The “if-part” holds trivially for k = 1. For k > 1, it is verified by induction. Suppose it to hold

for k0 = k − 1. Assume that there exists E0 ∈ 1
2k−1E such that A ∈ 1

2E
0. Then by the definition of

1
2k−1E, there exists a partition of E into events {E1, ..., E2k−1} such that Ei ≡ Ej for all i, j and

E1 = E0. By Equidivisibility, for each i ≥ 1, there exist events Ei,1 and Ei,2 such that Ei,1 ≡ Ei,2,

Ei,1 +Ei,2 = Ei and E1,1 = A. By Splitting, Ei,m ≡ Ej,m0 , and thus A ∈ 1
2k
E.
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Lemma 3 αE 6= ∅ for all α ∈ D and all non-null E.

By Equidivisibility and induction on k, the claim follows for α = 1
2k
from Lemma 2, hence indeed

for all α = c
2k
by the definition of αE.

Lemma 4 A ∈ 1
2k
C, B ∈ 1

2k
D, and C D D imply A D B.

For k = 0, the claim is trivial. Suppose it to hold for all k0 < k. By Lemma 2, there exist events

A0 ∈ 1
2k−1C such that A ∈ 1

2A
0 and B0 ∈ 1

2k−1D such that B ∈ 1
2B

0. By induction assumption

A0 D B0, hence by Splitting A D B.

Lemma 5 For all α, β ∈ D, A ∈ αC, B ∈ βD : α ≥ β and C D D imply A D B.

Write α = c
2k
and β = c0

2k
with c ≥ c0. By definition, there exist partitions {Ai}i≤2k and {Bi}i≤2kof

C respectively D into 2k equally likely elements such that A =
P

i≤cAi and B =
P

i≤c0 Bi. Since

Ai ∈ 1
2k
C and Bi ∈ 1

2k
D, one has Ai D Bi by Lemma 4. The assertion follows therefore from

repeated application of Strong Additivity.

We are now in a position to construct the mixture-space extension bD of D . Let D denote the

set of dyadic-valued random-variables, D := {Z : Ω→ D, Z is Σ-measurable and has finite range}.
Any finite-ranged Z can be canonically written as

P
i zi1Ei , where Ei = Z−1({zi}). For any Z =P

zi1Ei ∈ D, define

[Z] := {A : there exist Ai ∈ ziEi such that A =
X
i

Ai},

and define the relation bD on D as follows,

X bDY iff, for some A ∈ [X] and B ∈ [Y ], A D B.

To establish various properties of bD, some further auxiliary results are needed.
Lemma 6 For all A,B ∈ [Z] : A ≡ B.

By definition, A =
P

iAi and B =
P

iBi such that Ai, Bi ∈ ziEi. By Lemma 5, Ai ≡ Bi. Hence

A ≡ B by Strong Additivity.

Lemma 7 For all α ∈ D, families of mutually disjoint events {Ei}i∈I and families {Ai}i∈I such
that Ai ∈ αEi for all i ∈ I,

P
i∈I Ai ∈ α

¡P
i∈I Ei

¢
.
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Writing α = c
2k
, by assumption there exist sets Bij for i ∈ I and j ≤ 2k such that Bij ≡ Bij0

for all i, j, j0,
P

j≤2k Bij = Ei for all i, and
P

j≤cBij = Ai. For j ≤ 2k, let Bj :=
P

i∈I Bij . By

construction,
P

i∈I Ei =
P

i∈I
P

j≤2k Bij =
P

j≤2k Bj . By Strong Additivity, Bj ≡ Bj0 for all j, j
0.

Since
P

i∈I Ai =
P

i∈I
P

j≤cBij =
P

j≤cBj , therefore
P

i∈I Ai ∈ c
2k

¡P
i∈I Ei

¢
.

