
Contract No. DA-36-03MjRD-161*6

FINAL EEPCBT

CONTRACT NO. DA-36-03M)ED-l61t-6

PART II (COMPUTER USE)

for the period from

1 July 195!^ to 31 December I956

THE INSTITUTE FOR ADVANCED STUDY
ELECTRONIC COMPUTER PROJECT

PRINCETON, NEW JERSEY

InsiMe for /5d"^— '* c*.,^y

Prince:..;, .-^ j. 0354Q
, J

Contract No. DA-36-03^-aRD-l61^6
Project No. TB3-0538

f

FINAL EEPQRT

on

Contract No. DA-36-03^-OED-l6U6

PART II (COMPUTER USE)

by

The Staff
Electronic Computer Project

IAS EC? list of reports
,

19^6-57- no. 18.

THE INSTITUTE FOE ADVANCED STUDY
ELECTRONIC COMPUTER PROJECT

PRINCETON, NEW JERSEY

May 1957

T A B_LJE £JL_ C N T E N T S

PREFACE - - ACKNOWLEDGEMENTS

I. GENERAL FUBPOSE ROUTINES
10. General remarka

11. FLINT = FLoating point IKTerpretive routine

12. Another floating point interpretive routine

13

•

Service routines for decimal in- and output

lU. ASBY = an asaembly code

II. SOLUTION OF PROBLEMS
20. General Remarka

21. Agtrophysica

21.10 Numerical experiiaentation on stellar evolution

21.20 Adiabatic pulsation of an origizmllj isothermal atmosphere

21.30 Magnetohydrodrmamic theory of solar spicules

21.^0 An improved solar aodel with the carbon cycle included

21.50 Pulsational stability of stars vith convective envelopes

22. Atomic and nuclear p'-;yaics

22.10 The ground state of the helium atom

22.20 Relation between the vibration frequencies of a crystal
and the scattering of slow neutrons

22.30 Nximerical calculations of the angular distributions for
the deuteron-proton ana similar reactions

22.i}-0 Distribution of eigenvalues of bordered matrices
with infinite dimensions

22.50 Molecular integrals

22.60 Double and triple integrals arising from meson theory

23 Problems in various fields

23»10 Traffic simjilation with a digital computer

23020 A mxiag problem

23-30 Numerical integration of the Navier -Stokes equations
for compressible fluids

23 '^0 Aatomatic network analysis

23050 A table for cumulative binomial probabilities

23 •60 Experiments in the use of FLINT

23-70 Historical ephemeris for the years -60O to

51707

PREFACE

The following report has been prepared in accordance with the terms

of Contract No. DA -36 -03^ -OED- 1614-6 and constitutes the Final Eeportccall^d

for under the terms of that contract.

Said Contract between the Institute for Advanced Study and the Depart-

ment of the Army was entered on June 2, 195^ » ^or "further development of

principals and methods for operation and maintenance of very high speed

digital electric computer devices", i.e. for continuation of our work under

Contract No. DA-36-031+-OED-1330, which terminated on June 30, 1951+, and for

which a final report was submitted, dated December 195^.

Contract No. DA-36-03i|-CiRD-l61+6, together with its supplemental agree-

ments No. 1 and No. 2, was in effect from July 1, 195^ through October 31,

1956 and was the only contract supporting maintenance and operation of our

Computer during that period, except for the last 7 months during which a

small part of the operation hag been paid for under Contract Nonr 1358- (O**-).

This new contract between the Institute for Advanced Study and the Office

of Naval Research has taken over the full burden of machine maintenance and

operation on January 1, 1957«

This Final Eeport is divided into two parts:

PART I covers the engineering work carried out from July 1, 195U-

through December 31, 1956 under the terms of Contract No DA-36-03'i--C!RD-l6l4-6.

PART II lists a number of problems for which, during the same 30

months, numerical results have been obtained with the help of our Computer.

This work was supported by four contracts;

(1) Contract DA-36-03'+-aRD-l6U-6 and Nonr 1358-(Ol4-) for machine

operation.

(2) Contract N7-onr-388 for the development of methods for high-speed

automatic computing (from July 1, I95J+ through December 31, 195^.)

(3) Contract Nonr 1358- (03) for the development of methods for high-

speed automatic computing (since January 1, 1955).

(U) Contract Nonr 1358-(02) for all mathematical and coding work

connected with meteorological research.

During the whole period our Computer was used for scientific computa-

tions exclusively and no charge was made to any other organization or contract

for coding or machine operation

.

Hans J. Maehly
Acting Project Director

ACKNOWLEDGEMEMTS

The late Prof. J. von Neumann, originator and director of our

project, left Princeton soon after the beginning of the period cover-

ed "by this report. Dr. H. H. Goldatine, who has been Acting Director

until 30 June 1956, has contributed to moat of the problems described

hereinafter. The names of the individuals working on the various pro-

blems are given under the respective headings.

10.0

I. GENEBAL PURPOSE ROUTINES

10. General Bemarks

It was decided early in 1956 that no new machine should be built at

the Institute for Advanced Study; that aost of the engineering staff would,

therefore, leave to pursue development work at other places; and that the

Electronic Computer should be transfonssed from an experimental project into

a tool for the solution of the many computational problems arising in the

scientific community of Princeton. This transformation will be no minor

task, as no attempt has been made, during the construction and completion

of our equipment, to provide for easy communication between the computing

machine and the coder or mathematician; and it is made even more difficult

by the requirement that, lacking funds for a staff of professional coders,

coding procedures should be simplified so that most problems can be coded

by their originators.

After 1 July 1956, the development of a consistent system of general

purpose routines has, therefore, been given priority over all new work, which

simply means that no major help could be rendered to anybody presenting

problems after this date. We felt obliged, however, to finish those problems

whose coding was already under way. This, together with the engineering

changes and difficulties described in voltune I of this report, has delayed

the development of our general purpose routines much more than originally

anticipated

»

Fortunately, the floating-point interpretive routine (FLINT) went al-

ready into operation late in 1955 and, despite its admitted drawbacks, has

largely filled the gap between the restriction of our coding services and

the completion of other service routines. Besides its operational applica-

10.1

tions, the modified interpreter (chapter 11) has yielded valuable sugges-

tions for an improved version which is still being planned. At this point,

however, emphasis is being put on the construction of subroutines, up to
*)

a symbolic assembler , to facilitate coding in direct, fixed-point machine

language (chapter 13)

•

Our staff has been too small to engage in any ambitious projects involv-

ing new concepts. What is now most needed, are standard utility routines,

which, unfortunately, we cannot copy from any other place since no machine

resembles ours closely enough. A description of our new service routines

is included in this report as some of the details may be new, or of interest

where the construction of similar codes or machines is being contemplated.

*) To be described in Final Report for Contract Nonr-1358-(0^)

.

11.0

11. FLINT = FLOATING TOim INTERPRETIVE SUBBOUTINE

Originator and Coder: Hans J. Maehly

11.0 Purpose and Applicationa

During the construction of the IAS Computer, emphasis was on speed

and flexibility rather than on ease of coding. It was thus possible to

carry out problems which had been too long or too unusual in their kind

for earlier computers. It must be admitted, on the other hand, that

routine problems for which many other computers would have been quite

adequate took an undue amount of coding time, while the saving in runn-

ing time (e.g. 2 rather than 10 minutes) was insignificant. Such small

problems did arise in the Princeton scientific community and it would

have been impractical not to solve them here as long as computer time

was available

.

An auxiliary routine has therefore been written which, as far as

its user is concerned, transforms our machine into a slower, less sophis-

ticated instrument for which coding is much simpler. Meanwhile, experience

has sho\m that the effort to write this routine (approximately one half

man-year) was a well worth-while investment. FLINT has been used not only

by an increasing number of occasional users to code their own problems

but also by the permanent staff of our organization for several auxiliary

investigations and even for parts of large problems.

11.1 Basic Structure

The basic features of FLINT are indicated by its name: floating-point

interpretive subroutine.

Each floating-point number is stored in one word = ko binary bits;

the first 31 bits are reserved for the "mantissa" r and the last 9 bits

for the "exponent"© . Their respective ranges are:

|<lr| < 1

-256 < ^ < 256
'

*' Actually 256+9 is stored in the last 9 bits in order to prevent carry

into the mantissa part.

11.1

In all operations (such as +, -, x, -^) this word is treated as a number x

X = r.2f
,

hence 2"^^^ < |xl < 2"^^^^

or appr. lO"'^''' < |x
|
< 5.I0'''

This range is wide enough to avoid scaling problems for all but the

most extreme cases (such as combinatorial problems with more than 58.' or

some astrophysical computations). The remaining 31 binary digits for the

mantissa still yield a relative accuracy of 9 decimal digits.

An interpretive routine is, by definition, a code that "translates"

orders given in a new "language" into ordinary "machine language". Thus,

every FLINT order is picked up by FLINT as soon as the previous order

has been executed, is then interpreted and causes a series of machine

operations which provide the changes required by the given FLINT order.

For example: a FLINT multiplication order will cause FLINT to multiply

the mantissas and to add the exponents of the two respective floating-

point numbers. Thus the machine plus FLINT will act like a new machine

though no physical changes have been made for that purpose. We shall,

therefore, speak of FLINT as if it were a virtual machine rather than

an auxiliary code.

The length of an order in FLINT has been cut down to 10 bits (as

compared with 20 for "direct coding"), vhich are divided into two pentades--

00000 through 11111, i.e. through 31. The first pentade defines the

operation, the second one gives the address of the operand. Each code

written for the use with FLINT must be segmented into blocks of less

than 30 words (120 orders); all blocks will be transferred to the magnetic

drum during the read -in and only one at a time will, for execution, be

called into the Williams Memory where line 30 has been set aside for this

purpose. These blocks are, therefore, often referred to as "lines" of

FLINT code.

Another transfer from the drum is necessary to invoke either of the

two subroutines which provide for the conversion of floating point decimal

numbers, punched on and read in from IBM cards, to floating point binary

11.2-0

form; or for the reconversion from binary to decimal for punching out.

All of these operations -- transfer to another line of FLINT code,

conversion, and reconversion -- are initiated by a single order and

include automatic checking and, for the latter two orders, the necessary

IBM operations (read-in / punch-out)

.

As an aid in finding errors in one's program, FLIM" is available in

a Tracing mode in which the contents of the X and A accumulators and the

Y register, defined in the following paragraphs, are punched out, together

with the address of the instruction word to which control is about to be

transferred. This punching takes place at the end of every instruction

word, i.e. after about every four orders. A more flexible Tracer is being

prepared, but the current one has been found to be quite valuable.

