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INTRODUCTION 

 Although much has been written on the theory of auctions, most of this work focuses 

exclusively on the symmetric equilibrium of an auction in which bidders are ex ante the same in 

the sense that the joint distribution of buyers’ types is symmetric.  In previous work (Maskin and 

Riley (2000a and 2000b), we have begun exploring the theory in the absence of symmetry. 1  

Specifically we have examined (i) the existence of equilibrium in a sealed high-bid auction and 

(ii) the differences between the equilibrium in high-bid and second-price auctions when buyers 

are asymmetric ex ante. 

 Here we turn to the question of uniqueness.  With a symmetric distribution of types, it is 

well known that there is only one symmetric equilibrium (Milgrom and Weber, 1982, Maskin 

and Riley, 1984).  However, it is not implausible to conjecture that, even in an ex ante symmetric 

setting, a particular buyer might establish a reputation as an aggressive bidder if it is in his 

interest to do so.  Riley (1980) provides an example of the "war of attrition" in which this is 

indeed the case.  In fact, there is a continuum of asymmetric equilibria in which one buyer bids 

"aggressively" and the other "passively."  Furthermore, the greater the degree of aggression, the 

larger is the equilibrium expected gain of the aggressive buyer.   

 A second example of a continuum of equilibria occurs in a pure common-values setting, if 

the item is sold by open ascending bid.  As first noted by Milgrom (1981) there is always a 

continuum of equilibria in the two-buyer case.  Bikchandani and Riley (1991) also present an 

example in which, with n bidders, there is a continuum of equilibria. 

 

                                                           
1 There is also a literature on efficient auctions (see Maskin, 2003, for a survey) that eschews the 
symmetry assumption. 
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 For the symmetric high-bid auction with private values, however, we show that there can 

be no asymmetric equilibrium under the assumption that reservation prices are drawn 

independently from a distribution with finite support2 and positive mass at the lower endpoint.3  

That is, equilibrium is unique. 

 When we drop the symmetry assumption, uniqueness continues to obtain under same 

assumptions if there are only 2 buyers.  For more than two buyers, we need the additional fairly 

mild assumptions that buyers with the same reservation price have the same preferences, that 

absolute risk aversion is nonincreasing, and that the supports of the different buyers’ 

distributions of reservation prices have the same upper endpoint.   

 The argument that equilibrium is unique is basically an application of the fundamental 

theorem of ordinary differential equations (FTODE).  As we will see, the major problems with 

applying this theorem are (i) ensuring that buyers’ (inverse) bid functions are differentiable, so 

that they satisfy a system of differential equations; and (ii) establishing that there exists a unique 

“boundary condition” for that system. 

 We describe the model in section 1.  In section 2 we present characterization results.  We 

use these in section 3 to derive our main theorems.  Concluding remarks are in section 4. 

 

 

 

 

                                                           
2 If the support of the distribution is unbounded, we conjecture that there will be a continuum of 
asymmetric equilibria. 
3 This latter assumption is weak because it is satisfied automatically if the seller sets a reserve price that 
is even marginally above the lowest possible buyer reservation price. 
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1.  THE MODEL 

 

 Throughout we shall make the following assumptions about the auction and the buyers 

participating in it.  A single item is to be sold to the buyer who makes the highest non-negative 

sealed bid.  If two or more bids tie, the winner is selected at random from among the high 

bidders.  There are  n  potential buyers.  Buyer i of type obtains utility 0 if he loses and utility  

 if he wins with a bid of  b,  where U  is twice continuously differentiable.  We assume 

that 

is

( , )i iU b s i

 0 and 0 for all i i

i

U U i
b s

∂ ∂< >
∂ ∂

. 

Without loss of generality, we can interpret  as buyer i’s  reservation price.  Hence 

.  Buyer i's reservation price is drawn independently from a distribution with 

support  

is

( ),i i iU s s = 0

[ , , where ]i is s 0,is >   and c.d.f. .  We assume that  is twice continuously 

differentiable, that its derivative is strictly positive on  

( )⋅iF iF

[ , , and that ]i is s ( ) 0iiF s >  (see 

footnote 3). 

 Clearly it is a dominated strategy for a buyer to bid more than his reservation price.  

Hence, we will rule this out by assumption. 

Assumption 1:  Bidder i never bids more than his reservation price  in equilibrium. is

If a buyer i has a negative reservation price, then it is a dominated strategy for him to bid at all, 

and so without loss of generality we can assume that 0.is ≥  

 3



 

Let  Π  be the probability that bidder i wins.  Then his expected utility is  i

 

( , )i i iE U b= Π is .   

 

We shall assume throughout that the higher is a bidder's reservation price, the ''flatter'' are his 

indifference curves in bid-probability space.  That is, the single-crossing property holds4.  Given 

our assumptions, bidder i's indifference curve, are as depicted in Figure 1.1.  Specifically, at  

an indifference curve, 

 

 1

i

i

i

i iE const i

E
Udb

E Ud
b b

=

∂
∂Π= − = −∂ ∂Π Π
∂ ∂

. 

 

Thus, for single-crossing, we require the following assumption. 