Lemma 8 i) For all X,Y,Z ∈ D such that X+Z ∈ D and Y +Z ∈ D, there exist A ∈ [X], B ∈ [Y ]
and C ∈ [Z] disjoint from A and B such that A+ C ∈ [X + Z] and B + C ∈ [Y + Z].

ii) For all X,Y ∈ D such that X + Y ∈ D and such that Y is measurable w.r.t. the partition

generated by X, and for all A ∈ [X], there exists B ∈ [Y ] disjoint from A such that A+B ∈ [X+Y ].

iii) For all X,Y ∈ D such that X + Y ∈ D and such that Y is measurable w.r.t. the partition

generated by X+Y , and for all C ∈ [X+Y ], there exists B ∈ [Y ] such that B ⊆ C and C\B ∈ [X].

To verify part i), write X,Y and Z (non-canonically) as X =
P

i xi1Di
,Y =

P
i yi1Di

and

Z =
P

i zi1Di
for an appropriate partition {Di} of Ω, and write xi = ci

2ki
, yi =

c0i
2ki

, and zi =
c00i
2ki

.

Split Di into 2
ki equally likely events {Di1,...,Di2ki }, and set Ci :=

P
j≤ci Dij ∈ ziDi, Ai =Pci+c

0
i

j=ci+1
Dij ∈ xiDi, and Bi =

Pci+c
00
i

j=ci+1
Dij ∈ yiDi. Note that the sets Ai and Bi are well-defined

since ci + c0i ≤ 2ki and ci + c00i ≤ 2ki because X + Z ∈ D and Y + Z ∈ D. Using Lemma 7, one
infers that

P
iAi ∈ [X],

P
iBi ∈ [Y ],

P
i Ci ∈ [Z],

P
iAi +

P
i Ci =

P
i (Ai + Ci) ∈ [X + Z], andP

iBi +
P

i Ci =
P

i (Bi + Ci) ∈ [Y + Z] as desired.

Similar proofs verify parts ii) and iii). As to the former, write X =
P

i xi1Ei in canonical

decomposition. By assumption, Y can be written (non-canonically) as
P

i yi1Ei . Take any A =P
iAi ∈ [X]. Since xi + yi ≤ 1 for all i, one can find Bi ∈ yiEi such that Ai + Bi ∈ (xi + yi)Ei.

Using Lemma 7, one infers that
P

iBi ∈ [Y ], as well as A +
P

iBi =
P

i (Ai +Bi) ∈ [X + Y ], as

desired.

Finally, to verify part iii), write X+Y =
P

i zi1Ei in canonical decomposition. By assumption, Y

can be written (non-canonically) as
P

i yi1Ei . Take any C =
P

i Ci ∈ [X+Y ]. Since yi ≤ zi for all i,

one can find Bi ∈ yiEi such that Ci\Bi ∈ (zi − yi)Ei. Using Lemma 7, one infers that
P

iBi ∈ [Y ],
as well as C\ (

P
iBi) =

P
i (Ci\Bi) ∈ [X], as desired. ¤

Lemma 9 The relation bD on D is transitive, reflexive and satisfies the following conditions

1. (Extension) 1AbD1B if and only if A D B.

2. (Positivity) X bD0 for all X.

3. (Non-degeneracy) 1bB0.
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4. (Weak Homogeneity) X bDY implies αX bDαY for all α ∈ D.

5. (Additivity) X bDY if and only if X + Z bDY + Z.

6. (Strong Additivity) X bDY and X 0bDY 0 imply X +X 0bDY + Y 0.

7. (Continuity) {(X,Y ) : X bDY } is closed (in D ×D).
Proof. Reflexivity, Extension, Positivity, and Non-degeneracy are immediate.

To verify Transitivity, consider any X,Y,Z such that X bDY and Y bDZ. By definition, there exist
A ∈ [X], B,B0 ∈ [Y ], C ∈ [Z] such that A D B and B0 D C. By Lemma 6, B ≡ B0. Hence by the

transitivity of D, A D C, and therefore X bDZ as desired.

Weak Homogeneity is an immediate consequence of Lemmas 3 and 5.