11.2 "Direct" Floating Arithmetic Orders

FLINT is a single -address system. Most of the arithmetic that FLINT

performs on the customer's data will be done in an accumulator which we

refer to by the letter X. When not being processed by the accumulator,

data are stored in floating-point registers, m. The contents of any

register are denoted by () , and in the case of the accumulator X, they

may also be referred to as x. The fundamental arithmetic orders are

Read (into the accumulator). Add, Subtract, Multiply, Divide, and Store

(in floating-point storage registers). The orders which cause these

operations are shown below;

(10, m) (m) ^> X

(11,m) X + (m) > X

(12,m) X - (m) > X

(13, ra) X . (m) > X

ilk,m) X / (m) > X

(15,m) X > m, non-clear X

In each of these orders we may refer by the number m to any of some thirty

data registers. (The binary character of the IAS machine shows through in

the FLINT code by the great importance attached to the number 32. The order

codes may take on the values from to 31* Groups of addresses are treated

systematically except possibly for the numbers at each end of the sequence.

11.2-1

i.e. the addresses to 31, and occasionally 30.)

As an example of these orders, the order (11,17) would cause the float-

ing-point number in memory register 17 to be added to whatever was current-

ly standing in X and, of course, it would not disturb the contents of regist-

er 17. Similarly, the order (15,1^) would cause the contents of the accu-

mulator X to be stored in register ik and would not disturb the contents

of the accumulator.

Although the arithmetic orders already given will suffice to carry

out any operations that may be needed, it is convenient to have a few

more. The orders (l6,m) through (19, m) cause FLINT to execute the instruc-

tions shown below:

(l6,m) (m) > Y

(17,m) X + (m).y > X

(18,m) X - (m) .y > X

(19,m) (m) / X ^> X

The order (l6,m) is a"Fetch" order that brings a floating-point number

from register m into a special register designated by the letter Y whose

contents we denote -- in analogy to the X accumulator -- by y. This register

is, in fact, register -- so the same result could be obtained by the order

(10,m) followed by (15,00); however, such an order pair not only requires

twice as many FLINT instructions but it also destroys the contents of our

regular X accumulator. The orders (17,ni) and (l8,m) invoke both the X

accumulator and the Y register, causing the product of the floating-point

number in address m by the floating-point number in the Y register to be

added to or subtracted from the contents of the X accumulator, leaving

the result in the X accumulator. This set of orders permits the expedient

calculation of the dot product of two vectors -- an extremely common form

of numerical manipulation. - The (19,in) order is an inverse division which

permits the contents of floating register m to be divided by the contents

of X. Experience has shown that this order is used at least as frequently

as the normal division (lU,m). It thus seems very desirable to have an

inverse division in future machines.

11.3

11,3 Integer Arithmetic Ordera

In most digital computing, expediency dictates that the basic program

be written in an iterative fashion. That is, the same set of orders is per-

formed over and over again, either identically or with alight modifications

of the address parts of the orders, thereby performing the same operation

systematically on large sets of similar data. Both in going around simple

loops and in applying the same set of orders tc large sets of data it is

necessary to count how many times we have been around and to modify addresses.

For all these purposes, it -.s necessary to do simple arithmetic with integers.

In the IAS machine integers may be interpreted as addresses in the high-speed

memory if they lie in the range from to 1023 • I'^ order to carry out

integer arithmetic, a second arithmetic organ is provided by FLINT. The

accumulator of the integer arithmetic organ is designated by A and its

contents, in accordance with previous usage, by a. We have a set of

instructions applying to the A accumulator, which is quite similar to our

floating arithmetic orders. We can Fetch numbers into A, Add, Subtract,

Multiply and Store the results of A back in storage registers. The detail-

ed order code is given below.

(00,n)

11.1^

30 that the order (00,00) should be a no-operatlon order -- since it

fetches the contents of integer register to itself.

The operation of division is missing. If ve divide two integers

the result is, generally speaking, not an integer, and hence, this

operation is omitted. Instead, the (Oi^,n) order has been used for a

rather different type of command, namely a question or test which asks

whether the current contents of the A register are unequal to the current

contents of integer storage register n? It is this question which is

used primarily to decide whether we have been through a particular sequence

of operations a sufficient number of times or whether we ought to keep

on going through it again. This order is used only in connection with

a "transfer" order.

11. Ij- Transfer Orders

The FLINT code is a sequenced language, that is, FLINT obeys the

instructions in the order in which they are written down, unless a transfer

instruction is encountered which tells the machine to go to some other

location.

FLINT possesses two transfer orders — (30,w) and(31,w). These orders

behave identically as far as their transfer function is concerned, so they

will be discussed together. (The 31 orders have additional properties

which will be discussed later.) If, in the normal sequence of eveiits, our

FLINT code encounters an order (30,17) it will seek its next instruction

at the beginning of word 17 of the current line of orders.

While the (30,w) instruction is sufficient for transferring to arbit-

rary words within one line, we must also have a method for transferring

to arbitrary words within other lines. This clearly takes more informa-

tion than we pack into one order, and so FLINT recognizes two kinds of

transfers - short and long. For the long transfer it is necessary to specify

to what line we wish FLINT to go next. As lines of FLINT coding are

stored on the magnetic drum, a particular line of orders has an address

consisting of (d) where d may be any integer from through 11 and

{Jl) = any integer from through 31* A long transfer, then, consists of two

11.5

successive Instructions within the same word, having the general form

(30 ,w) (d, ,)•

The need for long transfers and the necessity for transferring

to the first instruction of a word imposes restrictions on the place-

ment of transfer orders within our code. In particular, it requires

that all transfer orders must be the last effective order in the word

in which they are written. If, therefore, we write a transfer instruc-

tion in the first two positions of a word, the last two positions are

wasted. Fortunately, instruction space is plentiful within FLINT and

this need not worry us.

Both the (30,w) and (31^w) transfer orders are conditional on the

state of Transfer Counter (TC) . This counter is normally in a YES

condition, but the (0U,n) comparison order will cause it to be set

to whatever the answer may be to the question it asks. Any transfer

order will be obeyed if the TC is in a YES condition at the time the

transfer order is encountered by FLINT. If the TC is NO, transfer

orders will not be obeyed — control passing to the first instruction

of the next word -- but the TC is reset to YES .

11.5 Indirect Address Orders

In most digital computing we deal with two rather different types

of data: simple isolated floating-point numbers such as constants,

results of previous computations, and isolated coefficients -- and with

large systematic groups of data, vectors or matrices, all of which are

to be treated in some systematic fashion. The 31 floating-point storage

registers, together with the arithmetic orders 10 through 19> suffice

to treat the isolated individual numbers, but they clearly cannot handle

large quantities of systematic data. To handle these numbers, we have

the indirect address orders . They are very similar to the direct-address

arithmetic orders

:

(20,n) ((n)) —> X

(51,n) X + ((n)) —>X

(29, n) ((n)) / X —>X

11.6.0

except that ((n)), < n < 30, stands for the floating-point number vhoae

address is presently stored in #n of the "integer" storage location. More

exactly: when FLINT encounters the order 21.17> it will find in register

17 an integer somewhere between and 1023, which it will then interpret as

an address, and it will go to that address to find the floating-point

number which it will then add into the accumulator. In the midst of this

process it will also transfer the contents of integer register 17 to A.

These indirect -ad dress orders are at once the most useful and the

most difficult to use in the FLINT system, difficult especially for occa-

sional users who have not previously been exposed to coding for our, or

similar, machines. If compared with the corresponding procedure for

"direct coding", the use of these orders is a simplification in as far

as

(i) no distinction of left or right hand phases is necessary

(ii) if the same address appears in several orders and has to

be modified in all of them, only one "integer" needs to

be modified rather than all order words,

(iii) the reading of the address to be modified (into A) is automatic

with the indirect address order.

Several attempts have been made to replace the indirect-address orders

by another scheme; but none seemed simpler without sacrificing flexibility.

This seems to be inherent in the interpretive system. In other words,

only a compiler -- other than a word by word translater -- could bring

real progress. Such a project, however, could not be achieved without

much more time and manpower.

11.6 Non-Addresa Orders

So far, all orders have been divided into an operation and an address

part, the latter one giving the address of one of the operands. The

remaining orders 06.00 through 09*31 form an exception to this rule.

The first group is used for multiplying or dividing, respectively, a

floating-point number by an integer up to 31, which is directly given

in the second pentad:

(06.k) X . k > X

(07. k) X / k > X

11.6-1

These orders have been useful for the coding of formulae containing

small fixed integers, such as integration, differentiation and in-

terpolation formulae, where they relieve the coder from the necessity

of prestoring such numbers (as 2, 3> ^> 6 etc.) as floating-point

numbers

.

The second group will replace the number x, stored in the X

accumulator by a function of x. At present the list is short;

f 08.00) "f- —>x
foS.Ol) loggX > X

(08.02) exp X > X

(08.03) log^x ^> X

(08. oil-) Coshx > X

(08.05) Sinh X > X

but an extension is easily possible by using the magnetic drum for the

storage of such subroutines. A code for the four baaic trigonometric

functions has been written for, but not yet incorporated in, the FLINT

system, and an algorithm for arctan x has been developed.

The third group is a somewhat accidental mixture of non-addresa

orders which have proven to be quite useful for various purposes:

(09.00)

3)

M

5)

11.7-0

(09«30) Read in decimal data from IBM cards. Each card holds

up to two floating-point decimal numbers, together

with their future addresses and in a format suitable

for tabulation. (09.30) will cause conversion of such

cards placed in the read hopper; the floating-point

numbers will go first to X, then to the storage location

specified in the "address" columns, while this address

goes to A. This process will stop if an empty card or

an empty half card is encountered. FLINT will then

proceed to the next order.

(09.31) reconverts x into a floating-point decimal number which is

stored in the form of a "card image" together with the

decimal equivalent of a. Two such pairs (x, a) fit on one

card and are automatically punched out as soon as a third

(09-31) order is given. The format is the same as for input

of numbers, as explained above.

Most of the functions carried out by the orders (06.OO) through (09.29)

could also be achieved by suitable combinations of the other orders; these

non-address orders, however, add very much to the ease of coding for FLINT.

11.7 The "31" Address

FLINT makes provision for storing both floating-point and integer

constants right in the order code, interspersed among the FLINT orders.

In effect, the arithmetic orders invoking a 31 address tell FLINT to look

in "the next possible space" -- and use it as if it came from a regular

register. Thus (01,31) will cause FLINT to add into A the next "order"

as a (binarily punched) integer. If we wish to multiply the contents

of A by 3, we may write (03,31) (00,03), while (01,31) (02.03) will cause

(A) to be increased by 2x32+3 = 67. The only restriction on the location

of the integer is that it must be in the next order space after the in-

struction invoking it.

A direct floating arithmetic order with a 31 address obviously requires

an entire word for its datum. Accordingly FLINT looks at the next entire

word, interprets it as a floating binary datum, and uses it as instructed.

11.7*1

The FLINT order code then proceeds to the order following the 31-addreB8

order, with no skipping if this next order is in the same word. The word

which has been used as a datum is skipped automatically, FLINT remembering

that it is not a group of orders . (This automatic skipping holds true even

if several Sl-address orders are used consecutively, requiring several

consecutive constants in the code. Thus, two floating arithmetic orders

with 31-addresses do not refer to the same location, but to two successive

locations .),

An indirect-address order with a 31-address will deal with the floating-

point number stored at the address given in the next quarter word. This

means, in effect, that the whole Williams memory, as far as it is not used

by the interpretive code itself, is "directly" addressable by 20-bit orders.

