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 Abstract 

 

We propose an evolutionary explanation for the pattern of intertemporal preference 

reversals often ascribed to “hyperbolic discounting.”  We take the view that preferences—

manifested, for example, in urges, cravings, and inclinations— are the outcome of 

evolutionary forces, and so will induce animals or humans to make survival-maximizing 

choices in “typical” decision problems.  We show that if the typical problem involves payoffs 

whose realization times are uncertain, then optimal preferences give rise to relatively patient 

behavior when the time horizon is long but induce a switch to impatience when the horizon 

grows short. 

 Such reversals do not entail dynamic inconsistency in typical decision problems; 

behavior there is optimal.  However, if a decision-maker is confronted with a choice for 

which the realization-time uncertainty falls outside the evolutionary norm, her preferences 

may well prompt her to behave inconsistently.  We argue that, if such a choice problem 

recurs, her evolutionarily endowed ability to learn will lead her to make self-commitments 

against these urges. 

 

JEL Classification: D11, D81, D91. 
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1. Introduction 

 Empirical studies in economics and behavioral ecology suggest that ceteris paribus 

animals and humans appear to place less weight on the future than on the present—i.e., they 

act as though they discount future payoffs.  Furthermore (and more interestingly) they do so 

with discount rates that increase as the time before those payoffs are realized grows shorter.1  

In other words, subjects act as though they become less patient when payoffs are more 

imminent. 

 An anecdotal (human) example is offered by O’Donoghue and Rabin (1999): when 

offered the choice in February between a painful seven-hour task (e.g., preparing a tax return) 

on April 1 and a painful eight-hour task on April 15, most of us, they suggest, will opt for the 

earlier date.  But as April 1 approaches, we are apt to change our minds, if we can, and 

postpone the pain to the 15th, even though it will then be greater.  Thus, we behave as though 

we discount the later pain more as time grows short.  Strotz (1956) discusses a similar 

phenomenon involving positive payoffs.  Early in the calendar year, he notes, many people 

attempt to lay money aside for Christmas.  However, as time goes by, they may find 

themselves spending the money on summer vacations or back-to-school clothes.  It is as 

though they have become more impatient than they were back in January.   

Both the O’Donoghue-Rabin and Strotz examples accord with “hyperbolic 

discounting,”2 which has attracted considerable interest among economists because it appears 

to shed light on important economic phenomena such as household saving behavior (see 

Laibson 1997, Bernheim, Skinner, and Weinberg 2001, and Harris and Laibson 2001). 

                                                 
1 The empirical literature on birds (particularly pigeons and starlings) is summarized in Mazur (1987) and Green 
and Myerson (1996); that on humans in Ainslie (1992). 
2 Strictly speaking, hyperbolic discounting requires that the discount rate should vary inversely with the time to 
payoffs.  But the term has come to be applied more generally to any manifestation of increasing impatience as 
time horizons shrink.  See Rubinstein (2001), who cautions that many observed behaviors are consistent with a 
variety of preferences in addition to those involving hyperbolic discounting. 
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One might ask whether there is some reason for such behavior.  The point of view that 

we take here is that, to a considerable extent, animal and human behavior is shaped by 

preferences that are the outcome of evolutionary forces.  That is, cravings, urges, or 

instincts—the operational manifestations of preferences—induce the animal or human to 

make the right choice in the “average” situation that it, he, or she is likely to face, where the 

“right” choice means the one that maximizes survival (and, therefore, the opportunity to 

reproduce).3  We show that if the “average” situation entails some uncertainty about when 

payoffs are realized, the corresponding preferences may well entail hyperbolic discounting, 

giving rise to preference reversals. 

To get a rough understanding of this result, imagine that a decision-maker (DM) is 

offered the choice between a small (positive) payoff relatively soon (prospect P) or a big 

payoff relatively late (prospect P′ ).  Furthermore, suppose that, for either P or P′ , there is a 

small but positive probability that at any time t before the anticipated payoff dates, the payoff 

will be realized early at t rather than when expected.  Assume that the DM initially opts for 

prospect P′ ; the reason for making this choice, of course, is P′ ’s bigger payoff, enhanced by 

the chance of early realization. 4  But, as time passes, if the payoff from P′  does not 

materialize, the likelihood of early realization declines.  Of course, for the same reason, the 

likelihood of early realization wanes for P too - - but this does not matter so much because 

P’s payoff is anticipated sooner anyway.  Hence, with time, the more immediate prospect P, 

becomes increasingly attractive relative to P′and eventually the DM may switch to P. 