Assumption 2:  Single-crossing 

( , )i
i i

U U b s
b

∂−
∂

 is a decreasing function of . is

 

Note that if U  takes the form U b  then Assumption 2 is satisfied provided that 

bidder i is risk-neutral or risk-averse, i.e., V  

i ( ) ( ),i i i is V s b= −

0.i
′′ ≤

,

                                                           
4 In technical terms, this is the assumption that utility is log supermodular. 
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Indifference curve for 
reservation price  s′

Indifference curve for 
reservation price  s′′

Win probability 

′′Π  

′Π

 
 
   
 

As we shall

win the item, rather

 

 ( , ) loi ic b s ≡

 

Then,  

i ic U
bb

∂ ∂= −
∂∂

 

and so Assumption

higher reservation p

in  (see Lemma 2is

 

        s s  ′′ ′>

b′′b′ bid 
  

Figure 1.1:  Single-crossing property 
 

 see in section 3, it will be helpful to define the "log cost" of having to bid to 

 than getting it gratis: 

.       (1.1) g (0, ) log ( , )i i i iU s U b s−

( , )i iU b s ,        (1.2) 

 2 is equivalent to the assumption that the marginal log cost is lower for 

rices.  Given this assumption, buyer i’s bidding behavior will be monotonic 

 below). 
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Since it will be useful below, we note that 

 

2

2 ( ( , ) )i
i i

c A b s
b b

∂ = +
∂ ∂

i ic c
b

∂ ∂
∂

 ,        (1.3) 

 

 where 
2

2( , ) /i
i i

U UA b s
b b

∂ ∂=
∂ ∂

i  is buyer i's coefficient of absolute risk aversion.  Note that as long 

as a buyer is risk neutral or risk averse (and hence ),  is strictly convex for 

all 

( , ) 0i iA b s ≥ ( , )i ic b s

[ )0, ib s . ∈

 

2. CHARACTERIZING THE EQUILIBRIUM BID FUNCTIONS 

From Maskin and Riley (2000a and b) we have the following two results: 

 

Lemma 1:  If Assumptions 1 and 2 hold, the distribution of winning bids in equilibrium has a 

support consisting of an interval [ ,  and a c.d.f.  which is continuous on  ( ,  (see 

Proposition 3 of Maskin and Riley (2000b)). 

*
* ]b b ( )wG b *

* ]b b

 

Lemma 2: Monotonicity 

If Assumptions 1 and 2 hold, then if b s  is a best response  by buyer i with reservation price 

 to the other buyers’ bidding strategies, it is non-decreasing in  (see Proposition 1 of Maskin 

and Riley (2000a)). 

( )i i

is is
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 To understand Lemma 2 geometrically, consider Figure 1.1.  If  is optimal for a 

buyer with reservation price , there can be no feasible alternatives in the heavily shaded 

region. Thus, any alternatives preferred to  by the higher reservation price  must lie in 

the lightly shaded region, i.e., they must entail higher bids. 

( , )b′ ′Π

s′

( , )b′ ′Π s′′

 As our first preliminary result, we characterize  ,  the lower endpoint of the support of 

the distribution of winning bids. 

*b

Lemma 3: Characterization of the minimum winning bid 

Without loss of generality, suppose that 1...ns ≤ ≤ s .  If Assumption 1 and 2 hold, then the 

minimum bid satisfies 

             2 * .s≤ ≤ 1s b   (2.1) 

 
Furthermore, if 2 1,s s<  then  

            * 11
max arg max ( ) ( , )iib

F b
≠

= × 1U b sb   (2.2) 

Proof:  Suppose first that 1s∗ >b .  Consider a buyer with reservation price 1 1
12 2ˆ ( ,s s b b∗ ∗∈ + ) .  

Because s , the lowest winning bid, the buyer has an equilibrium expected payoff of zero.  

But there is a positive probability that all other buyers have reservation prices less than 

ˆ b∗<

1
12 s + 1

2 b∗ .  Thus, from Assumption 1, our buyer has a strictly positive payoff if he bids 

1
12 s + 1

2 b∗ , a contradiction.  We conclude that . 1b s∗ ≤

 Suppose next that 2s∗ <

∗

b .  From Lemma 1, there are no mass points on .  Thus, 

buyers 1 and 2, regardless of their reservation prices, have strictly positive expected payoffs 

from bidding just above b . This means that if 

( ,b b∗
∗ 

{ }buyer  bids  or more bility 1 ,I i i b∗=    with proba  
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then 1,2 I∈ .  For all i I  be the probability that buyer .  If, for all , 

then bidding b  results in a tie with positive probability.  Thus, buyer 1 is strictly better off 

bidding slightly above b , since this increases his probability of winning discontinuously.  

Hence, for some .  If , then buyer 1’s probability of winning, and hence his 

expected utility, is approximately zero for bids near b .  But we have already argued that buyer 

1’s equilibrium expected utility is strictly positive, a contradiction.  Hence, .  But now the 

same contradiction pertains to buyer 2.  We conclude that (2.1) holds. 

,  let ip∈

∗

, 0ip∈ =

bids i ∗b , 0ii I p∈ >

∗

i I 1i ≠

∗

1 0p =

2 1s< 1 bids s b ≠

( )
1i≠

×

( )

iF b ∗

( ) )11 1U∗×

( )

F b U

( )1U b s∗

'

1

"b

s "

1 1s> b '

 Suppose that s . From Assumption 1, if buyer 1 with reservation price ∗ , 

his expected payoff is at least ( 11 ,U b s .  It follows that for b  to be an equilibrium bid 

for him, 

b

)

 ( ) (11 1
, ,i ii i

b s F b b s∗≠ ≠
× ≤  for all b. 