For example, (21,31) (13»17) will add the floating-point number stored

in line 13, column 17, of the Williams memory to X and (25,31) (13,17) would

store (X) at that position.

It seemed scmewhat doubtful in the beginning whether the advantages

which are afforded by the address "31" would be important enough to justify
*)

the logical complications involved; 'but after a year of use and experience

this question can certainly be answered in the affirmative. As FLINT allows

for the storage of only 30 integers (a.ddresses) and thirty directly address-

able floating-point numbers, storage place would soon be at a premium with-

out the "31" addresses; while with this facility it has proved sufficient

for much bigger problems than FLINT was originally designed for. Another

aspect is equally important: the possibility of including constants right

in the order code is a great help in the use of subroutines by cutting down

their storage specifications to a minimum.

The additional code for all three applications, i.e. for fixed point,

floating-point, and indirect address orders adds up to only 10 order

words

.

11.8-0

11.8 Illuatratlve Examples of FLINT Coding

(i) Computation of a Table for J^{x) , x = 0(0.1)1 .

Bessel functions for small arguments are best computed from their

respective power series:

^ T=Q ki (p+k) t^ '^ '

Five terms are sufficient for full accuracy if x < 1.

WORD CODE OPERATION STOBAGE

10.01 EX" X in 00.01

(|)^ to 00.02

10.01

11.8-1

WORD CODE OPERATION STORAGECODE

ll.SpE

(Iv) Square Root of a Complay Number

1/2 a + ib p g. c(give^u ^ a ir b = '2

(P + iq)

Algorithm:

=> c

if p > 0: c => a, q/2c => b

if p < 0: c => b, q/2c => a

WOBD CODE

10.01

09.23

09.26

16.03

1 17.03

09.27

09.13

11.01

2 09.2if-

09.22

09.27

15.02

3 15. Oi^

09.21

19.03

09.00

k 09.03

01.31

00.03

20.00

OPERATION

11.9-0

11.9 Storage Space and Operation Times

Every interpretive subroutine is bound to reduce the storage space

available for data and the speed of operation. This is the price paid

for the ease in coding. We vish to shov, in this last paragraph, how

high the price of using FLINT is in these resj^cts.

(i) Storage ; Let us again divide the 102^)- words of the Williama

Memory into 32 lines (0 through 31) of 32 words each, which actually

corresponds to the picture displayed on the screens of the memory tubes:

Line 31 is reserved for the "integers" as erplained in 11.3;

(31.00) = A; (31.31), which according to 11. 7 cannot be

directly addressed, holds the present order word.

Line 30 holds that line of pseudo code which has last been called

(from the drum by a "long transfer") for execution. (30.31)

holds the negative sum of (30.00) through (30.30) formed

automatically by the FLINT read-in code. Checking of the

sum of the whole line -- which must then be zero — is

automatic with each long transfer.

Lines 2ii--29 constitute the main part of FLINT, interpreting and

executing all orders except (O6.OO) through (09.31).

Lines 21-23 are normally used for the execution of the orders (09.OO)

through (09.29); if, however, a conversion, (09.3O) or

(09.31), is ordered, the respective subroutine -- exactly 3

lines — will be called from the drum to these 3 lines

of the Williams Memory. The time lost by these drum to

Williams transfers is negligible compared with the IBM card

reading or punching times which are necessarily connected

with these conversion orders.

Lines 18-21 are normally used by the functional subroutines (O8.OO)

through (08.05); but if these are not needed in a code, the

space may be used for data.

Lines O-I7 are free for floating-point data, but only line can be

addressed by the direct floating-point orders.

ll.S'l

Lines l8-2l are normally used by the functional subroutines (08.00)

through (08.05); but if these are not needed in a code,

the space may be used for data.

Lines 0-1? are free for floating-point data, but only line can

be addressed by the direct floating-point orders.

In the present version of FLINT, the magnetic drum can only be used

for the storage of code, but not for data without referring to "direct

coding" for the transfer of such data to and from the drum. There is no

good reason for this restriction and a corresponding change of FLINT is

planned

.

(ii) Operation Times ; The interpretation and execution of a floating-

point order in FLINT takes approximately 5 msec, while fixed point and non-

address orders normally take a little less (3 to h msec). For comparison,

machine multiplications and divisions last approximately one millisecond,

addition and similar operations a little less than 0.1 msec. It thus seems

that the use of FLINT would lengthen machine times by a factor between 5

and 50. Better estimates may be derived from the following considerations:

(a) The number of "mathematical" additions, i.e. excluding those for

bookkeeping and address modification, is, in general, not too

different from that of the multiplications and divisions together.

(b) The number of orders required to carry out a typical sequence

of operations is normally much less in FLINT than in direct coding,

even if fixed point coding is feasible, the average being about

1:2 (excluding FLINT subroutines such as 08.OO, 09*27, 09-30,

09.31).

(c) The greater flexibility of the FLINT order code, especially the

absence of scaling difficulties, often allows the use of more

efficient mathematical methods, especially since coding spac*

is practically unrestricted.

(d) The speed of in-and output is basically the same in FLINT and

in direct coding; hence, if the time required for card reading

and punching is an appreciable fraction of the total running

time of the code, the time factor is further reduced.

11.9»2

(e) Debugging time« for FLIKT codei are, even with the inefficient

present "TRACER", normally much shorter than in direct coding.

Fewer errors are made and those made are more readily detected.

The result can be summarized as follows. The average effective slow-

down factors are approximately:

Considering (a) alone 1^

(a) and (b) 10

" (a) through (c) 5-10

" (a) through (d) 2-10

" (a) through (e) 0.1-10

The last figure shows that the use of a floating-point interpretive

routine need not always be wasteful of machine time. Experience has con-

firmed that it can even lead to a substantial saving.

12.0

12. ANOTHER FLOATIHG-POIMT lUTERFRETrTE ROUTIWE (Code I906)

Originator and Coder; Irving N. Rabinowitz

12.0 Introduction

1906 is a floating-point interpretive routine, similar in some res-

pects to FLINT, but basically different in its logical structure. However,

some parts of the two interpreters, notably the arithmetic operations are

identical, and so will not be discussed in great detail.

1906 will accept a pseudo-code residing in the machine, and will inter-

pret this, executing both arithmetic and logical operations. In addition,

the structure of 1906 allows the coder to mingle direct code with his inter-

preted code with a minimum of effort. However, the orders available to I906

are extensive enough so that this need not be done except to execute drum read

or write orders, which are not provided for in the pseudo-code.

The pseudo-code for I906 is kept in the Williams memory at all times,

and thus can be modified by itself. In this respect the pseudo-code is closer

to machine code than in the FLINT routine, the difference being that between

a sequence -controlled machine and a stored-program machine.

12.1 Structure of the Pseudo-machine

As mentioned, I906 is a stored program machine (and we might as well

adopt the view that it is a pseudo-machine, since it avoids circumlocutions).

The programmer has available to him without restriction 672 words (=21 lines)

of high-speed storage, which can hold numbers, orders, or pseudo-orders.

Numbers may be of two kinds, floating-point numbers, which represent quantities

actually used in the computation, and fixed-point numbers, or integers, which

are used for logical manipulations.

Since the arithmetic portion of the pseudo-machine is identical to that

of FLINT, we need not describe the structure of floating-point numbers (see

section 11.1)

.

Fixed point numbers, or integers, may be real numbers, i.e. signed forty

bit machine numbers, which may be manipulated by a set of pseudo-orders, but

which are better handled by direct coding; or they may be lO-bit numbers with-

out sign for specifying certain logical parameters such as indices.

The structure of the pseudo-order words is similar to that of machine

ld.2

oTder words in that two pseudo-orders occupy a single word, but the structure

of an order is not (address, order), but rather (address, tag, order). The

address is a ten-bit number representing addresses (00,00) through (20,31)

•

The tag is a five-bit number whose individual bits specify certain B-registers.

The order is a five-bit number. This allows a total of 32 orders, but by

sacrificing the property of "B-modiflability" for some orders, namely those

with order part 31, it is possible to increase the number of available orders

to 63, which is sufficient for all purposes.

12.2 Arithmetic Orders

The arithmetic unit of 1906 consists of the pseudo-registers R and Q

both of which hold floating-point numbers. The orders affecting these reg-

isters are the following: (Let (x) mean "the contents of x", where x may

be a memory location, or E or Q.

A) B-modifiable:

12.3

C) Not B -modifiable, address used;

0531 Multiply (E) by address (E) xN —> E

0731 Add (E) and address (E) + N —5€?

(In these two orders, N is one-fourth the address, so that the numbers

from l/k to 127 3A are available for multiplication and addition without

being stored. Negative numbers may also be used by complementing the address).

The nature of these arithmetic orders is self-explanatory, so we need not

go into them further, except to note that they exist in the two classes of B-

modifiable and not B-modifiable. These terms will be explained when we describe

the logic of 1906.

12.3 Fixed-point Arithmetic

In addition to the pseudo-registers E and Q, there exists another pseudo-

register called C, in which fixed-point numbers may be m.anipulated. The orders

affecting C are not B-modifiable, but do use the address portion to represent

a storage location. The orders are

0831 Bring (x) —> C

0931 Bring negative -(x) —> C

1031 Add (C) + (x) —> C

1131 Subtract (C) - (x) —> C

1231 Multiply 2"^^(C)(x) —> C

1331 Store (C) —> X

These are all fixed -point operations except for 1231, Multiply, which^

as in FLINT, includes a left shift of 9 places. Since manipulations on fixed-

point numbers are primarily for logical, rather than arithmetic, purposes,

9
the fixed-point operations will be applied to integers modulo 2 , which in

a machine word, of course, are represented as fractions* So that a product

be properly scaled, the left shift of 9 places is included after multiplication.

12. i|- Transfer or Jump Instructions

In order to change the sequence of operations, several types of trans-

fers have been included in the order code. It is possible to change the

I2.lv

sequence of operations unconditionally by the order

10 Jump Take next order from address and phase
specified.

Note that jumps may be made to either order in a word. This specification

is accomplished by a phase bit, which is part of the tag. In jump orders this

bit is interpreted as specifying the feft-hand order of the location given

by the address if the bit is zero, or the right-hand order if it is one.

The program may be stopped by

00 Stop and Jump Stop^ If restarted, execute 10. However
if the address is (00,00), go on to the
next order.

Certain jumps may be conditional on the state of registers. Two such are con-

ditional on the state of R, two on the state of C, and l6 on the state of

l6"breakpoint switches".

The orders conditional on the state of E are

20 Positive conditional jump If (E) ^ 0, execute 10. If (E) < 0,
no operation

30 Negative conditional jump If (B) < 0, execute 10. Otherwise
no operation.

It may be noted that there is no jump conditional on the state (E) = 0.

The reason for this is that in floating-point arithmetic, round-off effects

can cause troubles in this respect.

The two orders conditional on the state of C are;

li<-31 Jump if (C) is positive or zero.