Although, as this example illustrates, our model predicts preference reversals that 

accord with hyperbolic discounting, these reversals will be entirely dynamically consistent as 

                                                 
3 In this respect, our approach is similar to that of Samuelson and Swinkels (2002), who—although their 
approach is otherwise quite different from ours—share our view that an animal’s urges are evolutionarily 
determined substitutes for full information about the choices it faces. 
4 There is a connection here with the theory of sequential search among risky prospects (Weitzman 1979), which 
shows that ceteris paribus choosing prospects with higher dispersions before those with lower dispersions is the 
optimal search strategy. 



 3

long as the DM confronts decision problems (i.e., the DM will actually profit from reversing 

herself).  However, the DM’s urges may lead her astray - - resulting in dynamic inconsistency 

- - if she faces decisions for which the payoff-realization times depart from the norm.  Thus, 

evolution also enables her to learn how to overcome or neutralize those urges when an 

atypical situation recurs.  For example, in experimental settings, pigeons discover how to 

commit themselves not to switch from “patient” to “impatient” choices (Rachlin and Green 

1972; for more on this see section 5).  And people susceptible to the impulse to spend their 

holiday savings prematurely find that they can thwart that inclination by putting their money 

in illiquid Christmas accounts (Strotz 1956). 

 In section 2, we examine the standard rationale for discounting (viz., to take account 

of the risk that future payoffs may disappear or depreciate) and discuss why some previous 

explanations for hyperbolic discounting turn out not to be consistent with the O’Donoghue-

Rabin and Strotz phenomena.  In section 3, we introduce uncertainty about when payoffs are 

realized and show that this leads to a version of hyperbolic discounting that does explain 

these reversals (Propositions 1 and 1*).  In section 4, we show that our analysis extends to 

forms of uncertainty considerably more general than allowed for in section 3 (Proposition 2).  

Finally, in section 5, we turn to atypical decision problems and dynamic inconsistency. 

2. Discounting and Hazard Rates 

 Before turning to hyperbolic discounting, we must first ask the question, 

“Why should a DM discount at all?”  A conventional answer, provided by both the 

economics and zoology literatures, is that, in a typical situation that an animal or human may 

face, future payoffs run some risk of disappearing or depreciating (Yaari 1965).  Suppose, for 

example, that a blackbird tends to hang around a particular raspberry bush waiting for the 

fruit to ripen.5   Before this happens, however, a flock of crows (which don’t care about 

                                                 
5 We are indebted to the ornithologist Nick Davies for our bird/fruit examples. 
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ripeness) may descend on the fruit, devouring it all.  Hence, the blackbird should discount the 

payoff of getting the fruit, where the discount rate is the hazard rate of the “crow arrival” 

process (the hazard rate at time t is 
t∆

1  times the probability that the crows will arrive 

between times t and t + ∆ t, conditional on their not having arrived already).  In particular, if 

this process is Poisson—i.e., the hazard rate is independent of t—the implied discount rate is 

constant.  Thus, if a prospect (e.g., eating raspberries) has a payoff V (the calories in the 

berries) at time T (the time at which the berries ripen) and the hazard rate is a constant r, the 

prospect should be evaluated as though the payoff is rTe V− . 6 

 This model suggests an immediate potential explanation for hyperbolic discounting.  

Suppose that the hazard rate depends on time, i.e., we can express it as ( )r t .  Assume 

furthermore that r is decreasing in t.  Then, more distant prospects, as will be discounted at a 

lower rate than more proximate prospects, as hyperbolic discounting demands.  One problem 

with this simple story, however, is that in most settings there is no particular reason why we 

should suppose that the hazard rate is declining (there is another, more serious difficulty with 

the story, which we will come to below). 