Hence, 
 1 1i 1

arg max ,b F b
≠

∈ × . 

 Finally, suppose that both b  and   solve this maximization problem and that  .  

Buyer 1  with reservation price 

"b ' "b b<

 weakly prefers b  to any lower bid.  Given Assumption 2, all 

other buyer 1  types strictly prefer   to any lower bid.  Thus the minimum bid for all 

reservation prices s  is at least  .  But then  b   is not the lower endpoint of the support of 

the equilibrium distribution of winning bids.  We conclude that (2.2) holds. 

"

                                                                                                           Q.E.D.  
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Lemma 4:  Strict monotonicity of the probability of winning: 

 Suppose that   and that b are in the support of the distribution of winning 

bids in equilibrium.  Then at least two buyers bid in the interval  (  with positive 

probability. 

b b′ < ′′ b′′

)

and ′

,b b′ ′′

Proof:  From Lemma 1, the support of G  is connected, and so all the bids in the interval 

 are also in the support.  This implies that at least one buyer bids in  with positive 

probability.  Suppose, contradicting the Lemma, that buyer i is the only one to do so.  

Specifically, assume that for reservation price  buyer i bids  in equilibrium.  But 

buyer i can reduce his bid to b  without diminishing his probability of winning, a 

contradiction. 

( )w b

( ),b b′ ′′

( ,b b′ ′′ ) )

)

s

( ,b b′ ′′

is (ˆ ,b b b′ ′′∈

ˆ ε− ∈

                                                                                                                                Q.E.D. 

Let  (  be equilibrium bidding strategies (possibly mixed strategies).  Because 

 is continuous, any deterministic selection   from   is strictly increasing at all  

 for which b s .  It follows that 

1 1( ),..., ( ))n nb s b s

( )b

( )i i >

wG

is

( )i ib s ( )i ib s

*b

             1( ) ( )i iy b−⋅ = ⋅

is a nondecreasing function that is well defined at all b   for which there exists  with  

.  Thus, for all b   we can define 

*b> is

supp ( )i ib b∈ *b>

 

        .      (2.3) ˆ ˆ ˆ( ) sup{ ( ) | , ( ) defined}i i ib y b b b y bφ = ≤
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Because    is nondecreasing, ( )iy ⋅ ( )iφ ⋅  is nondecreasing and continuous for all  b .  Note, 

furthermore, that buyer i’s probability of winning can be written as 

*b>

 

 ( ) ( ( ))i j jj i
G b F bφ

≠
≡ × .        (2.4) 

 

Because  ( )j bφ   is continuous for all  j,  so is  .  Any realization of b s solves ( )iG b ( )i i

max ( , ) max ( ( )) ( , )i i j j i ij ib b
E b s F b U b sφ

≠
= × . 

Equivalently, it solves: 

 ( , )max ( ( ))
(0, )

i i
j jj ib i i

U b sF b
U s

φ
≠
× .  

That is, the bidder maximizes the ratio of his expected utility to his utility if he is simply given 

the item for free.   

 

Define   

 

 ( ) log ( ( ))i i ip b F bφ≡ .        (2.5) 
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Then, any realization of  solves ( )i ib s

  max ( , ),i ib
e b s

where 

 ( , )( , )  log [ ( ( )) ] ( ) ( , )
(0, )

i i
i i j j j ij i j ii i

U b se b s F b p b c b s
U s

φ
≠ ≠

= × = −∑ i , 

and c b  is given by (1.1). ( , )i is
 
 As a preliminary to establishing uniqueness, we now derive properties of  ( )iφ ⋅  and  

( )j
j i

p b
≠
∑ .  Proofs of Lemmas 5-8 can be found in the Appendix. 

 

Lemma 5:  Strict monotonicity property of bid distributions. 

For any b  and any i, b∗> ( )j
j i

p b
≠
∑  is strictly increasing at b. 

 

Lemma 6:  If  ( )i bφ  is strictly increasing to the right or left at  b b ,  then    is a best 

response for buyer i with reservation price .  

ˆ b∗= ≥ b̂

ˆˆ ( )i is bφ=

 

Lemma 7:  If  ( )i bφ  is strictly increasing to the right or to the left at  b b , then  *
ˆ b= ≥ ( )j

j i
p b

≠
∑   

is correspondingly right or left continuously differentiable at  b .  Moreover, the right or left 

derivative satisfies 

ˆ

  ˆ ˆ( ) ( , ( )).i
j

j i

c ˆ
ip b b

b
φ

≠

∂′ =
∂∑ b        (2.6) 
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Lemma 8: ( )i bφ   is right or left continuously differentiable at all  b  . *b≥

Define the inverse function 

 

 . (2.7) ( ) 1( ) log ( )i ih F −⋅ ≡ ⋅

Then we can rewrite equation (2.6) as  

 

 ( ) ( )( )( ), .j i i i
j i

p b c b h p b
b≠

∂′ =
∂∑  (2.8) 

 We shall make important use of the following: 