1531 Jump if (C) =0.

Note that here, since we are dealing with integers, a zero test is

included, and is indeed a very powerful method of terminating loops, if the

programmer is counting his way through a loop, a process which in general

is unnecessary, due to the power of the B-registers.

The other sixteen conditional jump orders are variants of the order

23 Breakpoint stop and jump. If "breakpoint switch" n is 1, execute
00; if it is 0, no operation.

Ideally, of course, the breakpoint switch would be a true mechanical switch

which the operator could turn to an "on" or "off" position. However, what

12.5

is actually done is to reserve a word in storage for this purpose. The

first sixteen bits of this word are the l6 breakpoint switches, and are

manually made 1 or by the oi^erator, at the instruction of the programmer.

When the interpreter encounters the order (a,0,n,23) .> it inspects bit n of

the breakpoint word. If it is a one, the order 00 is executed, i.e. it

stops, and upon restarting executes a jump to the order at phase ^ in word

a. If it is a zero, the interpreter ignores this order aad proceeds to the

next order. The purpose of this order is to aid in debugging a program. The

programmer can insert 23 ordera at various poiats '7f hic(prog^^am^ which will

transfer to a prlat-out routine wiiicli he feass "sirit-ieR. Wikfea fii's-^ ruaning his

program, he can set all tiie 'b:-eakyoint bits xo onts, so t'jMx -she pro^'aa will

stop at each 23 order. Af'cer the pr:'.?a--out , --he fiv'P!-'; 'jf:', in tliis breakpoint

word is made ssro, and the progi'am oontinued. ¥xh '!;h'i Tm.nhi.vie will not stop

at the order 00P3, but will stop at the ne^ri 'hi'e&h'^joia-c- stop and ju.ap encounter-

ed. The process can then be repeated with all the breakpoiats in the program,

thus gii'ing the progranmer lnforri»e,tion as t.i th*? jtat'? o^' the memory at inter-

mediate points of the computati'-in. When the progv^am is finally debugged, it

need not be changed at all, sin-:e the 23 orders ha^e ao effect on th^ execution

of the correct progj:'am, the breakpoint swi-<iches not be^.-ag set.

12 . 5 Other Logical Instructions

T^To other logical ius-JTuctioua are aveiiJ.abie to the progi^ammer

s

21 Set return If this order is encountered in word a,

then in the phase and address specified,
there is written the half-word < a+1, 10 >

22 Exit Exit from interpretive mode to direct
coding.

Order 21 is designed for use with closed subroutines. Symbolically,

its use is as follows : when a closed subroutine is to be used from word a,

the programmer writes <Exit, 2l/Entry, 10 >, the effect being that when the

closed subroutine has been executed, and control has arrived at the exit word

of the subroutine, a jump is made back to the main program..

The order 22 is used to go out of the interpretive mode into direct cod-

ing, and has the form of a 10 order, except that the order at the specified

12,6.0

address and phase is not interpreted, but is executed by the real machine.

To re-enter the interpreter, the usual tjrpe of link-planting order pair is

used, i.e., to re-enter from word a, the programmer writes < a CP/3100 Ul >,

in direct machine code.

12.6 The B-registers and their Instructions

We now come to the most powerful part of code I906, the B-registers.

These are a set of registers labelled Bl, B2, B^, and b8 (or Bl, B2, B3, bU,

if desired. The 1, 2, k, 8 notation is a more mnemonic one, as will be aeeaj

,

which have the capabilities of counting and modifying addresses, 30 that loop

formation is reduced to the writing of two instructions. It will be noted that

the arithmetic orders (§12.2) were divided into several groups, one of which

is that of the B~modifiable instructions. For these instructions, the tag part

of the order playa a role. The tag consists of five bits, four of which refer

to B-registers. It has the form bn b, b b , where b. refers to Bi. The

reference is the following: if b. is one, the address used by the pseudo-

machine is not the address written in the order, but is this address plus the

contents of Bi. This is the effective address . The use of this device is to

allow references to arrays of numbers without having to go through the process

of counting and address modification within a loop. If more than one b is one,

the effective address is the original (written) address plus the contents of all

the Bi referred to by the b . In this way it is extremely convenient to refer

to two- or three-dimensional arrays.

Besides their address -modification properties, the B-registers have count-

ing properties which are used to go around loops the proper number of times, and

to exit from the loop when it has been executed. This is accomplished by the

use of two types of orders, the SET and TEST orders. These are

01 Set Bl Each of these is a three-address order, affecting
the B-register mentioned. These three addresses

02 Set B2 are those of I, A. , and F, respectively, and have
the effect of setting I, A, and F into three

03 Set B3 storage locations, the totality of which consti-
tute the pseudo-register Bi.

0^ Set Bh 1 is the initial value of an index, £\ is its
increment, and F its final value.

11

12.6.2

of word x+1 contains the order to add the next value of a. into the ac-

cumulator. The address written is that of the first value of a^, namely

a , but the effective address is a + (Bl) , since the b bit is in the tag

part of the instruction. The first time through the loop, (Bl) = i = 0,

so that a is brought to R. At word x+1, right phase, is the order to

terminate the loop, TEST Bl. The sequence of events that occurs here is

as follows; the loop counter is compared with 99» If they are unequal,

it is increased by l(the preset value of ^) , and a jump is made to the

order at location x+1, left phase, namely, the ADD order. However, if

they are equal, the incrementing and jumping do not take place, and the

next order to be executed is the order at location x+2, left phase.

Thus the effect of the loop is to add a , a^, . . ., a into the

pseudo-accumulator, and then exit from the loop, with the sum in R.

The structure of such loops has an almost exact counterpart in the

mathematical notation used for these operations. For the problem mentioned,

one might write

..
I

22_

i =

to describe the formation of the sum. Another way would be to say

(E) + a. > R for i = 0(1)99,

which has its exact counterpart in the code. The code, in symbolic terms,

could have been written

X SET i FOR 0(1)99

(x+l)L ADD a.

(x+l)R TEST x+l,L

More than one B-register may be used in a single loop. Suppose that the

problem involved is to add two vectors a. and b . Suppose that the vector

a, is arranged in the memory in locations a^, ^q+^> ^o*^'
' ' ° ' ^o'^'^'

^'^'

in consecutive locations specified by <a > = <a^> + i, and that the vector

b is stored differently, e.g., in every other location, starting at <h^

12.6.3

and auch that (b.> = + 2i. It ia neceasary to use two B-regiatera

for address modification in tlie same loop. Let us write the mathematical

discription of the problem:

c. = (a. + b.) , for i = 0(l)n

Assuming that the c. are stored sequentially starting at <c >, we rewrite

this in the following form:

c. = a. + b., for i = 0(1) n and i' = 0(2)2n.Ill' ^ ' ^ '

The code is then a transcription of this statement to a vertical format:

X SET i = 0(l)n

x+1 SET i' = 0(2)2n

x+2,L BRING a.
'

1

x+2,E ADD b.

x+3,L STCEE c.

x+3,B TEST i, x+4,L

X4J+,L TEST i', x,2,L

Note that although there is only a single loop, yet there are two SET orders

and two TEST orders, since two B-registers are involved. Since the indices are

to be counted synchronously, two TESTS must be made for each traversal of the loop.

The first TEST increases the index i, while the second TEST is used to escape from

the loop when finished » Thus the address of the first is x+i<-,L, so that regardless

of whether or not the loop is done, the second TEST is executed whenever the first

is.

In dealing with two-dimentional arrays such as matrices, it is desirable to

be able to modify an address by two indices. As mentioned above, this is possi-

ble by including more than a single 1 in the tag. Consider the problem of

the multiplication of two square matrices. Mathematically we write
n-1

c.^ = ^2 a.j^b^j for i = 0(l)n-l j = 0(l)n-I

k=0

However, we must take into account the fact that the indices are not all in-

creased by unity, since the matrices may be stored in the memory in such a

way as to require different modification. If we assume that the matrices are

12. 6.

U

stored in the memory so that the elements of the matrix, read from left to

right and top to bottom, occupy consecutive locations, e.g., ^qq) ^q-\>

' ' ' ' ^cm-V ^lo' ' '' ^l,n-l' • • • ' Vl,o' Vl,l '"' Vl,n-1'

then a simple description of the location of any element is

<^ij> = <^oo> -^ ^ -^ ^J

Thus, for the three matrices involved, we have

<a
il^

= <a > + i + nk

= <a > + i + k'
oo

<^kj> = <^oo>-^^^ J*

<*'ij> = <%o> -^ ^ -^ J' '

and thus there are four indices which must be used, namely, i, j', k, and k',

2 2
such that i = 0(l)n-l,j' = 0(n)n ,k = 0(l)n-l, and k' = 0(n)n . We may then

write the code as

X SET i = 0(l)n-l

x+1 SET j' = 0(n)n^

x+2,L BRING zero

x+2,E BRING zero

(This order has the effect of clearing

R prior to accumulating products. The
second BRING is just a skip in order

to get into the proper phase.)

x+3 SET k = 0(l)n-l

x+U SET k' = 0(n)n^

x+5,L LOAD L a^j^,

x+5,R MULTSeACC b^

x+6,L TEST k, X46,R

x-f6 ,E TEST k
'

, x+5 ,L

x+7,L STORE c^,,

x+7,R TEST y, x+2,R

x+8,L TEST i, x+l,L

12.7-

Tliis code does the following; the orders at x and x+1 set up the

B-regiaters for i and j' for the i and j' loops, and the orders at x+7,R

and x+8,L close these loops. The effect is that the inner loop (j') runs

across the row for which the index i has a certain value o When the end of

the row is reached, as signalized by a failure of the TEST at x+7,E, the i

loop is tested. If the loop is not done, the row index, i, is increased

and the next row of c. is computed. Wichin these two outer loops is a

single inner loop, which however, involves the use of two B-registers, one

to count k and the other to count k', in a fashion similar to the problem

of vector addition given above. Prior to entering th-i loop, E is set to

zero by the orders at x+2. The reason that two auc'a orders are given is

that the SET order occupies a full word so that we must skip an order after

the first BEING to get to the left half of the next word. The inner loop

consists of the setting for both k and k', the actual computation of the

(i,j) element of the result matrix, the closing of the k and k' loop, and the

storing of c. . ^.The actual computation of c . . takes place at x+5, where the
ij _K

—

IJ

partial sum > a , b, , is accumulated, i.e., the vector product of row
A—^ Ik Kj

i of a by column j of b. Note that hsre again, the TEST at x+6,L is used

only for stepping the k index up, while the actus-l testing for end-of-loop

is done at x+6,E.

12.7 Integer Manipulations and Non-Automatic Modification

It may be noted that in the examples in §12.6 we were dealing only with

indices, while addresses were given in the word referring to the operand. It

is entirely possible to use the B-registers for carrying actual addresses, so

that the code itself need have no addresses of operands in it at all. This

is sometimes a convenience, for example, in changing codes to accomodate larger

arrays than was originally contemplated. Thus, if a programmer has been using

5x5 matrices stored sequentially, and has to go to 67:6 matrices, the code it-

self would have to be changed if the addresses written in it were the locations

of the first elements of the 5x5 arrays. This difficulty may be avoided by

the following subterfuges rather than dealing with indices and considering

expressions of the form i= l(A) F we can deal with addresses in expressions

of the form i = A+1(Z\)A+F, where A is an address which is stored in some

12.8-

location. The loop setup would then involve forming the integer sums A+I

and A+F where A, I, and F are preset integers^ and SETting the B-registera

with these numbers, rather than with the values of the indices alone. The

reference to the operand a. would then be (say) ADD 0, b^ rather than ADD

<a >,b,, and it would become unnecessary to change the code itself to make
1

changes in the placing of operands.