 An illuminating paper, Sozou (1998), offers an alternative theory.  Sozou supposes 

that the hazard rate is constant but unknown to the decision-maker (where the uncertainty 

corresponds to a gamma distribution).  He considers two choice problems: one in which the 

DM chooses between a payoff ( )0V >  at time T and a larger payoff V ′  at time ( )T T T′ ′< ; 

                                                 
6 Another explanation for discounting—treated in an earlier version of this paper (Dasgupta and Maskin 
2002)—turns on the idea that waiting for a payoff to materialize is often costly, either because the blackbird 
may have to use up energy while waiting (a physiological cost), or because by hanging around the raspberry 
bush it may lose other opportunities for food (an opportunity cost).  This alternative explanation for discounting 
has the advantage of immediately explaining the empirical finding (see Green and Myerson 1996) that larger 
payoffs are discounted less than smaller ones.  Specifically, suppose that a bird is offered the choice between a 
prospect with reward Vα  at time T  and one with reward Vα ′  at time T ′ , where α  is a scalar and 

0V V′ > >  and T T′ > .  Experiments suggest that as α  rises, the bird is more likely to favor the latter 
prospect.  This effect is predicted by the waiting-cost model of discounting simply because, for larger α , 
waiting costs matter less relative to rewards. 
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the other in which she chooses between the same payoffs and V V ′ , but at times 

tTtT +′+  and , respectively.  Sozou shows that if the DM has the same uncertainty about 

hazard rates in the two problems, she will exhibit greater patience in the latter problem, i.e., 

she is more apt to choose the payoff at T′ + t  in that problem (this accords with hyperbolic 

discounting, which predicts that a decision-maker will use a lower discount rate for a choice 

problem involving a longer time horizon). 7  To understand this result, notice that the choice 

between ( ) ( ),  and ,V T V T′ ′  matters only if neither payoff disappears before time T.  Hence, 

given the uncertainty about the hazard rate, the DM should evaluate the payoffs using the 

expected discount rate conditional on reaching T without the payoffs disappearing.  Similarly, 

she should use the expected discount rate conditional on reaching T + t to make the choice 

between ( ) ( ),  and ,V T t V T t′ ′+ + .  But the latter discount rate is lower than the former (the 

longer the payoffs do not disappear, the lower is the conditional hazard rate), and so the result 

follows. 

However, this model cannot explain the sort of preference reversals in the 

O’Donoghue-Rabin tax story or the Strotz Christmas story.  Indeed, it predicts just the 

opposite.  Imagine that a DM decides early on that she will do her taxes on April 1.  As that 

date approaches and the need to perform the onerous task has failed to disappear (e.g., 

Congress has declined to repeal the tax laws, or the DM’s CPA brother-in-law is not available 

to do the taxes for her), the conditional hazard rate is now lower than it was ex ante, and so 

the DM should discount the future less.  That is, she should be even more resolved than 

before to refrain from postponing the pain to the 15th.8   

                                                 
7 The same result has also been obtained by Weitzman (2001), but for the purpose of arguing that discount rates 
used in public investment projects ought to be declining functions of time. 
8 There is at least one existing explanation for hyperbolic discounting, based on the foraging model of Holling 
(1959), which can account for preference reversal in the tax example.  In a setting where animals make repeated 
choices over time, this theory postulates that animals act to maximize payoff per unit of time (see Green and 
Myerson, 1996, and Kacelnik, 1997).  It is not clear, however, how to reconcile this postulate with the more 
conventional maximand of total payoff.  
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The story we started with, in which it is simply assumed that the hazard rate declines 

with time, also fails to work.  It implies that preferences between doing taxes on April 1 and 

April 15 should not change at all from February to the end of March (the hazard rate, 

although varying with time, is the same for both options in that time interval). 

The failures of this simple story and the Sozou model to explain preference reversal in 

the tax and Christmas savings scenarios illustrate that there are two different meanings in the 

literature for the term “hyperbolic discounting.”  One meaning (used, for example, by Sozou 

1998) pertains to comparisons across decision problems, e.g., to the comparison between 

( ),V T  and ( ),V T′ ′  on the one hand and ( ),V T t+  and ( ),V T t′ ′ +  on the other.  The other—

invoked by those interested in preference reversals (e.g., O’Donoghue and Rabin 1999, Strotz 

1956, Rachlin and Green 1972)—applies to a comparison within the same decision problem, 

but at different times.  Our focus is on the latter concept. 