Lemma 9:  Suppose that ( ) (1 1ˆ ˆ,...,  and ,...,n )np p p p  are two solutions to the differential equation 

system 

 ( ) ( )( )( ), , 1,...,j i i i
j i

p b c b h p b i
b≠

∂′ =
∂∑ n=  (2.9) 

on the interval ( .  If for some 1 2,b b  ( ( ) ( )1 2 ˆ, , i ib b b p b p b∈ <  for all i, then, for all 

, ( )1,b b b∈

  ( ) ( )ˆ for all ,i ip b p b< i  (2.10) 

and 

 ( ) ( )
1 1

ˆ .
n n

j
j j

jp b p
= =

′ >∑ ∑ b′  (2.11) 
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Proof:  Dividing both sides of (2.11) by n-1 and then summing over i, we obtain 

 

  ( ) ( )((
1 1

1 ,
1

n n

j j j
j j

))jp b c b h p
n= =

′ =
−

b∑ ∑ . (2.12) 

 
Subtracting (2.9) from (2.12), we have for all i, 
 

 ( ) ( )( )( ) ( ) ( )( )(1 , 2 ,
1i j j j i i

j i
p b c b h p b n c b h p b

n b b≠

 ∂ ∂′ = − − − ∂ ∂ 
∑ )i

)

. (2.13) 

 Suppose, contrary to (2.10), there exist i and  such that ( 1,b b b∈ ( ) ( )ˆi ip b p b= .  Let  

be the biggest such b.  Then 

b̂

 ( ) ( )ˆ ˆi i
ˆp b p b=  (2.14) 

and 
 ( ) ( )ˆj jp b p b<  (2.15) 

for all b b  and ( ˆ,b∈ ) 1,...,j n= . 

 Now, from the fundamental theorem for ordinary differential equations (FTODE), there 

exists a unique solution ( )1,..., np p  to (2.9) with the point condition ( ) ( )ˆ
j j

ˆp b p b=  for all j.  

Hence, from (2.14) and (2.15), there exists  such that  k ≠ i

 ( ) ( )ˆ ˆk k
ˆp b p b< . (2.16) 

From (2.13) and (2.14) 
 

 ( ) ( ) ( )( )( ) ( )( )( )( )1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ, ,
1i i j j j j j j

j i
p b p b c b h p b c b h p b

n b≠

∂′ ′− = −
− ∂∑ . (2.17) 

 13



But from (2.15) and (2.16) and Assumption 2, the right-hand side of (2.17) is positive and hence 

( ) ( )ˆi ip b p b>  for b in a right neighborhood of b , contradicting (2.15).  We conclude that (2.10) 

holds as claimed.  Then (2.11) follows from (2.10), (2.12), and Assumption 2. 

ˆ

                                                                                                                                Q.E.D. 

3. UNIQUENESS 

 When buyers are ex ante asymmetric, we do not generally obtain uniqueness of 

equilibrium bids that win zero probability.  To see this, consider the following: 

Example:  Suppose that n  is distributed uniformly in the interval [0,1], and that  is 

distributed uniformly in [3,4].

12,  that = s 2s

1

5  One equilibrium consists of buyer 2 bidding  for all  

and b s  for all .  However, we can replace buyer 1’s bid function with b s  

without destroying equilibrium.  Indeed, there is a continuum of different possible equilibrium 

bids for buyer 1.  Nevertheless, all this multiplicity occurs below , and thus pertains only to 

bids that have no chance of winning. 

( )2 2 1b s =

( )1 1
ˆ =

2s

( )1 1 1s= 1s
2s

1b∗ =

 Such examples dictate that when we speak of “uniqueness of equilibrium” we will 

henceforth be referring only to the portions of the equilibrium bid functions at or above b . ∗

Proposition 1:  Suppose that   If Assumptions 1 and 2 hold, then equilibrium is unique. 2.n =

Proof:  Recall from Lemma 3 that 2 .s b s∗≤ ≤ 1   Suppose first that 2b s∗ ≥ .  But then, from Lemma 

3, 2b s∗ = , and buyer 1 with reservation price 1s  maximizes his payoff by bidding 2.s   Clearly 

the same is true for all other types of buyer 1, and so ( )1 1 2s=b s  for all , i.e., equilibrium is 

unique at or above b . 

1s

*

                                                           
5 Strictly speaking, this example violates our assumption that ( ) 0iiF s > , but we could modify it 
slightly to satisfy the assumption without changing our conclusion. 
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 Thus, suppose that 2b s∗ < . Then, from Lemma 1, for any equilibrium there exists  

such that the distribution of winning bids has support 

b b∗
∗>

,b b∗
∗    with continuous c.d.f.G .  

From Lemma 4, both bidders bid with strictly positive probability in any subinterval of ( .  

Hence, from Lemma 8, if  is an equilibrium, the transforms (

(w ⋅)

,b b∗
∗ 

( 1 2,b b ) )1 2,p p  of the inverse bid 

functions ( 1 2, )φ φ  are differentiable everywhere and satisfy the differential equation system (2.9). 