Occasionally it may be advantageous to modify addresses in a coded

fashion, rather than using the automatic features of the B-registers, for

example, if one were dealing with expressions which might involve the use

of more than four B-regisi:ers at once. Such might be the case in computing

an expression of the form

for i, j = 0(l)n, and m = 0(1)M. All four B-registera would be tied up dur-

ing the inner loops of the computation, ao that it would be necessary to have

a separate counter for m, which could be added into the settings of the B-reg-

isters during the inner loops, i.e. one could compute the numbers A+I+(M+l)m

and A+F+(M+1)M before setting the B-regiaters in the inner loops. Alternatively,

the actual orders could he modified by adding (M+l)m to their addresses prior

to setting the B-registers. This can also be accomplished by means of the fixed-

point instructions^ and the jumps o rnditionai on the state of C would be used

to determine when the m-loop has been completed.

12.8 Decimal Inpt\t and Output

There are two orders which affect the input and output of floating-point

number a

,

09 Eead Read n cards, each with two words, into locations

specified by address, sequentially, n given

by the tag, 1< n < 32.

19 Punch Same, in the other direction.

The card format consists of two words per card, each half of the card

containing a single floating-point number. The format of a number is almost

12.9-

completely free, with the exception that the sign of the number must occupy
the first column of the field, and all numbers must have a decimal point.

Thus, for example, to input the number 3.1^^159, it is not necessary to punch
it as 31^1590000 01, but it may be punched directly as 3.l4l59, providing
only that the first column of the field is blank, for the sign. To input

both mantissa and exponent, e.g., the number 3x10 '°, it may be punched as

5^3.XIO, where
<fi indicates a blank column. This notation indicates the mantissa

as 3, terminated by a decimal point, and the XlO represents the exponent.

On output the number appears in a standard fashion, namely in the form

+ 3-1^1590000X00. Output numbers may, of course, be later re-used as input,

since the output format is acceptable to the input routine.

12.9 Tracing Mode

In order to help debug interpretive programs, a tracing mode has been

added to I906, and is operated by using a special card preceding the deck.

This card contains two addresses punched by the user, the address at which

tracing is to start, and the address at which it is to end. The card also

includes certain standard coding which puts 1906 into the tracing mode (by

changing a transfer instruction within I906) . The pseudo-code is executed

at full speed (except for a few orders involved in the testing of addresses)

until the starting address for tracing is encountered, at which point each

instruction executed is accompanied by a card specifying the contents of R

and of the B-register involved, if any, and also, of course, the location

of the order itself. This procedure is carried on until the location counter

of the interpreter becomes larger than the final address specified, at which

point tracing is stopped and the code continues to be executed at full speed.

In this way, it is possible to debug sections of a program by tracing

the earlier portions of a program first, verifying that they are correct, and

then tracing later portions without being forced to repeat the trace of the

earlier parts, which saves a great deal of machine time.

13.0

13.0 SERVICE BOUTIHES FOR DECIMAL HJ- AND OUTPUT

In order to help save time in the coding and debugging of problems,

several routines of general utility were written. These routines were

designed to be used in conjuncticn with the programmer's own code to help

out in the processes of input and output of decimal numbers, and in the

detection of errors in a code. The routines described here were written at

different times, and are therefore quite independent of each other. It is

planned to rewrite them in an integrated form so that any service routine

can be called in a standard manner with a minimum of special handling.

13.1 GEMEBAL DECIMAL INPUT ROUTmS

Originator and Coder: Irving N- Rabinowitz

This is a short routine which allows a programmer to dispense with most

of the "bookkeeping" involved in decimal-binary conversion. It is written in

the form of a closed subroutine which uses three pre-set parameters for the

determination of the arrangement of digits in the cards. Each time the sub-

routine is entered, it has the effect of reading the next number from the

card, translating it into binary, and delivering it to the main program in the

accumulator. The three parameters necessary for the routine are: D, a "stencil"

or "mask" word which has one's in those stages where digits are punched on the

card, and zero's elsewhere; S, a similar word which specifies the columns where

signs appear on the card; and C, the number of cards of input. As an example,

if the card format consisted of five seven-digit numbers and signs, filling all

forty available card columns, we would have

D = 0111111101111111011111110111111101111111,

and
S = 1000000010000000100000001000000010000000.

The fields of each card need not be the same size, but all cards must have the

same format. While the routine does not count, it does signal the end of the

input by the state of the Q-register. If this is non-zero, then the input is

finished, otherwise there is more to come.

Since it is written in the form of a closed subroutine, the programmer

has complete freedom as to the placing of the input in the memory, the scaling

of the input, and the sequence of reading from cards. Thus, for example, the

13.2.0

programmer could read in a vector, operate on it, store it on the drum, and

then atart over with the next vector to be read from cards, without concern-

ning himself at any point with the decimal nature of the numbers on the cards.

13-2 GENERAL DECIMAL OUTFJT ROUTINE

Originator and Coder; Irving H. Eabinowitz

This routine was designed to allow almost complete freedom of output

format without the necessity of the programmer's counting or bookkeeping.

The output format is described as a linear function of two variables, called

i and j, and various numbers specifying number length, presence or absence

of signs, etc. The routine does its work essentially by setting up a corres-

pondence between the given arrangement of binary data within the machine and

the desired arrangement of data on cards. To output a group of data, it is

necessary to specify six words of information. These are

1) The location and arrangement of the binary data on the drum. This

word consists of the coefficients of the formula

L(n. .) = L + ai + bj
^ ij' oo "

The routine can then use this word to find the binary data prior to conversion.

2) The card number (counting from zero) to which the decimal version of

n. . is to go. This word consists of the coefficients of

C(n. .) = C + ci + dj
ij' oo "^

3) The column of the card in which the decimal number (including its

signs, if any, and its decimal point, if any) is to start. Again, this word

consists of the coefficients of

K(n. .) = K + ei + f

j

xj' oo ''

k) The limits of i and j . These are the numbers I , I^ , J , and J^ for

which Iq < i < I^ and J^ < j < J^.

5) A word specifying the representations of the plus sign, the minus

sign, the decimal point; also the number of digits of the output, and the

number of digits in front of the decimal point.

13.2.1

6) Fiaally, a word telling how many cards are to be punched out.

Aa an example to illustrate the U3e of the routine, let ua consider the

problem of converting a 5^5 matrix from binary to decimal. Suppose that the

matrix is stored on the drum at locations (08,0^4-, 00) + j +51? i.e. the ele-

ments of a row are in consecutive locations, and the various rows follow each

other consecutively. Since we would like to tabulate the output in the form

of a matrix, let us put the five numbers of a row onto a single card, row

going to the first card, row 1 to the second, etc. Thus we aem that the card

number is simply C(n. .) = i. Since we have five numbers to put on a card,

we can break the card up into five fields, each eight columns wide, starting at

columns 0, 8, l6, 2k, and 32. These fields will then represent a column j of the

matrix, and we can say that the starting card column number for matrix column j

is K(n. .) = 8j. Since we have a 5^5 matrix, we obviously have I = J =0 and*lj'" ' '^ oo
I = J-, = ^. Now we must decide on the format of the individual numbers. Let

ua suppose that we will waat a blank column to represent a plus sign, a "12"

punch to represent a minus slgnj that we do not wan'c a decimal point, and that

we want four decimal places in the answer. Then the fifth word will contaia

the information that E(+) = 0, E(-) = "12", E(.) = 0, D ==^, where E(x) stands

for "the representation of x". Finally, we will want to puach out five cards.

The six words will then be punched onto cards (in binary) as follows;

1) 00/08,0'+,00/00,05/00, 01 Location

2) 00,00/00,01/00,00/00,00 Card number

3) 00,00/00,00/00,08/00,00 Column number

h) 00,00/00, Oi)-/00,00/00, Oi)- Limits

5) 00,00/00, 12/00,00/00, Oi<- Eepresenta+ions and length

6) 00,05/00,00,00,00,00,00 Number of cards to be punched

The programmer then inserts this card into the code deck and loads the

code, assuming that the binary data is already stored on the drum, and out

comes the decimal data.

This is a particularly simple example of the use of the routine. It has

provisions in it for allowing ^he programmer to write a "de-scaling" routine,

to call the output routine from the drum, to have the output routine handle

as many as 22 different groups of output cards, and to have complete

13.2.2

control of the proceaa of output, even to the point where he may, in a

coded manner, change the parameters of the output.

The code has a fairly complete search for consistency among the

parameters so that, for example, the programmer cannot ask for more than

forty columns of information on a single card. Stops are provided at

these error discoveries with sufficient information to allow the pro-

grammer to either find his error easily off the machine, or, if he recogn-

izes it immediately, to correct it by simply putting the correct parameter

word into the machine via the av-^cumulator.

It is hoped that a new version of the General Decimal Input and

General Decimal Output will be written in the near future, and that it

will then no longer be necessary for a programmer to concern himself with

these processes.

iJ+.o

lU.O ASBY - AN ASSEMBLY CODE

Originator and Coder; Bryant Tuckerman

The necessity for some sort of aaseiably code to be used ia conjunct-

ion with an automatic computer has long been recognized, for such a code

has the properties that not only is coding and debugging made simpler, but

it allows the building of a library of subroutines which may be incorporated

into any cede, without the necessity for readdressing. Furthermore, if it

is necessary t® change a code, the fact that it is written in a language more

general than real machine code ia a great advantage, since changes to one

region of a code need not in general affect other regions.

The ideal type of assembly code is of course that one which takes the

mathematics and English that the coder writes aa his statement of the problem,

and turns this into machine coding without the necessity for human interven-

tion. However, such codes are extremely difficult to accomplish, and, Indeed,

their theory is not fully understood. It is therefore necessary to restrict

ourselves to somewhat less sophisticated types of assembly routines. Among

other considerations that must be applied are those of time and space. Since

machine time is a valuable commodity, the assembling of a code written in

some external language should be only a very small proportion of the running

time of the assembled code. Furthermore, siace space is at a premium, the

secondary storage of the machine being finite (and for eoms applications,

quite small), it is desirable that the input, or unassembled version of

the code not be much larger than its final version. In order to reach these

objectives, certain compromises between efficiency of machine use and ease

of coding must be made.

ik . 1 Format of Subroutines

ASBY assumes that all coding consists of subroutines written in a special

language called Format C which is almost machine language. In general, address-

es are relative, i.e. they consist of a tag identifying the subroutine and a

number which indicates the address within that subroutine. Addresses refer-

ring to words within the present subroutine are all larger than (l6,00).