 

3. Hyperbolic Discounting   

 Let us turn to our own explanation of hyperbolic discounting.  Our model, like 

Sozou’s, emphasizes uncertainty, but now the uncertainty pertains to when payoffs are 

realized (rather than to whether they will be realized at all).  Recall the blackbird waiting for 

the raspberries to ripen.  The bird may be pretty sure that the berries will be ripe by tomorrow 

morning, but let us imagine, as realism dictates, that there is some chance that they will ripen 

earlier (or later).  As before, let the prospect of eating the raspberries be P = (V, T), where V 

(> 0) is the payoff from consuming the berries and T is the time when the payoff is most 

likely to be realized (i.e., when the berries will be ripe).  To capture the uncertainty about the 

realization time, suppose that at any time t < T there is a probability tq∆  that V will be 

realized in the interval between t and tt ∆+ , i.e., q is the probability density of early 
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realization.9  Thus the total probability that V will be realized before T is qT and the 

probability that it will be realized at T is 1 – qT.10  If the hazard rate (the crow-arrival process) 

is r, the blackbird will derive an expected payoff of  

(1)   ( )( )0
1

T rt rTqe dt qT e V− −+ −∫  

from the prospect. 

 To set the stage for analyzing hyperbolic discounting, let us suppose that, besides the 

raspberries, there is another prospect ( ),P V T′ ′ ′=  corresponding to a blackberry bush.  The 

blackberries are far enough away from the raspberries so that the bird can monitor only one 

bush at a time (if it fails to monitor a bush, the fruit will be all gone before it gets there).11  

Blackberries have a higher payoff than raspberries, i.e., V V′ >  (they have more calories per 

unit volume). But are likely to ripen later ( )T T′ > .  As with raspberries, q is the probability 

density of early ripening. 

 We can now establish our main result: 

Proposition 1: Assume that there exists t* (< T) at which the DM is indifferent between P = 

(V,T ) and ( ), , with 0 ,P V T V V T T′ ′ ′ ′ ′= < < < , and a probability density q of early 

realization (i.e., realization before T or T ′ ).  Then, the DM prefers P′  to P at all t < t*, but 

prefers P to P′  at all t such that t* < t < T. 

 

                                                 
9 We should also allow for a probability of realization after T.  But since this would not affect our analysis in 
any significant way, we defer this complication to section 4, which also relaxes some of our other assumptions 
about the probability of early realization. 
10 As we have formulated it, there is a probability atom at t = T.  This gets at the idea that T is the “likely” 
realization time.  It will be clear from the argument, however, that our results do not literally require atoms; the 
conclusions continue to hold for continuous densities that are sufficiently “peaked” at T, an assumption that 
seems to apply quite well to the sorts of problems that blackbirds and certain other kinds of birds typically face. 
11 Furthermore, if it monitors, say, the raspberry bush, it can eat its fill of raspberries, once they ripen.  And so 
there is no point in its moving on to the blackberry bush, afterward (and visa versa). 
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Note: Proposition 1 implies that the DM discounts hyperbolically.  When there is sufficient 

time remaining (t < t*), she is willing to wait for the later reward, but when the horizon has 

grown short (t > t*) she becomes impatient. 

Proof: From (1), the expected net benefit from prospect P, conditional on time t ( < T ) 

having elapsed (and on neither prospect having yet been realized), is 

(2)   ( ) ( )( )( )ˆ ˆ1
T r rT

t
e q t d V q t T t e Vτ τ− −+ − −∫ , 

where 

(3)   ( )ˆ
1

qq t
qt

=
−

. 

Similarly, the conditional expected net benefit from P′  is 

(4)  ( ) ( )( )( )ˆ ˆ1 .
T r rT

t
e q t d V q t T t e Vτ τ
′ ′− −′ ′ ′+ − −∫  

The time derivatives of (2) and (4) are respectively 

(5)  ( ) ( ) ( ) , )(
ˆˆˆ t

dt
qdVetTdeVetqVtqe rTT

t

rrTrt ⎟
⎠
⎞⎜

⎝
⎛ −−++− −−−− ∫ ττ  

and 

(6)  ( )( ) ˆˆ ˆ( ) ( ) ( ) .
Trt rT r rT

t

dqe q t V q t e V e d T t e V t
dt

τ τ
′′ ′− − − −′ ′ ′ ′− + + − −∫  

Because )(ˆ)(ˆ)(
ˆ

tqtqt
dt
qd

= , we can rewrite (5) and (6) as 

( )( )    )(ˆ1)(ˆ)(ˆ ⎥⎦
⎤

⎢⎣
⎡ −−−+ −−−∫ VeVetTtqVtqdetq rtrTT

t

r ττ    (7) 

and 

( )( ) ⎥⎦
⎤

⎢⎣
⎡ ′−′−′−+′ −′−′ −∫ VeVetTtqVtqdetq rtTrT

t

r )(ˆ1)(ˆ)(ˆ ττ .  (8) 

From hypothesis, the sum of first two terms in the square-bracketed expression of (7) equals 

that of (8) when t = t*.  Hence, since V′ > V, we conclude that (7) exceeds (8) at t = t*.  