To verify Additivity, consider any X,Y,Z such that X + Z, Y + Z ∈ D. According Lemma 8i),
there exist A ∈ [X], B ∈ [Y ] and C ∈ [Z] such that A + C ∈ [X + Z] and B + C ∈ [Y + Z]. If

X bDY,then A D B by Lemma 6, thus A+ C D B + C by Additivity of D, and thus X + Z bDY + Z.

Analogously, one obtains X bDY from X + Z bDY + Z.

Strong Additivity, is proved similarly. In view of Lemma 8i), there exist events A ∈ [X], A0 ∈ [X 0]

such that A + A0 ∈ [X + X 0], and events B ∈ [Y ], B0 ∈ [Y 0] such that B + B0 ∈ [Y + Y 0]. By

Lemma 6, A D B and A0 D B0, whence by Strong Additivity of D, A+A0 D B +B0, and therefore

X +X 0bDY + Y 0.

It remains to verify Continuity. We shall show that {(X,Y ) : not X bDY } is open in D. Consider
any X,Y such that not X bDY . Take any A ∈ [X], B ∈ [Y ]; clearly not A D B. By the Continuity

of D, there exists K <∞ such that, for any 1
K−events C,D, it is not the case that A ∪ C D B\D.

It suffices to show that, for any X 0, Y 0 such that k X 0 −X k≤ 1
K and k Y 0 − Y k≤ 1

K , it is not the

case that X 0bDY 0.

To verify this claim, take anyX 0, Y 0 such that k X 0−X k≤ 1
K and k Y 0−Y k≤ 1

K . By the Positivity

and Strong Additivity of D, it is without loss of generality to assume that X 0 (respectively Y 0) is

measurable with respect to the partition generated by X (respectively Y ), and that X 0 ≥ X and

Y 0 ≤ Y. Then there exist by Lemma 8ii) A0 ∈ [X 0−X] such that A+A0 ∈ [X 0]; likewise, by Lemma

8iii), there exist and B0 ∈ [Y − Y 0] and B00 ∈ [Y 0] such that B0 + B00 = B. Clearly, A0 and B0 are

1
K−events, and therefore it is not the case that A+A0 D B\B0 = B00. Therefore, in view of Lemma

6, it is not the case that X 0bDY 0, as needed to be shown. ¤

Now embed bD (viewed as a subset of D×D) in B×B, with B := B(Σ, [0, 1]), the set of [0, 1]−valued
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Σ-measurable functions, endowed with the sup-norm. Since B is the completion of D, and thus B×B
of D×D, the closure clbD of bD in B×B restricted to D×D is simply bD, since bD is closed in D×D.
Thus, clbD is an extension of bD, and will be referred to as “bD on B”, or simply also as “bD” if no
misunderstanding is possible. Clearly X bDY if and only if there exist sequences {Xn} and {Yn} in
D converging to X and Y, respectively, such that Xn

bDYn for all n.
Say that bD on B satisfies Homogeneity if, for all X,Y ∈ B and λ ∈ R++ such that λX, λY ∈ B :

X bDY if and only if λX bDλY.
Lemma 10 The relation bD on B is transitive, reflexive and satisfies Extension, Positivity, Non-
degeneracy, Homogeneity, Strong Additivity, Additivity, and Continuity.

Proof. Extension and Non-degeneracy are immediate. Continuity holds by construction.

Positivity and reflexivity follows therefore from the corresponding properties of bD on D.
To verify Homogeneity, take X,Y ∈ B and λ ∈ R++ such that λX,λY ∈ B and X bDY. By

definition, there exist sequences {Xn} and {Yn} in D converging to X and Y, respectively. Write

λ = cα, with c ∈ N and α ∈ (0, 1]. Choose some sequence {αn} in D converging to α such

that αn ≤ min
³
kXk
kXnk ,

kY k
kYnk

´
. This ensures that, for all n, cαnXn ∈ D and cαnYn ∈ D. By Weak

Homogeneity of bD onD, αnXn
bDαnYn for all n. Hence by (c− 1)-fold application of Strong Additivity

of bD on D , also cαnXn
bDcαnYn for all n. By Continuity on B, cαX bDcαY , as desired.