U.1.0

i.e. all subroutines are written as if they were to be operated from a

block of consecutive memory locations starting from (l6,00). Furthermore

no subroutine may be longer than 8 lines (256 words). Addresses refer-

ring to other subroutines are smaller than (l6,00) and are subdivided into

Ik categories, according to the first pentad of the address with 0,1 and

2 being treated as a single category. The addresses beginning with 0,1,2

are treated as absolute addresses and are never modified by ASBY- The

other thirteen categories of addresses begin with the integers 3 through

15, which may be considered 13 tags identifying 13 other subroutines. The

rest of the address is a pentad (O through 31) . thereby limiting all refer-

ences to other subroutines to the first 32 instructions in these subroutines.

This is no real restriction for logical operation since it is difficult to

imagine a subroutine which will require more than 32 different types of ex-

ternal references to it; usually 2 or 3 will suffice. Data, on the other

hand, must also be organized into our subroutine format if they are to be

assembled together with the code and here the limitation of only 32 distinct

references may require some indirect addressing system for blocks of data.

Data subroutines can, of course, be 256 words long.

While any one subroutine will probably not need to refer to more than

13 other subroutines, nevertherless we shall very quickly acquire a library

of considerably more than 13 subroutines with many mutual cross references.

Thus it is not practical to limit a tag (say tag 5) to refer always to the

same subroutine (say SINE of X) whenever it is used. Format C therefore

provides a tag-defining group of words which sits at the front end of the

subroutine so long as the subroutine remains in the library, but which is

removed from the subroutine after serving its purpose during assembly. This

tag-defining group consists of;

1) a single parameter -word, PARW, having ones in those binary

stages corresponding to the tags used in this subroutine, and zeros

elsewhere. (if we use tags 3,^ and 7 then PABW is OOOllOOlO. • -O.)

2) a sequence of IDENtifing words, one for each tag used,

arranged in increasing numerical order QOfiBl&et*9g8. (In our example

above, PAEW would be followed immediately by three IDEN words, the

first bearing the identificatio* of that subroutine to which we are

referring hy the tag 3, the next Identifying the subroutine we are

invoking with tag h, and the third identifying the subroutine we

refer to by the tag 7«)

In addition to these tag-defining words, a one-word description,

DSCE, of the current subroutine also appears in the front-end of the

library form of all Foriaat C subroutines. This word specifies the Williams

assembled length , dw, of the subroutine; the library (Format C) length, d£,

of the subroutine; and the number of constants , c, at the end of the sub-

routine which are to be left unmodified. Each of these discriptive numbers

occupies 10 bits. We may sumEiarize this form by

DSCE = (dw; di ; c; 0)

All this front-end iaformatioa of ASBY is placed between words (l6,00)

and (l6,01) and none of it acquires any location address since it will ul-

timately be removed. Word (1^^,00) is the full word IDENtification of the

subroutine and the actual code begins in (l6,01). Thus we have our complete

Format C outline;

(16.00) IDEN ()

DSCR (dw; dl ; c;)

PAEW ()

IDEN^ ()

(16.01) code ()

() B§^e ()

-SUM ()

The word designated by-SUM is for checking purposes, and contains the

negative of the sum (modulo 2) of all the other words of the subroutine. No

gaps in the code within a subroutine are permitted and all subroutines are

punched in straight binary, 12 words per card except possibly at each end

where aa entire card may not be needed. Routines may, of course, be punched

as decimal pentads and then converted and punched out in binary by using

existing codes. The total number of noa-Willlaa nemory words is 3 + t

vkere t is the nuaber of tags used, hence

d£ = dw + 3 + t

A special feature of ASBY allows us to define fields of variables of

arbitrary but given length, dw, by subroutines occupying only d£ = k library

words , in the form

(16,00) IDEN ()

DSCE (dw; Uj 0;0)

PAEW ()

-STJM ()

This is assembled as dw words, the first being IDEN, the rest or trash

according as the drum-image of Williams was initially cleared or not.

(More generally, any number of irrelevant or zero words in the end of

a subroutine may be omitted from the library form to become or trash upon

assembly, by proper choice of di' < dw + 3 + t.)

lU.2 Directory Format for ASBY

Im addition to his library of subroutines the customer must also supply

a Directory which must include at least the IDEN of the first routine to be

obeyedo In general no furthftr information need be supplied, 'since ASBY will

look at thia routine, will see what others are called for, will examine them

in turn, etc. until it has constructed the complete directory during assembly.

*) A non-zero starting Williams address should , however, be supplied by the

customer for the location of the first subroutine as w of its INFO word.

Otherwise the first routine will go into (00,00), thereby violating the

convention that we will keep the bottom 12 words of the Williams memory

free for small service routines.

11^.2.1

Tlie customer may, kcwover, override part of this process by supplyiag

tke IDEN aad assembled locatiom of any of the other subroutimes he wishes

to neatio*. (This facility may turm out to be useful duriag debugging,

simce he will thea kaow that certain crucial subroutines begia ia some

easily remembered locatioas. It may also be used to cause the loadiag of auxil-

iary subroutiaes aot directly aeeded by the code but which would be valuable

to have available ia the Williams memory duriag debuggiag.)

The final form of the Directory coasists of pairs of words

IDEN^

II. SOLUTION OF PEOBLEMS

20. General Remarks

During the period covered by thie report the emphasis has not

primarily been placed on "production" but ratter on exploring the

potentialities of the computer as a research tocl in a variety of

problems and applications, while our engineering group was engaged

in improving, hence changing our equ.ipmento As a result, no syste-

matic effort was made at the tiiae tc bxiild up a library of subroutines,

or to standardise coding procsdures, and the number of problems solved

is comparatively small.

It would not be easy to arrange the probleias treated on our machine

into clear-cut groups i three such groups can be distinguished, however,

and we shall deal with them separately.

The first should be headed ME1S0E0L0GY. Dr. Charney's group used

about one third of the total machine tin» available for operation during

the period covered by this report. Its problems and results will be re-

ported under the terms of Contract Nonr 1358-(02) (between the Institute

for Advanced Study and the Office of Naval Research) , by which the meteo-

rological research and machine coding were supported.

The second goup of problems deals with ASTROPHYSICS. All of this

work has been directed by Prof. Martin Schwarzschild (Princeton University)

,

either directly or via his co-workers. These problems are discussed in

chapter 21, to which Prof. Schwarzschild was kind enough to write an in-

troduction.

The problems in the third group are only loosely related to each

other by virtue of their common subject matter, viz. ATOMIC AND NUCLEAR

PHYSICS. No two problems have originated with the same individual. It

seemed advisable, however, to \inite them in one chapter (22) so that the

reader interested in physics can find them more easily.

The last chapter (23) is nothing but a collection of those problems

which do not fit into any of the other groups. Size and importance of these

problems are as varied as their subject matter. The Historical Ephemeria

has taken close to one man-year of coding time (nearing completion at the

close of this report) and will be of lasting value. The remaining problems

are considerably shorter, and a small number of minor codes, without any

special features, have been omitted. They have been helpful, however, in

demonstrating the importance of library subroutines and determining their

specifications

.

21.0

21. ASTROPHYSICS

Astrophysics differs from other physical sciences by the circumstance

that its objects of study can be observed but cannot be experimented with.

This impossibility of physical experimentation can be compensated for to a

remarkable degree by numerical experimentation. It is for this reason that

numerical research plays such an unusually important role in astrophysics.

The problems here investigated are of two types; the first type refers

th<

2)

to the undisturbed internal structure and evolution of stars, ' whereas the

second type refers to perturbations of stars such as stellar pulsations

or hydromagnetic waves. '^ The first type leads to highly non-linear, high

order eigenvalue problems. In them the main difficulty consists in finding

efficient methods of determining the eigenvalues by trial and error. The

second type leads to partial differential equations with as much as three

independent dimensions (two in space and one in time). Here the main dif-

ficulty consists of finding efficient methods for the numerical intergra-

tion that are free from numerical instabilities.

1) cf. §§ (21.10), (21.43)

2) cf, §§ (21.20), (21.50)

3) cf. f (21.30)

21, 10

21.10 NUMERICAL EXPERIMEWTATION ON STELLAE EVOLUTION

Originator and Analsrat: M. Schwarzachild

Coder; Mrs. H. Selberg

Recent progress in nuclear physics has made it possible to determiae

fairly accurately the reaction rates, as functioms of temperature and

density, of those nuclear processes which provide the main energy sources

in the stellar interior. These reaction rates have provided the last link

necessary to formulate the problem of stellar structure and evolution in

a unique manner. Consequently, it is now possible, in principle, to derive

all physical characteristics, such as, for example, central temperature and

total luminosity, for a star of given mass and initial composition as a func- u

tion of time throughout the star's evolution.

In practice, however, the solution of this problem is complicated,

both as regards the methods of numerical analysis to be applied, and as

regards the effective carrying through of the large amount of numerical cal-

culations. The difficulties arise largely from the fact that in the space

co-ordinate (from the center to the surface of the star) the physical condi-

tions present a highly non-linear system of differential equations of the

fourth order with two boundary conditions at the center and two at the surface,

but also from the fact that the energy release by gravitational contraction

gives the problem in the time co-ordiaate the character of a heat coaduction

problem with its well-known danger of numerical instability.

The numerical solution of problems in the theory of stellar evolution

is clearly of importance to theoretical astrophysics. Simultaneously, the

development of methods for the solution of this problem appears likely to be

valuable for the solution of a large class of non-linear high order boundary

value problems.

21.11 Qualitative Description of Stellar Evolution

Consider a star of a given mass and a given initial chemical composition.

Assume that the matter of which the star consists was originally well mixed so

that the star starts out chemically homogeneoiis. After a pre-stellar contraction

21.11

phase a star will settle into its inital equilibrium configuratioa in which

all the hydrostatic and thermal equilibrium conditiona are fulfilled. In

particular the internal temperatures will be just right so that the hydrogen

burning produces energy at a rate exactly compensating the losses by surface

radiation.

The star would remain indefinitely in this particular equilibriua

configuration if it were not for the circumstance that in time the nuclear

burning alters the chemical composition of the deep interior, which in turn

causes changes in the equilibrium configuration. The investigation of stellar

evolution aims to derive the sequence of configurations through which a star

evolves and, in particular, to compute the changes of the luminosity and the

radius of a star during its evolution. A comparison of these two quantities

with observation provides a check on theoretical developments.

A previous investigation ^^has suggested the following sequence of

evolutionary events for a star with a mass similar to that of the sun. In

the initial phases more and more hydrogen in the core is transmuted into

helium. After a while the hydrogen in the core is exhausted and the hydrogen

burning continues in a shell further out. The helium core becomes isothermal.

It steadily grows in mass but shrinks in size while simultaneously the envelope

of the star becomes more and more expanded. The contraction of the core

produces steadily increasing degeneracy of the gases near the center while

the growth of the envelope causes a convective zone below the stellar surface

which steadily increases in depth.

During these evolutionary phases, both the luminosity and the radius

of the star continuously increase, i.e. the star becomes a red giant.