Furthermore, the same argument implies that (7) exceeds (8) at any other point where the 
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payoffs from P and P′are equal, and so (2) can cross (4) just once.  Hence, because the DM 

is indifferent between P and P′at t = t* she prefers P′  to P (i.e., (4) exceeds (2)) at t < t*, and 

prefers P to P′  ((2) exceeds (4)) at t > t*. 

Q.E.D. 

 

The idea in the proof of Proposition 1 is readily explained informally.  The passage of 

time has two marginal effects on the expected payoff from either prospect P or P′ : (i) it 

brings nearer the time ( ) or T T ′ at which the payoff is likely to be realized (an effect that is 

proportional to the current expected payoff from the prospect); and (ii) it reduces the 

probability of early realization (an effect that for P is proportional to V and for  to P V′ ′ ).  

Effect (i) is the same for prospects P and P′  at a time t* for which their expected payoffs are 

equal, but effect (ii), which is negative, is bigger for P′  than for P (because V V′ > ).  Hence, 

a single-crossing property holds: the expected payoff for P′  declines faster with time than 

that for P whenever the prospects’ expected payoffs are equal. 

There are two ways of interpreting the preference reversal exhibited in Proposition 1.  

The first is to think of the DM as making a once-and-for-all choice of P′  over P at time 0 and 

then, unexpectedly, having the opportunity to choose again at some time t, in which case the 

DM will switch to P if t > t*.  The other is to imagine that she can switch between prospects 

at any time, in which case the DM will select P′  at time 0 and stick with it until time t = t*, at 

which point she will switch over to P. 

Proposition 1 pertains to positive payoffs, but payoffs in the O’Donoghue-Rabin tax 

story we began with are negative.  Nevertheless, we can straightforwardly reformulate the 

proposition to handle negativity, thereby accounting, in particular, for the preference reversal 

in the tax story: 
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Proposition 1*: Maintain the hypotheses of Proposition 1 except now assume that 0V V′ < < .  

Then, the DM prefers  to P P′  for t < t* but to P P′  for t > t*. 

Proof: Almost identical to that of Proposition 1. 

 

4. More General Uncertainty  

In Propositions 1 and 1* it was assumed that (i) all early realization times are equally 

probable, (ii) the probability density of early realization is the same for both prospects, and 

(iii) there is no probability of late arrival. Because there is no particular reason why the 

average problem that an animal or human might face should satisfy these assumptions, we 

will relax them.  We first note, however, that we cannot get by without any assumptions on 

the distribution of arrival times.  To see this, consider prospects P and P′  with positive 

payoffs, and imagine that, in some given time interval, the more distant prospect P′  has a 

zero probability of early realization, but that the more immediate prospect P has a positive 

probability. Then, should that interval elapse with no early realization, the updated chance of 

early realization for P′  will not have changed (because there was no chance of realization in 

that interval anyway), but it will have grown dimmer for P. Hence, P will not become 

relatively more attractive, contrary to the conclusion of Proposition 1. 

Nevertheless, hyperbolic discounting holds for a large and, we would argue, fairly 

natural class of probability distributions.  Consider prospects ( ) ( ),  and , , P V T P V T′ ′ ′= =  

with  0  V V ′< < and T T ′< .  For t ≠ T, let q (t) be the probability density for realization of P 

at time t.  Similarly, for ( ) let t T q t′ ′≠  be the probability density for realization of P′  at t.  