To verify Strong Additivity on B, consider any X,X 0, Y, Y 0 ∈ B such that X bDY and X 0bDY 0, and

take sequences {Xn}, {X 0
n}, {Yn} and {Y 0

n} in D converging to X,X 0, Y and Y 0, respectively, such

that Xn
bDYn and X 0

n
bDY 0

n for all n. By Homogeneity on B (just shown), 12Xn
bD1
2Yn and

1
2X

0
n
bD1
2Y

0
n

for all n. Disregarding an initial subsequence if necessary, 12Xn +
1
2X

0
n ∈ D as well as 12Yn +

1
2Y

0
n ∈

D for all n. Hence by Strong Additivity on D, 1
2Xn +

1
2X

0
n
bD1
2Yn +

1
2Y

0
n. By Continuity on B,

1
2X + 1

2X
0bD1

2Y +
1
2Y

0, whence by Homogeneity on B again X +X 0bDY + Y 0 as desired.

One direction of Additivity “X+Z bDY +Z wheneverX bDY ” follows directly from Strong Additivity
and reflexivity. For the converse, consider X,Y,Z such that X bDY and X − Z, Y − Z ∈ B. Take
sequences {Xn}, and {Yn} in D converging to X and Y, respectively, such that Xn

bDYn for all n.
Let {Zn} be any sequence in D satisfying

Z −max (k X −Xn k, k Y − Yn k)1−
1

n
1 ≤ Zn ≤ Z −max (k X −Xn k, k Y − Yn k)1.

By construction, {Zn} converges to Z; moreover, Xn−Zn ≥ X− k X−Xn k 1−Zn ≥ X−Z ≥ 0,
and likewise Yn − Zn ≥ 0. Thus Xn − Zn ∈ D and Yn − Zn ∈ D for all n. By Additivity on D,
Xn − ZnbDYn − Zn for all n, whence X − Z bDY − Z as desired.
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Finally, to verify Transitivity on B, consider any X,Y,Z ∈ B such that X bDY and Y bDZ. By
Homogeneity on B 1

2X
bD1
2Y as well as 1

2Y
bD1
2Z. By Strong Additivity on B,

1
2X + 1

2Y
bD1
2Y +

1
2Z.

Hence by Additivity on B, 1
2X

bD1
2Z, from which one obtains X bDZ again by Homogeneity on B.

¤

In a final step, extend bD on B to the set of all bounded random-variables R := B(Σ,R) by

defining bD on B(Σ,R) as the unique relation eD on B(Σ,R) that coincides on B with bD on B and
that satisfies Additivity and Homogeneity. (The uniqueness of this extension is immediate; existence

follows easily form the Additivity and Homogeneity properties of bD on B). As in section 2.2, say that
a relation bD on R is a coherent expectation ordering if it satisfies Transitivity, Reflexivity, Positivity,

Non-degeneracy, Homogeneity, Additivity, and Continuity. The following Lemma summarizes the

construction, and follows immediately from Lemma 10.

Lemma 11 The relation bD on R is a coherent expectation ordering satisfying Extension.

The following result establishes the existence of a multi-prior representation for coherent expecta-

tion orderings. Its proof is omitted, as it follows from combining Theorem 3.61 and 3.76 in Walley

(1991); for finite state spaces, a similar result has also been obtained by Bewley (1986).

Theorem 3 A relation eD on R is a coherent expectation ordering if and only if there exists a closed

convex set of priors Π such that, for all X,Y ∈ R,

X eDY if and only if, for all π ∈ Π, EπX ≥ EπY.

The representing Π is unique in K(∆(Σ)).