As the luminosity increases, the rate of nuclear burning as well as

the rate of the core contraction will increase. Eventually the contraction

rate will be so high that the normal thermal equilibrium condition does not

apply any fxirther. The contraction will heat the center of the core by

*) F. Hoyle and M. Schwarzschild, Ap. J., Suppl. No. 13,(1955)

21.12

compressio* - quite Irrespective of the lack of kydroge* fuel for nuclear

buraimg - until it reackes a temperature sufficient for helium burning to

commeace. This appears to be the critical phase at which the star has reach-

ed the top of the observed red giaat sequence. Whea the helixim buraiag starts,

it will contribute to the rise in the central temperature. This rise will aot,

as la the aoa-degeaerate case, be checked by an immediate expaasioa of the core

siace the now dominant degenerate pressure is independent of the temperature.

Thus an unstable situation may arise for a short evolutionary phase. During

this phase, it appears possible that the temperature gradients may become too

high to be staolr against convsctioa so that coavectioa may set in throughout

most of the star, which will mix the helium of the core with the hydrogen of

the envelope. Such a thorough mixing would obviously have important consequences

for the interpretation of the subsequent evolutionary phases.

So far, the acc^orate sequence of events d-uring the critical phases at

the top of the red giant sequence have act been determined siace the onset of

helium burning and the active influence of contractive heating make the computa-

tions difficult. It is the purpose of this project to investigate these fast

and critical evolutionary phases.

21.12 The Basic Equations and Boundary Conditions

The basic conditions throughout the stellar interior are governed by

three differential equations. The first one expresses the fact that hydro-

static equilibrium holds, i.e. that the force produced by the gas pressure

exactly balances gravity. The second one expresses the relation between the

energy flux and the temperature gradient. Here three cases have to be distin-

guished, depending upon whether the flux is transported by radiation, by

convection or by electron conduction, the latter being the case when the gas

is degenerate. The third differential equation expresses the conservation of

energy; the divergence of the energy flux must be equal to the energy genera-

tion by nuclear processes to which, in the phases of fast contraction, the

energy freed by non-adiabatic contraction is to be added.

21.13.0

This system of differential equations contaias three auxiliary

variables s the density, the absorption coefficient, and the rate of

energy geaeration, which are related to the main variables by rather

complicated equations.

The density is given as a function of temperature and density and

of the abundances of helium and hydrogen. There are two such equations of

state, one for the non-degenerate and one for the degenerate case, and a

rather involved criterion must be used to decide which equation to apply.

The switch ia presently made abruptly, while accurately an intermediate

equation for incipient degeneracy should be used -- an accuracy which is

hardly required here.

The absorption coefficient is given as a sum of two terms. The first

represents electron scattering and does not depend on the temperature; the

second terra conbines free -free transitions for hydrogen and helium with

bound -free transitions for the heavier elements and is proportional to t" .

The simple addition of the terras is an approximation, again of sufficient

accuracy for the present purpose.

The rate of energy generation is again given as a sum of two terms

representing the energy liberated by burning hydrogen and helium, respectively.

Probably these two terms will never contribute simultaneously in the same

volume since presumably the hydrogen will be completely exhs-uated before the

temperature reaches the threshold for helium burning to set in. Both terms

depend, of course, not only upon the temperature but also on the respective

abundances of hydrogen and helium which, however, must be replaced by mean

values for the convective region where perfect mixing may be assumed.

21.13 Boundary Conditions and Automatic Adjustment of Boundary Values

To complete the definition of the problem the boundary conditions

at the center and at the surface of the star have to be assembled.

Our four dependent variables are; the pressure P(r) , the temperature

T(r), the mass M contained in the sphere of radius r, and the luminosity

L , i.e. the amount of energy radiated per unit time through the surface

of that sphere. The boundary conditions at the center, therefore, are

21.13.1

M = L = while P amd T are aot kaovfa a priori. Tke other two bouadary

comditioHS follow from the equilibrium conditions at the Surface, i.e. in

the photosphere of the star; the first states the relation between the

surface temperature and the total luminosity and the second insures that

the pressure in the photosphere provides the appropriate optical depth

of this layer.

To introduce these two surface conditions in their accurate form would

involve appreciable practical difficulties because it would necessitate,

first, the addition of the whole set of photoapheric equations including

partial ionization of hydrogen, and second, the handling of the large ranges

in temperature and pressure from the center of the star to its photosphere.

These complications are here avoided by the following approximating procedure*

The outermost layers of the star are cut off at the point where the temperature

reaches exactly one million degrees. This cutoff reduces the total mass only

by an entirely negligible amount. It reduces the radius by a somewhat larger

percentage, which, however, la still not serious and can be corrected for,

if need be, at the end of the calculations. The most serious consequence

of this procedure is that the pressure at the cutoff point has to be estimated

from previous tentative calculations.

If all of the four boundary conditions were given at the same end of

our integration interval, a single numerical integration would yield the con-

figuration at each definite phase « But, unfortunately, this is not the caaej

we have just seen that we have two conditions at each end. Therefore, a

trial and error method must be \iaed to determine the initial values. For

example, we could assume certain estimated values for P and T at the center

and integrate out to the surface. We could then vary P(o) and T(o) in some

systematic way until the computed values would fulfill the boundary conditions

at the surface. Or we could start the integrations with estimated values at

the surface (fulfilling, of course, the two boundary conditions) and Integrate

in until, by a proper choice of the two remaining free parameters at the surface,

M and L would come out close enough to zero. --It turned out, however, that
r r

neither of these schemes is applicable due to the inherent instability of our

system of differential equations as soon as the values of the dependent variables

21.11^.0

depart from tlie pkysically correct combinatioa. However, a combiaatio*

of both methods was successful. It basically consists of iategrating

from both eads toweurda some iatermediate "fitting poiat" for which the

variables caa be estimated fairly well. The free parameters at either

ead are first varied uatil the values at the fitting poiat are aear

the estimated values. The final fittiag is thea made by liaear iater-

polatioa.

It is aot possible to describe the details of this fittiag pro-

cedure here, but we should like to meation that Prof. Schwarzschild and

Mrs. Selberg succeeded ia plaaniag aad codiag this procedure so that ia

spite of the highly aoa-liaear character of this "eigeavalue" problem

It ia carried out by the Computer without human iaterference except for

feeding the initial guesses for the variables at the center, the fitting

point and the surface (i.e. the one million degree point).

21. l**- General Computational Procedure

The numerical integration of our system of differential equations is

hampered by its high degree of non-liaearity and the very wide range of al-

most all variables. Furthermore, the whole system including the various

supplementary equations for computing the opacity, energy generation, etc.

and the distinction between the radiative, convective aad degeaerate cases

is certaialy the most complicated sjrstem ever treated oa our computer. It

is impossible, therefore, to give a full account of the computatioaal pro-

cedure ia this short report. However, a few remarks may be appropriate here.

To start with, the spatial iadepeadent variable is changed from r

to M . This is essentially a transformation from Eulerian to Lagrangian
r

coordinates, which makes it much easier to follow the changes in chemical

composition by nuclear transmutations in each mass element.

Next, let us consider the derivatives with respect to time. Such

derivatives occur in the law of energy conservation and in the law for trans-

mutation rates. The energy conservation equation has the character of a

heat conduction equation. Therefore, its explicit use for extrapolation

in tine in a step-wise numerical integration leads to a well known instability

except if very small time steps are used, which would be impracticable in

21.11^.1

tke preseat applicatiom. Co»sequemtly, tkis equatioia must be used im am

"implicit" naaiier, i.e. wke» aa evolutioaary time step leadiag from pre-

vious stellar model to tke next stellar model is to be bridged, tke equatioa

of emergy coaservatioa kas to be applied ia a symmetrical maaaer botk at tke

previous time aad tke aew time. Oa tke otker kaad, tke derivatives witk

respect to time occurriag ia tke equatioas goveraiag tke traasmutatioa rates

may be used ia aa explicit maaaer for extrapolatioa ia time, ao reasoa

beiag kaowa to siispect kere a aumerical iastability. Tke most simple liaear

extrapolatioa formula would be aufficieat for tke accuracy required kere,

but tt may lead, oa occasioa, to erroaeous aegative values for tke kydrogea

or keliura abuadaace. A suitable correctioa was used to avoid tkis coaditioa.

Altogetker tke kaadliag of oae evolutioaary time step is tkus reduced

to tke followiag computatioa; after tke derivatioa of tke coafiguratioa for

oae defiaite time kas beea completed, tke coatractioa aad tke aew kydrogea

aad kelium abuadaacer are computed for every poiat ia tke star. Witk tkeae

tkree fuactioas tke time laterval is bridged aad tke coafiguratioa at tke

aext ^kaae caa be derived.

To adjust all tke equatioas to tke requiremeats of tke electroalc

computer, tke pkysical variables kad to be scaled appropriately. Most of

tkem were scaled liaearly i.e. multiplied by aa appropriate power of 2

or/aad 10^ ia additioa tke Aenaitj § aad tke pressure P were replaced by

tkeir tkird aad fourtk roots, respectively, ia order to reduce tke raage

of tke variables kaadled by tke computer. Furtkermore, tke distaace r

from tke ceater was replaced by tke variable k = l/r, wkick kas its kigkest

aumber of sigaiAcaat figures ia tke importaat ceatral regioa of tke star

ratker tkaa ia tke less importaat eavelope. Tke time step was scaled ia

suck a way as to iasure approximate coastaacy of tke amouat of kydrogea or

keliua buraed per time step.

Tke iatroductioa of tke variable k = l/r leads to a (aoaHBsseatial)

siagularity at tke center of tke star. Tkerefore, a simple aaalytlc approxima-

tioa is used to start tke aumerical iategratioa at some small, but fiaite

radius. From tkereoa tke leagtk of eack step is computed by tke mackiae from

tke requiremeat tkat ao variable must ckaage by more tkaa some fixed fractioa

of its value.

21.15

21.15 Machine Utilization

The length and complexity of the code for the present computation

confronted ua with several problems which are not normally encountered in

smaller calculations. We shall discuss some of them in this paragraph.

One of the most difficult ones was the problem of storage. Since

it was not possible to accommodate the entire code, including all the

data to be stored for each model, in the Williams memory {192h words),

several subroutines were stored on the magnetic drum and called into the

Williams memory whenever needed. This procedure proved to be not only

very time consuming -- especially with the old drum which had an access

time of nearly 200 msec. -- but it also would have required a reliability

of the magnetic drum and its amplifying circuitry that could not be achiev-

ed with the old driom. Both conaideratioixs hold, to a lesser degree^ even

for the new drum. It was tried, therefore, to reduce the number of drum

references by accommodating in the Williams memory at least those sub-

routines which are most frequently needed, i.eo the ones accurring in

every integration step.

When the new drum became available, a restart procedure was added

to the old code. Storing the code and the data (about 3000 words) at the

end of each full integration (i.e. from center to surface), it was possible,

in case of obvious machine trouble, to resume the computation at the end of

the previous integrationo In addition, an optional automatic duplication

mechanism was recently Incorporated in our code.