For t < τ , define  
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( ) 0

( ) , <T
1 ( )

ˆ ,
( ) , <

( )

t

t

q

q x dx
q t

q T
q x dx

τ τ

τ
τ τ∞

⎧
⎪
−⎪⎪= ⎨

⎪
⎪
⎪⎩

∫

∫

 

      
Thus, ( )tq ,ˆ τ  is the density that P is realized at τ , conditional on its not being realized before 

t.  Similarly, for t τ< , 

( ) 0

( ) ,
1 ( )

ˆ ,
( ) ,

( )

t

t

q T
q x dx

q t
q T

q x dx

τ τ

τ
τ τ∞

′⎧ ′<⎪
′−⎪⎪′ = ⎨ ′⎪ ′ <

⎪ ′⎪⎩

∫

∫

 

is the corresponding density for P′ .  Assume 

(9)    ( ) ( ) Ttttqttq <′≥    allfor    ,ˆ,ˆ  

and 

(10)    ( ) ( )ˆ ˆ, ,    for all   V q t t V q t t t T′ ′< < . 

 If the density of a prospect’s early realization drops off monotonically as we move 

away from the anticipated realization time (T or T ′ ), then (9) seems reasonable since, 

because t < T < T ′ , the density should have dropped off less at t for P than for P′ .   

Assumption (10) serves to rule out the sort of example illustrated in the first paragraph of this 

section.  Because V V ′< , it accommodates the possibility that the density of early arrival for 

P′  may be strictly less than that for P, but prevents the former from being too much less than 

the latter.  For a simple example (beyond that of section 3) satisfying these hypotheses, 

suppose that the density of early realization increases linearly with time at a rate inversely 

proportional to the likely realization time, i.e., ( ) ( )for and  for t tq t t T q t t T
T T
α α′ ′= < = <

′
.  

Then, for α sufficiently small, (9) and (10) will hold. 
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Proposition 2: Suppose that (9) and (10) hold. Assume that there exists t*  < T  at which the 

DM is indifferent between P and P′ .  Then the DM prefers P′  to P at all t < t* and prefers P 

to P′  at all t ∈ (t*, T ).  Hence, hyperbolic discounting obtains.12 

Proof: The net payoffs from P and P′  conditional on reaching time t (< T ) are, respectively, 

(11)   ( ) ( )( )ˆ ˆ, 1 ,r rT

t t
q t e d V q t d e Vττ τ τ τ

∞ ∞− −+ −∫ ∫  

and 

(12)   ( ) ( )( )ˆ ˆ, 1 ,r rT

t t
q t e d V q t d e Vττ τ τ τ

∞ ∞ ′− −′ ′ ′ ′+ −∫ ∫ . 

Hence, their time derivatives are respectively 

(13)  ( ) ( ) ( )ˆˆ ˆ, , ,rt r rT

t

qq t t e V t e d V q t t e V
t

ττ τ
∞− − −∂

− + +
∂∫  

   ( )ˆ
, rT

t

q t d e V
t
τ τ

∞ −∂
−

∂∫  

and 

(14)  ( ) ( ) ( )ˆˆ ˆ, , ,rt r rT

t

qq t t e V t e d V q t t e V
t

ττ τ
∞ ′− − −′∂′ ′ ′ ′ ′− + +
∂∫  

   ( )ˆ
, rT

t

q t d e V
t
τ τ

∞ ′−′∂ ′−
∂∫ . 

Because 

( ) ( ) ( ) ( ) ( ) ( ) , ,ˆ,ˆ,
ˆ

   and   ,ˆ,ˆ,
ˆ

ttqtqt
t
qttqtqt

t
q ′′=

∂
′∂

=
∂
∂ ττττ  

we can rewrite (13) and (14), respectively, as 

(15)  ( ) ( ) ( )( ) ( )ˆ ˆ ˆ ˆ, , 1 , ,r rT rt

t t
q t t q t e d V q t d e V q t t e Vττ τ τ τ

∞ ∞− − −⎡ ⎤+ − −⎢ ⎥⎣ ⎦∫ ∫  

and 

                                                 
12 Although Proposition 2 allows for payoff realization times after T and T ′ , notice that the conclusion about 
hyperbolic discounting applies only to times before T. 
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(16)  ( ) ( ) ( )( ) ( )ˆ ˆ ˆ ˆ, , 1 , ,r rT rt

t t
q t t q t e d V q t d e V q t t e Vττ τ τ τ

∞ ∞ ′− − −⎡ ⎤′ ′ ′ ′ ′ ′ ′+ − −⎢ ⎥⎣ ⎦∫ ∫ . 