To complete the proof, apply Theorem 3 to the relation bD on R obtained in Lemma 11. By

Extension, for all A,B ∈ Σ,

A D B iff 1AbD1B iff, for all π ∈ Π, Eπ1A ≥ Eπ1B .

Thus Π is indeed a multi-prior representation of D. That it is dyadically convex-ranged is an

immediate consequence of Equidivisibility.

To demonstrate uniqueness, consider any Π0 ∈ K(∆(Σ)) different from Π with induced expectation
ordering bDΠ0 . From the uniqueness part of Theorem 3, there exist X,Y ∈ R such that X bDY and

not X bDΠ0Y , or such that X bDΠ0Y and not X bDY . Consider the former case; the latter is dealt with
symmetrically. By Additivity and Homogeneity, it can be assumed that X,Y ∈ B. By continuity,
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monotonicity, and the density of D in [0, 1] it can in fact be assumed that X,Y ∈ D. Take any
A ∈ [X] and B ∈ [Y ]. By Extension, 1Ab≡X and 1B b≡Y, hence AbDB. By assumption, for some
π ∈ Π0, EπX < EπY ; in view of Lemma 12 just below, π (A) < π (B) , contradicting the assumption

that Π0 represents D .

Lemma 12 For any π ∈ Π0 such that bDΠ0 = bD, and any X ∈ D and A ∈ [X] : EπX = π (A) .

Write X =
P

i
ci
2ki
1Ei and A =

P
iAi such that Ai ∈ ci

2ki
Ei. By assumption, one can split each

Ei into 2
ki equally likely events {Ei1,..., Ei2ki } such that Ai =

P
j≤ci Eij . For any π ∈ Π0 such

that bDΠ0 = bD, π (Eij) = π (Eij0) for all i, j, j
0, hence π (Ai) =

ci
2ki

π (Ei) by additivity of π. Hence

π (A) =
P

i
ci
2ki

π (Ei) = EπX. ¤

Proof of Fact 3.

Suppose that there exists finite partitions of A and Bc, A = Σi∈IAi and Bc = Σj∈JBj such that

A\Ai D B ∪Bj for all i ∈ I, j ∈ J . By consistency, ΠD 6= ∅. For all π ∈ ΠD , π (A\Ai) ≥ π (B) for

all i ∈ I, hence

π (A) =
1

#I − 1Σi∈Iπ (A\Ai) ≥
#I

#I − 1π (B) . (8)

By the same reasoning, for all π ∈ ΠD , π (Bc) ≥ #J
#J−1π (A

c) , and therefore

min
π∈ΠD

π (A) ≥ 1

#J
. (9)

By (8), π (B) ≤ #I−1
#I π (A) for all π ∈ ΠD , and thus by (9)

min
π∈ΠD

[π (A)− π (B)] ≥ 1

#I
min
π∈ΠD

π (A) ≥ 1

#I

1

#J
.

Conversely, suppose that minπ∈Π [π (A)− π (B)] ≥ 1
2n for some n ∈ N. By Equidivisibility, there

exists partitions of A and Bc into 2n+1 equally likely events {Ai} and {Bj}, respectively. Clearly,
for any π ∈ Π and any i, j, π (A\Ai)− π (B ∪Bj) ≥ π (A)− π (B)− 1

2n ≥ 0, hence A\Ai D B ∪Bj

by coherence. ¤

The following lemma is used in the proof of Proposition 1 below.

Lemma 13 If Σ is a σ-algebra and π on Λ is dyadically convex-ranged, then Λ contains an algebra

A on which π is convex-ranged.

Proof. By dyadic convex-rangedness, there exists a nested sequence of algebras {Ak} such that
Ak ⊆ Ak0 whenever k ≥ k0 and such that π(A) = 1

2k
for each atom of Ak.
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For any A ∈ Σ, let A[k] denote the largest subset of A that is an element of Ak, and write A
c
[k]for

(Ac)[k] . Let A denote the set of all events A ∈ Σ such that

supkπ(A[k]) + supkπ(A
c
[k]) = 1. (10)

We need to show A is an algebra contained in Λ on which π is convex-ranged.