 Now suppose that there exist equilibria ( )1 2,p p  and ( )1 2ˆ ˆ,p p  such that the support of the 

former is ,b b ∗
∗   and that of the latter is ˆ,b b∗

∗
 
  , where ˆb b∗ ∗> .  Then, for i  1, 2,=

 ( ) ( ) ( )ˆˆ1 i i i
ˆp b p b p b∗ ∗= = > ∗ . (3.1) 

 
Because both equilibria satisfy (2.9) on the interval ( , Lemma 9 and (3.1) imply that, for 

all b b , 

ˆ,b b∗
∗




( ˆ,b∗
∗

∈ 

 ( ) ( )
2 2

1 1

ˆj
j j

jp b p
= =

′ >∑ ∑ b′ . (3.2) 

 

Integrating (3.2) and using the fact that jp  and ˆ jp  are continuous at b , we obtain ∗

 

 ( ) ( )( ) ( ) ( )(2 2

1 1

ˆ ˆˆ ˆj j j j
j j

)p b p b p b p b∗ ∗
∗

= =

− ≥ −∑ ∑ ∗ . (3.3) 

Hence, from (3.1) and (3.3), we have 

 ( ) ( )
2 2

1 1

ˆ j
j j

jp b p∗
= =

>∑ ∑ b∗ . (3.4) 
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But from Lemma 3, ( ) ( ) ( )11 1 1ˆ logp b p b F s∗ ∗= =  and ( ) ( ) ( )2 2 2ˆ logp b p b F b∗ ∗= = ∗ , which  

contradicts (3.4).  We conclude that ˆb b b∗ ∗= =

( ) 1= =

∗ , and so uniqueness follows from FTODE with 

boundary condition  . ( )1 2p b p b∗ ∗

 Q.E.D. 

The proof of Proposition 1 applies the FTODE to the upper endpoint of the distribution of 

winning bids.  With two buyers, the upper endpoint is the same for both buyers, but with three or 

more buyers, not everyone need share the same maximum bid.  To guarantee that they do, we 

shall impose two more fairly mild assumptions: 

Assumption 3:  Equal upper endpoints. 

The upper endpoint of the support of the distribution of reservation prices is the same for all 

buyers, i.e., 1 ... ns s= = = s

j

                                                          

6 

  

We also assume that when bidders have the same reservation price, then they have the same 

preferences.  Formally, we have: 

Assumption 4:  Identical reservation prices imply identical preferences 

For all i and j, if , then U s . is s= ( ) ( ), ,i i j jU s⋅ = ⋅

 

Note that Assumption 4 is satisfied if buyers are risk neutral, as is often assumed in the auctions 

literature.  We can now state: 

 
)

) )

6 Assumption 3 is weak in the sense that, for any vector of distributions ( , there exists another 

vector (  that is arbitrarily close to  and satisfies the assumption.  Moreover our 

method of proof can be extended readily to the case of different upper endpoints. 

1,..., nF F

1̂
ˆ,..., nF F ( 1,..., nF F
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Lemma 10:  If Assumptions 3 and 4 hold, then the upper endpoints in the supports of all buyers’ 

equilibrium bid distributions are the same. 

 

Proof:   Suppose that we index the buyers according to the upper endpoints of their equilibrium 

bid distributions: .  Since equilibrium bidding is monotonic,  is a best reply for 

bidder 1 when his type is 

1 ... nb∗ ≥ ≥ b∗
1b∗

s (by leaving the subscript off s , we are invoking Assumption 3).  

Using the logarithmic transformation of buyer 1's expected utility, it follows that  

 

 1 1 1
2 2

( , ) ( ) ( , ) ( ) ( , ) ( , ) ( , )
n n

n j n n j
j j

e b s p b c b s p b c b s c b s e b s∗ ∗ ∗ ∗ ∗ ∗

= =

= − ≤ − = − =∑ ∑ 1 1 1
∗ , 

 
where we have used the fact that ( ) ( )1 log 0j jp b F s∗ =

1n b∗ ∗<

( ) 0 ( )n n n

j = , and we have invoked Assumption 4 

by leaving the subscript off .  Suppose that b  . Since  is in the support of buyer 1's 

distribution of winning bids, 

1c 1b∗

1p b p b∗ ∗< = .  Substituting for ( )n np b∗ , we have, from the 

above inequality, 

 

 
1

1 1
1

( , ) ( ) ( , ) ( , ) ( , )
n

n n j n n n
j

e b s p b c b s c b s e b s
−

∗ ∗ ∗ ∗

=

= − < − =∑ ∗ . 

 
Thus  is not a best response for buyer n after all, a contradiction.  We conclude that b b . nb∗

1n
∗ ∗=

 
           Q.E.D. 
 
 The proof of Proposition 1 also relies on the property that, with just two buyers, 

equilibrium bid functions are continuous above b .  But with three or more buyers, our 

assumptions so far do not suffice to rule out the possibility that some buyer i has a "gap" [  

∗

, ]b b′ ′′
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in the support of his equilibrium bid distribution.  Still, we require only one additional weak 

condition to rule out such gaps: 

 

Assumption 5: Nonincreasing absolute risk-aversion 

For all i, the coefficient of absolute risk aversion, ( )
2

2, i
i i

U UA b s
b b

∂ ∂=
∂ ∂

i , is nonnegative and 

nonincreasing in . is

 

We can now establish our final preliminary result: 

Lemma 11: If Assumptions 1, 2, 4, and 5 hold, the support of each buyer i’s equilibrium bid 

distribution is an interval [ , .    1 ]b b∗
∗

Remark:  We ignore bids that have no chance of winning for the reasons illustrated by the 

example at the beginning of the section.   