The square-bracketed expression in (15) is just (11), while that in (16) is (12).  Hence, from 

(9) and (10), (15) is greater than (16) whenever (11) equals (12), and in particular when t = 

t*.  We conclude that (11) exceeds (12) for ( )*,t t T∈  and (12) exceeds (11) for t < t*. 

 Q.E.D. 

5. Dynamic Inconsistency and Self-commitment 

 We have shown that preference reversals conforming with hyperbolic discounting 

follow from a model with uncertainty about payoff realization times.  That is, the choices that 

a DM makes at t < t* reflect a discount rate lower than those at times t > t*.  As the model 

stands so far, however, there is no dynamic inconsistency in these choices, despite the 

reversals.  In particular, notice that the DM at time t = 0 would not choose to “tie her hands” 

in order to prevent herself from switching at t > t*.  Thus, the model does not yet explain the 

self-commitment strategies observed in pigeon experiments or in people trying to save for 

Christmas. 

 To get at dynamic inconsistency and self-commitment, let us further develop our 

evolutionary model as follows: Suppose that, over a long period of time (“evolutionary” 

time), a species faces prospects of the sort we have been discussing, i.e., those of the form (V, 

T, q ) (where the parameters V, T, and the function q may change from prospect to prospect).  

Assume that whenever an individual DM of this species faces a particular choice between 

prospects P* = (V*, T*, q*) and P** = (V**, T**, q**) with  

(17)   0 < V* < V** and T*<T**, 

she can observe (V*, T*) and (V**, T**) but not the functions q* and q** that determine 

uncertainty.13  Thus, the best that she can do is to choose between P* and P** according to 

                                                 
13  This assumption gets at the quite natural hypothesis that it will ordinarily be easier for a DM to assess the 
payoff V and the likely realization time T of a prospect than the entire probability distribution of realization 
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which one maximizes her expected payoff, where the expectations are taken with respect to 

all possible values of q* and q** (and the weight given to a particular value of q* or q** is 

determined by her species’s evolutionary experience).  And so evolution should endow her 

with correspondingly appropriate urges and inclinations.  As we have seen in section 4, these 

instincts, provided that (9) and (10) hold, will induce her to behave as though she discounts 

hyperbolically (in that section, the argument proceeded as though q* and q** were drawn 

from point distributions, but it is not hard to see that (9) and 10) and the proof of Proposition 

2 can readily be generalized to handle diffuse distributions).  Let us suppose in particular, that 

they cause her to switch from P** to P* after some time has elapsed. 

 Assume now that for some particular choice, q* and q** are substantially different 

from the average values.  To be concrete, let us suppose that  

(18)   * ** 0q q= ≡  

(as is the case, for example, in the pigeon experiments we will discuss below).  Notice that if 

the DM knew that (18) held, then it would not be optimal for her to reverse her preferences.  

The optimum instead would involve her choosing one of the prospects (say, P**) and 

sticking with it; 14 preference reversal here would be dynamically inconsistent.  Yet, because 

she does not observe q* and q**, she will, in fact, exhibit preference reversal in a once-off 

choice between P* and P**, despite the dynamic inconsistency of this behavior.15 

 Still, in addition to urges, evolution equips many species with the capacity to learn 

from recurrent events so that animals can adjust their behavior accordingly.  Following this 

idea, let us consider a DM who confronts the same choice between P* and P** (with (17) and 

                                                                                                                                                        
times.  
14 If she knew that (18) held, the DM would choose P∗∗ over P∗ provided that rT rTV e V e

∗∗ ∗∗∗ − ∗ −> .  But this 

inequality implies that ( ) ( )*r T t r T tV e V e
∗∗ ∗∗− − − −∗∗ >  for all t, and so she would continue to choose P∗∗ at any  

 t > 0. 
15 This underscores the importance of the assumption that the uncertainty cannot be directly observed.  If it were 
observable, then evolution ought to endow the DM with the ability to make the right choice, which would rule 
out dynamic inconsistency. 
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(18) holding) many times, and suppose that choosing P** (and sticking with it) is the optimal 

choice.  The simple learning mechanism that we have in mind is one in which, for each 

recurrence, the DM chooses a behavior probabilistically, where behaviors that have been 

successful in the past (i.e., have generated higher payoffs) have higher probabilities of being 

chosen, provided that she does not have a strong urge to behave in contradictory fashion. 