1. For any A ∈ A, A ∈ Λ with π (A) = supkπ(A[k]).

By definition, for any π ∈ Π, π(A[k]) ≤ π (A) = 1−π (Ac) ≤ 1−π(Ac
[k]). Taking sup’s and account

of (10), it follows that π (A) = supkπ(A[k]), as desired.

2. A is an algebra

Closure under complementation is immediate. To verify closure under intersection, consider A,B ∈
A.
Clearly (A ∩B)[k] = A[k] ∩B[k] and (A ∩B)c[k] = (Ac ∪Bc)[k] ⊇ Ac

[k] ∪Bc
[k].

Therefore in particular
³
(A ∩B)[k] ∪ (A ∩B)

c
[k]

´c
⊆
³¡
A[k] ∩B[k]

¢
∪
³
Ac
[k] ∪Bc

[k]

´´c
⊆
³
A[k] ∪Ac

[k]

´c
∪³

B[k] ∪Bc
[k]

´c
.

By assumption, limk→∞ π
³
A[k] ∪Ac

[k]

´c
= 0 and limk→∞ π

³
B[k] ∪Bc

[k]

´c
= 0. Therefore also

limk→∞ π
³
(A ∩B)[k] ∪ (A ∩B)

c
[k]

´c
, as needs to be shown.

3. π is convex-ranged on A.
Take any A ∈ A and any real number α ∈ (0, 1) and any A ∈ Σ. Write α as the supremum of an

increasing sequence of dyadic numbers {αj =
cj

2j }j=1,..,∞ such that

cj+1

2j
≥ α. (11)

For any k > 1, let A0[k] = A[k]\A[k−1], and let A0[1] = A[1]. Note that since the A[k] are nested,

A[k] =
P

j≤k A
0
[k]; moreover, A

0
[k] is either empty or an atom of Ak.

For each k ≥ 1, and each j ≥ 1, split A0[k] (if non-empty) into 2j equally likely atoms of Ak+j ,

and let Bjk a union of cj such atoms, and Cjk a disjoint union of 2
j − cj − 1 such atoms. Clearly,

for given k, the Bjk and Cjk and be chosen to be increasing in k.

Let Bj =
P

k≤j Bjk, B = ∪j=1,..,∞Bj , and likewise Cj =
P

k≤j Cjk, C = ∪j=1,..,∞Cj . Note that

the sequences {Bj} and {Cj} are increasing in j. Now

π (Bj) =
X
k≤j

π (Bjk) =
X
k≤j

αjπ
³
A0[k]

´
= αjπ

¡
A[j]

¢
.
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Therefore, using step 1,

sup
j→∞

π (Bj) = απ (A) .

Since for any j, Bj ∈ A2j , B[2j] ⊇ Bj , and therefore

sup
j→∞

π
¡
B[j]

¢
≥ sup

j→∞
π (Bj) = απ (A) . (12)

By analogous reasoning, π (Cj) =
¡
1− αj − 1

2j

¢
π
¡
A[j]

¢
and therefore supj→∞ π (Cj) = (1− α)π (A) .

Moreover,

Bc
[2j] ⊇ Cj +Ac

[2j].

Hence

sup
j→∞

π
³
Bc
[j]

´
≥ sup

j→∞
π (Cj) + sup

j→∞
π
³
Ac
[j]

´
= (1− α)π (A) + (1− π (A)) = 1− απ (A) . (13)

Combining (12) and (13), it follows that B ∈ A and π (B) = απ (A) , demonstrating convex-

rangedness. ¤

Fact 5 If Σ is a σ-algebra, Π is convex-ranged if and only if it is dyadically convex-ranged.

Proof. The only-if part is immediate; to verify the if-part, take any non-null event A ∈ Σ, and
α ∈ (0, 1). By Lemma 13 applied to the λ-system ΛA, there exists an event B ∈ ΛA such that

π (B/A) = α, verifying convex-rangedness.