Proof:  Suppose, to the contrary, that some buyer i's equilibrium bid distribution has a "gap" 

.  That is, there exists some reservation price  for which both b  and 

 are best replies, and 

[ , ]b b

(b >

( )i is bφ=

,b b)

o

b ( )  for all i ib s bφ  ∈=   .  Buyer i with reservation price  

chooses b to maximize 

is

 .       (3.5) ( , ) ( ) ( , )i i j i i
j i

e b s p b c b s
≠

= −∑

Thus, at , b

 ( )( ) , 0oi i
j i

j i

e cp b b s
b b≠

∂ ∂′= −
∂ ∂∑ ≤ .   

 

Let b  be the biggest bid in [ such that  ˆ , ]b b
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 ( ) ( ),i i
j

j i

e cp b b s
b b≠

∂ ∂′= −
∂ ∂∑ 0i ≤




      (3.6) 

 

for all b b .  Suppose that m of the equilibrium bid functions are strictly increasing at b .  

Without loss of generality, let these be the bid functions of bidders 1 to m and suppose that they 

are increasing throughout the interval 

ˆ,b∈ 

ˆ,b b 
   (if not, we can conduct the following argument on 

each subinterval of strictly increasing bid functions).  Then, from (3.6), 

 

 ( ) ( )( )
1

,
m

i i
j i

j

e cp b b b
b b

φ
=

∂ ∂′= −
∂ ∂∑ 0≤ ,      (3.7) 

 

and from (2.6), 

 ( )( )
1

( ) , 0, 1,...,
m

k
j k

j
j k

cp b b b k
b

φ
=
≠

∂′ − = =
∂∑ m .     (3.8) 

 
Comparing (3.7) with (3.8), we obtain 

   for all 1,...,i kc c k
b b

∂ ∂> =
∂ ∂

m

m

.      (3.9) 

Hence, from Assumptions 2 and 4, 

 ( ) ( ), 1,...,i kb b kφ φ< =  for all b b ˆ,b ∈   .     (3.10) 

 

Summing (3.8) over , we have k
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 ( )(
1 1

( 1) ( ) ,
m m

j
j

j j

c
m p b b

b
φ

= =

∂′− =
∂∑ ∑ )j b .      (3.11) 

Differentiating (3.11) by b, we obtain, using Assumption 2 and (1.3), 

 
2

2
2

1 1 1 1
) ( ) ( )

m m m m
j j

j j
j j j j

c c
m p b A

b b= = = =

∂ ∂′′− < = +
∂ ∂∑ ∑ ∑ ∑( 1  jc

b
∂
∂

              2

1 1
( )

m m
j

i
j j

c c
A

b b= =

∂ ∂
∂ ∂∑ ∑ j< + ,    (3.12) 

where the last inequality follows from Assumptions 4 and 5 and (3.10), and where the fact that 

( )jp b is twice differentiable at b follows from our assumptions about  and the FTODE. jF

From  (3.7) and (3.11), 

 

( )( ) ( )( ) ( )(
1

1, [ , ( 1) ,
1

m
ji i

i j
j

ce cb b b b m b b
b m b b

φ φ
=

∂∂ ∂= − −
∂ − ∂ ∂∑ )]iφ . (3.13) 

 

Also from (3.7), 

 

∂
∂

= ′′ − ∂
∂=

∑
2

2
1

2

2

e
b

p c
b

i

j

m

j
i =

j

m

j i
i ip A c

b
c
b=

∑ ′′ − ∂
∂

− ∂
∂1

2( )  

  2

1 1

1 ( )
1 ( 1)

m m
j ji

j j

c cA
m b m= =

∂ ∂
< +

− ∂ − ∂∑ ∑ b
− ∂

∂
− ∂

∂
A c

b
c
bi

i i( )2   (from (3.12)) 

  2 2

1 1

1[ ( 1) ] [ ( ) ( 1)(
( 1) ( 1)

m m
j ji i

j j

c cA cm m
m b b m b= =

∂ ∂∂ ∂< − − + − −
− ∂ ∂ − ∂ ∂∑ ∑ ) ]ic

b
 

  2

1

1 [ ( ) ( 1)( )
( 1)

m
ji i

i
j

ce cA
b m b b=

∂∂ ∂− −
∂ − ∂ ∂∑ 2 ]m< + (from (3.13). (3.14) 
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If 0ie
b

∂ ≤
∂

 it follows from (3.13) that 
1

( 1)
m

j i

j

c cm
b b=

∂ ∂− − ≤
∂ ∂∑ 0   Hence,  

( )
2

1
1 0

m
ji i

j

cc cm
b b b=

∂ ∂ ∂ − − ≤   ∂ ∂ ∂  
∑ , 

and so, from (3.9), the bracketed expression on the right-hand side of (3.14) is negative.  Thus, 

for all b b , [ , )b∈

 ∂
∂

≤e
b

i 0  ⇒ ∂
∂

<
2

2 0e
b

i . 

It follows that b b and so  is strictly decreasing over [ , a contradiction of our 

hypothesis that bidder i with reservation price is indifferent between bidding  and b .  Thus 

there can be no such "gap" after all. 

ˆ ,= ( , )i ie b s , ]b b

is b

           Q.E.D. 

Proposition 2:  Uniqueness with n buyers 

If Assumptions 1-5 hold, equilibrium is unique. 