 Let us examine how this sort of learning grafted onto the evolutionary model of 

sections 3 and 4 applies to the large body of experimental work pioneered by Rachlin and 

Green (1972) and Ainslie (1974).  In a stylized rendition of those experiments, a pigeon got 

to make a choice (say, by pecking either of two keys) at time 1t  between prospects P* = 

(V*, T*, q*) and P** = (V**, T**, q**) satisfying (17) and (18) (the payoffs V* and V** 

consisted of food).  It then had the opportunity to change its decision and switch to the other 

prospect at a later time ( )2t T ∗< .  There was also a third key that, if pecked at time 1t , 

disabled the opportunity to switch prospects at time 2t .  The pigeon repeated the experiment 

many times. 

 Not surprisingly, there was no agreement on the “right” 1t - choice: some pigeons 

chose P* and others chose P**.  However, roughly speaking, the general findings were: (i) 

the typical pigeon quickly settled down and consistently made the same 1t  choice in most 

rounds; (ii) among those pigeons usually choosing P* at 1t , relatively few switched to P** at 

2t , whereas a good many that chose P** switched to P* at 2t ; (iii) relatively few pigeons 

pecked the disabling key often in early rounds; (iv) among those that eventually did peck the 

disabling key regularly in later rounds, most were those that had often switched from P** to 

P* at 2t  in early rounds, (v) among those that often switched from P** to P* at 2t  in early 

rounds, a large fraction eventually pecked the disabling key and chose P** in later rounds. 
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 Findings (i)-(v) accord quite well with our evolutionary/learning model.  Finding (i) 

indicates only that subjects seemed to have stable preferences, which, in particular, would be 

true if they were maximizing expected discounted calories (as the theoretical model 

presumes).  Turning to (ii), we note that a switch from P** to P* (which corresponds to 

hyperbolic discounting) is consistent with the theoretical model, whereas a switch from P* to 

P** is not.  Thus (ii) is predicted by theory. 

 The finding that relatively few birds invoked the disabling key early on (iii) also is to 

be expected theoretically.  As we have seen, switching may well be optimal for “typical” 

uncertainty but not when (18) holds.  Nevertheless, it would take repeated experience for a 

bird to discover that it is not facing such uncertainty, and thus the bird should not, according 

to the model, regularly disable the switching option until it has had such experience; that is 

just what appears to have happened. 

 As for (iv) and (v), notice that it is precisely the birds that initially switch from P** to 

P* (in response to their urge for increasing impatience) that theoretically should ultimately 

disable the switching option (so as to thwart this urge to switch to P*).16  Hence, once again, 

theory is in harmony with experiment. 

 We conclude that a model in which (a) preferences evolve to handle “typical” 

uncertainty and (b) a bird can learn to modify its behavior when facing a recurrent atypical 

problem seems to do quite a good job of explaining observed patterns of preference reversal 

and self-commitment in pigeons. 

Of course, pigeons are only one type of bird, and even if one adds starlings (for which 

there is also a substantial body of experimental data) and humans, there are still only a few 

                                                 
16 Another conceivable evolutionary possibility would presumably have been the creation of a mechanism to 
“turn off” the urge toward greater impatience after the bird acquired evidence that such impatience led to 
dynamic inconsistency.  Why we don’t seem to observe such mechanisms in reality is something of a puzzle.  
Perhaps turning off an urge, once it has arisen in a particular setting, is too difficult to arrange physiologically.  
Alternatively, the ability to learn to commit oneself not to succumb to impatient urges might be a good enough 
substitute in practice for a mechanism that makes such urges conditional on what the bird has learned 
(presumably a mechanism that is so highly contingent would be quite costly physiologically). 
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kinds of animals whose tendencies toward dynamic inconsistency we know very much about.  

Indeed, it is certainly possible that there are species that do not exhibit appreciable preference 

reversal at all.  At least on a superficial level, this would be entirely consistent with our 

model: although the hypotheses of Proposition 2 are fairly weak, they need not always hold, 

and, therefore, could be violated for the typical decision problems faced by some species.  

But, for a proper test of the model, one would want to dig deeper and examine those decision 

problems explicitly.  We hope that future research will do just that. 
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