Proof of Proposition 1.

If Λ is a σ-algebra, or if more generally Λ is an algebra with π convex-ranged, then Likelihood Con-

sequentialism restricted to betting preferences implies that the revealed likelihood relation %c agrees

with D on Λ, and Likelihood Consequentialism for multi-valued acts entails Machina-Schmeidler’s

Strong Comparative Probability axiom. Thus the proof of Machina-Schmeidler’s (1992) Theorem 1,

step 5, and Theorem 2, step 2, can be used verbatim to obtain the desired conclusion.

This can be generalized to the general case in which Λ may fail to be an algebra as follows.

Take any f, g ∈ Fua such that π ◦ f−1 stochastically dominates π ◦ g−1 (weakly or strictly). Let
Bf (respectively Bg or Bf,g) denote the smallest algebra containing all sets of the form f−1(x)

(respectively g−1(x) or both f−1(x) and g−1(x)), and let B0f ,B0g and B0f,g denote the families of
their respective atoms. Clearly, all these are finite due to the assumed finite-valuedness of f and g.
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For each B ∈ B0f,g, Lemma 13 delivers the existence of an algebra AB contained in ΛB such that

π (./B) is convex-ranged on AB. Let A denote the algebra generated by their union, i.e. the family
of all sets of the form

P
B∈B0f,g

AB, where AB ∈ AB. Let A⊥ the subalgebra of events A ∈ A defined
by the additional condition that π (A/B) = π (A/B0) for all B,B0 ∈ B0f,g; similarly, let A⊥f and A⊥g
subalgebras of events A ∈ A defined by the weaker condition that π (A/B) = π (A/B0) for all those

B,B0 ∈ B0f,g that are contained in the same atom of B0f (respectively B0g). By construction clearly
A⊥f ⊇ Bf ∪A⊥ and A⊥g ⊇ Bg ∪A⊥.
Moreover, since Bf∪Bg∪A⊥ ⊆ Λ, elementary reasoning shows that bothA⊥f andA⊥g are contained

in Λ, and that π is convex-ranged on both of these and on A⊥. By the latter, there exists an A⊥-
measurable act h such that π ◦ h−1 = π ◦ g−1, and such that by implication π ◦ f−1 stochastically
dominates π ◦ h−1. By the Machina-Schmeidler argument for algebras (the first part of the proof),
h ∼ g and f % h (respectively f Â h if the stochastic dominance is strict). Hence by transitivity

f % g respectively f Â g. ¤

Proof of Proposition 2.

“Only if”. Suppose Ψ ⊆ Π. Let ψ− denote the lower probability with respect to Ψ. Evidently,
ψ−|Λ = π, hence % maximizes expected utility on unambiguous acts and therefore satisfies the sure-
thing principle on those acts.

To verify Likelihood Consequentialism, take any f ∈ F , x, y ∈ X such that x % y and events

A,B ∈ Σ such that A D B. Let g = [x on A\B; y on B\A; f(ω) elsewhere] and h = [x on B\A; y
on A\B; f(ω) elsewhere], and let π0 ∈ argminπ∈Ψ

P
x∈X u (x)π ({ω : g (ω) = x}) . Since A D B and

Ψ ⊆ Π, π0 (A) ≥ π0 (B) , and thus

min
π∈Ψ

X
x∈X

u (x)π ({ω : g (ω) = x}) =
X
x∈X

u (x)π0 ({ω : g (ω) = x}) ≥X
x∈X

u (x)π0 ({ω : h (ω) = x}) ≥ min
π∈Ψ

X
x∈X

u (x)π ({ω : h (ω) = x}) ,

and thus g % h; the strict part of Likelihood Consequentialism is shown similarly.

“If”. Conversely, suppose that % is compatible with D and satisfies Savage’s Sure-Thing Principle
P2 on the set of unambiguous acts Fua. By Savage’s Theorem and Proposition 2, % maximizes

expected utility on unambiguous acts, with ψ−|Λ = π.