Proof:  Lemmas 8 and 11 imply that equilibrium inverse bid functions are differentiable, and 

Lemma 10 implies that, in equilibrium, each buyer makes the same maximum bid.  Hence, we 

can apply Lemma 9, as in the proof of Proposition 1, to show that the maximum bid b  is the 

same in any equilibrium.  Uniqueness then follows from FTODE. 

∗

           Q.E.D. 

 

4. Concluding Remarks 

 We have limited our attention to the case of “independent private values,” in which a 

buyer’s reservation price does not depend on other buyers’ private information, and reservation 

 21



prices are independently distributed.  Note that, for this case, our arguments also establish 

equilibrium existence without the need to invoke existence theorems for discontinuous games 

such as Dasgupta and Maskin (1986), Simon and Zame (1990), and Reny (1999) (existence 

results for high-bid auctions that do use these theorems include Lebrun (1996), Maskin and Riley 

(2000b), Bresky (1999), Jackson and Swinkels (2001), and Reny and Zamir (2002)). 

 When there are only two buyers, Lizzeri and Persico (2000) relax the independence and 

private-values assumptions and establish uniqueness (and existence) under affiliation and certain 

forms of interdependent values.  We believe that our methods can be adapted to accommodate 

such relaxations when there are more than two buyers, but this avenue remains to be explored 

(Bajari, 2001, establishes uniqueness when there are more than two buyers under the assumption 

the inverse bid functions are everywhere differentiable). 

 22



 
 REFERENCES 
 
Bajari, P. (2001), “Comparing Competition and Collusion in Procurement Auctions: A 
Numerical Approach,” Economic Theory, 18: 187-205. 
 
Bikhchandani, S. and J.G  Riley (1991), "Equilibrium in Open Common Value Auctions," 

Journal of Economic Theory, 49. 
 
Bresky, M. (1999), “Equilibrium in Multi-Unit Auctions,” mimeo, CERGE. 
 
Dasgupta, P. and E.S. Maskin (1986), "Existence of Equilibrium in Discontinuous Games, I: 

Theory," Review of Economic Studies, 53: 1-26. 
 
Jackson, M. and J. Swinkels (2001), “Existence of Equilibrium in Single and Double Private 

Value Auctions,” mimeo. 
 
Lebrun, B. (1996), “Existence of an Equilibrium in First-Price Auctions,” Economic Theory, 

7:421-423. 
 
Lizzeri, A. and N. Persico (2000), “Uniqueness and Existence of Equilibrium in Auctions with a 

Reserve Price,” Games and Economic Behavior, 30:83-114. 
 
Maskin, E. (2003), “Auctions and Efficiency,” M. Dewatripont, L. Hansen, and S. Turnovsky 

(eds.), Advances in Economic Theory (invited lectures from the 8th World Congress of the 
Econometric Society), Cambridge University Press. 

 
Maskin, E.S. and J.G. Riley (1984), "Optimal Auctions with Risk Averse Buyers," 

Econometrica, 52: 1473-1518. 
 
Maskin, E.S. and J.G. Riley (2000a), “Asymmetric Auctions,” Review of Economic Studies, 67: 

413-438. 
 
Maskin, E.S. and J.G. Riley (2000b), “Equilibrium in Sealed High Bid Auctions,” Review of 
Economic Studies, 67: 439-454. 
 
Milgrom, P. (1981), "Rational Expectations, Information Acquisition and Competitive Bidding," 

Econometrica, 50: 1089-1122. 
 
Milgrom, P. and R.J. Weber (1982), "A Theory of Auctions and Competitive Bidding," 

Econometrica, 50: 1081-1122. 
 
Reny, P. (1999), “On the Existence of Pure and Mixed Strategy Nash Equilibrium in 

Discontinuous Games,” Econometrica, 67:1029-1056. 
 
Reny P. and S. Zamir (2002), “On the Existence of Pure Strategy Monotone Equilibria in 

Asymmetric First-Price Auctions,” mimeo. 

 23



 
Riley, J. (1980), "Strong Evolutionary Equilibrium and the War of Attrition," Journal of 

Theoretical Biology, 82: 383-400. 
 
Simon, L. and W. Zame (1990), “Discontinuous Games and Endogenous Sharing Rules,” 

Econometrica, 58: 861-872. 

 24



 

APPENDIX 

 

Lemma 5:  Strict monotonicity property of bid distributions. 

For any b  and any i,  b∗> ( )j
j i

p b
≠
∑  is strictly increasing at b. 

  

Proof:  Choose .  From Lemma 4, there must be at least one buyer  who bids in 0ε > k ≠ i

[ ],b bε−  with positive probability.  Hence ( ) ( )k kp b pε− < b  and so ( ) ( )j j
j ij i

p b pε
≠ ≠

− < b∑ ∑ . 

                                                                                                                          Q.E.D. 

 

Lemma 6:  If  ( )i bφ  is strictly increasing to the right (or left) at  b b ,  then    is a best 

response for buyer i with reservation price .  

ˆ b∗= ≥ b̂

ˆˆ ( )i is bφ=

 

Proof:  Since both cases are handled in the same way, we consider only the case in which ( )i bφ  

is strictly increasing to the right.  If  ( )i bφ  is also strictly increasing to the left, then 

, and so the Lemma follows.  Thus for some ,  suppose that  for all 

.  That is, for some b b .  Because  

ˆ( ) ( )i ib y bφ =

ˆ[ ,b b bδ∈ −

ˆ

ˆ] *

0δ >

*
is

*( )i b sφ = i

* ˆ ˆ], ( )ib y b =[ ,δ∈ − ( )i bφ  is strictly increasing 

to the right at b ,  there exists a decreasing sequence { converging to  b  such that 

sequence  { converges to  . 

ˆ

1(y b

1,

is∗

..., ,...}tb b ˆ

),..., ( ),...}t
i iy b

Since  is optimal for reservation price ,  we have tb ( )t
iy b
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        e  (A.1) ( , ( )) ( ) ( , ( )) ( ) ( , ( )), for all .t t t t t
i i j i i j i i

j i j i
b y b p b c b y b p b c b y b t∗ ∗ ∗

≠ ≠

= − ≥ −∑ ∑

From Lemma 5, it follows that ( ) log ( )j
j i

ip b G
≠

= b

* *
i

∑  is continuous.  Also   is continuous.  

Therefore we have, in the limit, 

( , )i ic b s

 

     * *ˆ ˆ( ) ( , ) ( ) ( , )j i i j i
j i j i

p b c b s p b c b s
≠ ≠

− ≥ −∑ ∑ .     (A.2) 

 

From (A.2) it follows that buyer i with reservation price   is at least as well off choosing  as 

. 

*
is b̂

*b

                                                                                                                             Q.E.D. 

 

Lemma 7:  If  ( )i bφ  is strictly increasing to the right (or to the left) at  b b , then *
ˆ b= >

 ( )j
j i

p b
≠
∑   is correspondingly right (or left) continuously differentiable at b .  Moreover, the 

right (left) derivative satisfies 

ˆ

 ˆ ˆ( ) ( , ( ))i
j

j i

c ˆ
ip b b

b
φ

≠

∂=
∂∑ b .       (A.3) 

 

Proof:  Since the two cases are handled in the same way, we consider only the case in which  

( )i bφ   is strictly increasing to the right.  We know that  ( )i bφ  is continuous.  Thus at b  there  ˆ
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exists a decreasing sequence  {  converging to  such that converges to 

  monotonically from above.  Because b is optimal for buyer i with reservation price 

 we have 

1,..., ,...}tb b b̂ ( )t
iy b

* ˆ( )i is φ=

(t
i is y b=

b

t

t

t

)

 ˆ ˆ( ) ( , ( )) ( ) ( , ( ))t t t
j i i j i i

j i j i
p b c b y b p b c b y b

≠ ≠

− ≤ −∑ ∑ . 

Rearranging, we obtain 

 
ˆ ˆ( ) ( ) ( , ( )) ( , ( ))

ˆ ˆ

t t t t
j j i i i i

t t
j i

p b p b c b y b c b y b
b b b b≠

− −≥
− −∑ .    (A.4)  

By Lemma 6,  b   is optimal for buyer i with reservation price  . Thus, ˆ ˆ( )i bφ

 ˆ ˆ ˆ( ) ( , ( )) ( ) ( , ( ))t t
j i i j i i

j i j i

ˆp b c b b p b c b bφ φ
≠ ≠

− ≥ −∑ ∑  for all t. 

 

Rearranging, we obtain 

 
ˆ ˆ ˆ( ) ( ) ( , ( )) ( , ( ))

ˆ ˆ

t t
j j i i i i

t t
j i

p b p b c b b c b b
b b b b

φ φ
≠

− −≤
− −∑

ˆ

b

.    (A.5) 

 

In the limit as  b ,  the right-hand sides of (A.4) and (A.5) equal ˆt → ( )( ˆ ˆ,i ic b b
b

φ∂
∂ ) , which is 

continuous in b .  Thus ˆ ( )j
j i

p b
≠
∑  is right  continuously differentiable at  b , and its right 

derivative satisfies (A.3). 

ˆ

                                                                                                                   Q.E.D. 
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Lemma 8: ( )i bφ   is right (left) continuously differentiable at all  b . *b>

Proof:  Suppose  1( ),..., ( )kb bφ φ  are strictly increasing to the right at   and that  b̂ 1( ),..., ( )k nb bφ φ+  

are constant to the right at b  .  By assumption, .  By Lemma 7,  ˆ i k≤ ( )j
j i

k

p b
≠
∑  is right 

differentiable at  b i .  Summing over i and dividing by k-1, we conclude that ˆ, 1,.., k=

 

 
1 11

1( ) ( )
1

k k k

j j
j ji

j i

p b p
k= ==

≠

=
−∑ ∑ ∑ b  

is also right differentiable at .  Since the difference between these last two expressions is just b̂

( ), 1,...,ip b i k= , this too is right differentiable at .  But b̂ ( ) ( ( ))i i ip b F bφ= .  Thus ( )i bφ  is right 

differentiable at b . ˆ

                                                                                                                             Q.E.D. 

 28



 
 

 
 
 
 
 
 
 
 
 
 
   

Indifference curve for 
reservation price  s′

Indifference curve for 
reservation price  s′′

Win probability 

′′Π  

′Π

 
 
   
 

        s s  ′′ ′>

b′′b′ bid 
  

Figure 1.1:  Single-crossing property 
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