If not Ψ ⊆ Π, then there must exist A ∈ Σ such that ψ− (A) < π− (A) by the uniqueness part

of Theorem 2. By the convex-rangedness of π, there exists T ∈ Λ such that π (T ) = π− (A). Since

T is unambiguous, π+ (T ) ≤ π− (A) and thus T E A; on the other hand, since ψ− (T ) = π (T ) =
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π− (A) > ψ− (A) , for any x Â y one has [x on A, y on Ac] ≺ [x on T, y on T c], violating Likelihood

Consequentialism. ¤

Proof of Fact 4.

Let u : X −→ R a non-constant function, φ be a strictly increasing mapping from [0, 1] onto itself,

and υ : Σ1 → [0, 1] the capacity φ ◦ π1. Any act f can be written as [xi,j on Ai × Tj ]i,j. Define

Zf : Σ1 → R by setting Zf (ω) =
¡
Σju(xi(ω),j)π1 (ω)

¢
where i (ω) is given as the unique i such that

Ai 3 ω. Now define % as follows: by setting

f % g if and only if

Z
Zfdυ ≥

Z
Zgdυ, (14)

where the integral is the Choquet integral. The preference relation % can be viewed as a special

case of the CEU model due to Schmeidler (1989) adapted to a Savage framework. In fact, (14)

defines exactly the class of “second-order probabilistically sophisticated CEU” preferences studied

in Ergin-Gul (2004).

It is clear that % is probabilistically sophisticated on F1 ∪ F2 if and only if φ = id, i.e. υ = π1,

in which case it is SEU. Likelihood Consequentialism with respect to DAA is immediate from the

construction. To verify Likelihood Consequentialism with respect to D1, consider any A0, B0 ∈ Σ1
such that A := A0 × Ω2 D B := B0 × Ω2, f ∈ F and x, y ∈ X such that x % y. Setting g = [x

on A\B; y on B\A; f elsewhere] and h = [x on B\A; y on A\B; f elsewhere], note that, in act
notation, Zg = [u(x) on A0\B0;u(y) on B0\A0;Zg elsewhere] and Zh = [u(x) on B0\A0;u(y) on
A0\B0;Zg elsewhere]. Since π1 (A

0) ≥ π1 (B
0) by assumption, one has

υ({ω} : Zg (ω) ≥ z) ≥ υ({ω} : Zh (ω) ≥ z)

for all z ∈ R, and thus
R
Zgdυ ≥

R
Zhdυ by the definition of the Choquet integral, verifying the

weak part of Likelihood Consequentialism with respect to D1; the strict part is verified analogously.
¤

Proof of Proposition 3.

The relation %AA is uniquely defined since convex-rangedness of the context ensures that [F ] is

non-empty.

Consider any F and G such that F (ω) stochastically dominates G (ω) for all ω ∈ Ω. Take any
partition {Ai}1,..,n such that both F and G are measurable with respect to this partition. For
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i = 0, .., n, define AA acts Fi = [F (ω) on
P

j≤iAj , G (ω) on
P

j>iAj ], and take Savage acts

fi ∈ [Fi]. By Proposition 1, for i ≥ 1, fi % fi−1. Since by construction f0 ∈ [G] and fn ∈ [F ], by
transitivity of % one infers that F %AA G, demonstrating the “weak” part of monotonicity. The

strict part follows from an analogous argument.

Completeness of %AA is an immediate consequence of the completeness of %. To verify transitivity,
assume that [F ] %AA [G] and [G] %AA [H]. By definition of [.], there exist f ∈ [F ], g, g0 ∈ [G], h ∈ [H]
such that f % g and g0 % h. Note that since g, g0 ∈ [G], they stochastically dominate each other,
and therefore g ∼ g0, whence by transitivity of %, f % h, as needed to be shown. ¤
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