As mentioned in the previous paragraph, scaling presented a considerable

problem. In fact, a fixed point machine is not very well suited to this type

of problem, in which the variables vary over a very wide range. It requires

careful and accurate scaling in order to preserve a sufficient degree of

accuracy; moreover, since the ranges of the variables may differ from model

to model, the scaling has to be changed accordingly. Two pogsibilities were

investigated to solve this difficulty; (i) the use of coded floating point

techniques, and (11) the use of logarithmic variables. Of the two, the latter

seems more adequate since our formulae contain a considerable number of Integer

and fr-actlonal powers. It is planned, therefore,

21.16.0

to rewrite the code If the subroutines for log x, exp t: , and log (x + y)

can he made fast enough and the Williams memory can accommodate them

during a vhole integration step. This would also solve the problem of

read-around in the Williams memory, which arose in the evaluation of

fractional powers and could only be overcome by an artificial elow-dowa.

So far we have computed nine models. The average computing time for

one model is 3+1/2 hours. Actually, many more machine hours were spent

on debugging and on experimentation with new computational methods, and

a good many were lost due to machine errors.

21.16 Besults and Outlook

With the procedure described above a sequence of nine models has so

far been computed which, for a specific star, covers a range of advanced

evolutionary phases in which the star has red giant character, in satis-

factory agreement with astronomical observations. The results are in

1)
general agreement with previous investigations, ' but they indicate that

the contraction term in the third basic equation plays a more important

role for the structure of the advanced evolutionary phases than the earlier

rough estimates had indicated.

It is planned to continue the present evolutionary model sequence

up to and beyond the phase when helium burning sets in, and to carry through

other evolutionary sequences for stars of different masses and initial

compositions, for the purpose of obtaining a secure basis fcJr the theory

of those most advanced evolutionary phases in which the formation of the

heavy elements is expected to occur.

1) cf. Numerical Integrations for the Stellar Interior, Hirm, R. and

Schwarzschild, M-^ Astrophysical J., 121 (1955) and Astrophysical

J., Suppl. Series Vol. I, p. 319-^30"Tl955) , where numerous further

references are given.

21.16.1

It is alao planned to prepare technical reports and/or papers

for afcientific journal 'whenever an important phase of this problem

has been finished.

The supporting contracts for this vork are: Contract No* Da-36-03'*--

OBIi-l6h6 for machine operation. Contract Uc Nonr 1358- (03) for all coding

and, while this report is being written. Contract JJonr 1358- (O^^) for further

use of the machine. (January 1, 1957 - June 30, 1956.)

1) presumably the Astrophysical Journal and/or its Supplementary Series.

21.20

21.20 ADIABATIC PULSATIONS OF AN QRIGIUALLY ISOTHERMAL ATMOSPHERE

Originator and Coder: D. A. Lautmann '

The periodic variation of brightness of certain stars, named Cepheids

after the most famous of them, viz. Cephei, is one of the most intriguing

problems of astrophysics. The so-called pulsation theory attempts to explain
2)

these variations on the basis of hydrodynamic pulsations. ' The theory of these

pulsations is fairly well understood for the linear case, i.e. as long as the

amplitudes of the oscills-tions are so small that quadratic terms can be neglect-

ed. In the deep interior of a star, where energy considerations demand small

amplitudes, the highly developed linear theory of adiabatic pulsations has

been applied and is in fairly good agreement with observation. In the at-

mosphere of a variable star, however, amplitudes become large and non-linear

terms important. This is confirmed by the fact that the observed variations

of brightness are not sinusoidal functions of time but show a pronounced

skewness. It was therefore decided to find numerical solutions for the original

non-linear equations of hydrodynamics but with the following simplifying assumpt-

ions:

(i) The Cepheid atmosphere is considered to be plane-parallel.

(ii) The atmosphere is originally isothermal and in hydrostatic

equilibrium under constant gravity.

(iii) All changes are adiabatic.

(iv) The influence of the interior of the star is approximated

by a sinusoidal motion of the bottom lajrer of the atmosphere.

1) cf. Lautman, Don A., Doctoral Thesis, Princeton University, 1956. To be

published in Astrophys. J., 1957*

2) cf. Eddington, A. S., The Internal Constitution of Stars, chapter viii.

Cambridge University Press, 1926.

21.21

The formulation of boundary conditions for the top of the atmosphere

is a much more difficult prol)lem. An isothermal atmosphere theoretically

extends to infinity, but in a numerical computation it clearly must be cut off

at a certain point. The upper boundary condition should, therefore, express

the effect of the neglected part of the atmosphere.

It is essential for this investigation that the oscillation of the

bottom layer generates outgoing traveling waves of higher frequency which

are not reflected at the "surface" of the atmosphere. The upper boundary

condition was constructed to fulfill this requirement.

21.21 Basic Equatioas of the Problem

We introduce the following symbols

5

Y velocity

t time

g gravity

r position r^ A same as r, f , p,

o density
j

O© r ^'^^ ^°^ hydrostatic

p pressure P J
equilibrium

The time t aa3 the "iaitial" petition r^ are used 9.a ind«.pendent variables.

The four basic equations thsr. raad;

Equation of motion —r- = " '^ " ~ '^~~^^
^ '

Hydrostatic equilibrium —- = - Opf^ (2)

Equation of continuity ^- — (37]
'^^

Adiabatic equation -^ = \-%~\ ^ '

If p/p is used as variable, eq. (1) can be written in the form

At T-o o\1 V pa.' \ P« /
(5)

21.22

where eq. (2) has been used to eliminate dp /dr . This transformation would

simplify the computation since implicit use of eq.(2) eliminates the necessity

to compute the erponential function for p and p • It also avoids certain

scaling difficulties on a fixed-point computer.

The boundary condition at the bottom is simply

V = AsincOt . (6)

A suitable boundary condition for the top can be derived from the analytic

solution of the linearized equations.

21.22 Analytic Solution of the Linearized Equations

Let us put u= r-r for the displacement from the position of static

equilibrium, hence v =dr/ht =3u)/<3t . From equations (3) and {k) we obtain

We now use the assumption that the oscillations have small amplitudes, thus

This brings eq. (5) into the linear form

where c = po/^o is a constant for ideal gases. Assuming a time dependence of

the form ezp (iQt), the solution will greatly depend on the frequency D. . If

a is very high, the wave length is very short and the gravitational term can

be neglected. These short waves are, therefore, traveling with the speed of

sound, viz. -^i^

""-"of

?or a next approximation let us put

y = exp (ikr -iQt)

p-p
I
« p and

1*^ *^ol *^o

1

21.23

hence d /^r^ = Ik and c>/dt=s —iSl , Introducing these expressions in (7) we get

or, if k » g/c^

Replacing I'D. and ik by the correspanelinc^ operators we get

i!£_ «=, ^ ^ iil (8)
brc 2d- Co^'/i dt ^

which was used as upper boundary condition for most cases. As a variation, a

slightly different boundary condition was used to represent a high temperature

layer (corona) at the top of the atmosphere.

21.23 Computational Procedure

As long as the linearized equations can be used, the harmonic perturba-

tion at the bottom layer will generate a harmonic movement of the whole at-

mosphere. In the general, i.e. non-linear case, this movement will atill be

periodic, but not harmonic. It was felt that the periodicity could not be

used efficiently to simplify the problem. The time t will, therefore, appear

explicitely as an independent variable together with r^.

The computation was started from the hydrostatic equilibrium, i.e.

r a r and v = with an oscillation (cf . eq. 6) at the bottom. The integra-
o

tion of the differential equations was continued until the motion of the whole

atmosphere became essentially periodic.

In order to perform the numerical computations, the (r^, t) plane is

divided into a grid of constant spacing 4 r and /^t. To obtain the highest

accuracy from simple, low-order approximations it is necessary to use centered

differences. This requires that the variables be carried on staggered points

of the grid according to the following list:

21.24

VARIABLES SPACE STEP TIME STEP

y, ^y/<^t integer integer

V = ^^/dt integer . half-integer

^\)/dr^
, p,^ - . . half-integer . . • integer

All variables are then replaced by dimensionleaa variables such as v = v/c

and z = tg/c for speed and time, respectively, and all differentials are

replaced by simple central differences.

The computational procedure is as follows; Suppose we know all relevant

variables, including ay/6t, for a certain time t and that our time step equals

At. First v(r) is computed for all r 's from
^ o o

except at the boundaries where eq.(6) and (7) are used. Similarly

v(t- 4L) ^ At. 4f (t) ===> v(t + ^) ,

y(t) + ^t. v(t + ^^) ==> \j {t + At)

Finally;, the finite difference equivalents of eqs. (3), (k) , and (1) or (5) are

used, in this sequence, to compute ^ , p and c>v/c)t for t +A t, whereby the cycle

is completed.

One computational detail may be worth mentioning! In eq.(i)-) <? /pc must

be raised to the power V" , which in this computation was taken as 5/3. Original-

ly, an iterative method with constant initial "guess" was used to compute the

cube root, but it was soon discovered that this took almost half of the tetal

computation time. It was replaced, therefore, by a simple rational approxima-

tion, viz.

5/3
(Ah + B)' z + C ==> z'"-'

for each of three ranges of z, yielding an accuracy of about 1<^.

21.2l«- Numerical Stability

When approximating a differential equation by a difference equation we

expect certain errors in the solution. One type of error (truncation error)

arises from the neglect of higher terms in the series expansions which replace

the derivatives. The truncation error can usually be made as small as one wants

I
21.25-0

by either using a higher order approximation for the derivatives or by

reducing the grid spacing. Another type of error is due to the fact that

the difference equation may not be stable even though the differential

equation is.

In order to avoid this kind of instability, an elaborate analysis

was carried out for whJch, however, our system of equations had to be linear-

ized. The results of this analysis hold strictly only for the linearized system

but they give a fair indication of what one might expect from the non-linear

equations.

The result from the linearized system is that the Courant-Priedrich
1)condition

> 4U, = velocity of sound
At

must be fulfilled which, for a given space step, sets an upper limit for the

time step. But because the atmosphere will be compressed during part of the

pulsation cycle and the velocity of sound, therefore, increased, it becomes

necessary to make At smaller than A'r-^/w

* We previously mentioned the advantages gained in simplicity and speed

of computation if eqo(l) is replaced by eq. (5) . In actual computation, however,

it is found that the numerical solutions of this modified system suffer from

a very strange type of instability. The errors increase slowly to a fairly

constant value which, though small, is big enough to destroy the periodicity
2)

of the solutions. A possible explanation is given in Lautman's Thesis to

which we refer the interested reader.

21.25 Results

The numerical integration was carried out for four different frequencies

and for two different amplitudes at the bottom, while the height of the atmosphere

was generally taken as 10 "scale -heights " , H = c /g. In addition to these eight

1) Courant B, Friedrichs K. and Lewy H. , Math, Ann. 100; page 132,(1928)

2) Lautman, Don Ao, Doctoral Thesis, Princeton University, 1956

21.25.1

runs, several experiments with varying parameters (height, time and/or space

steps) were carried out, and also one involving a corona. Each run took about

one hour on the machine.

The first period will always show strong transients which soon settle

down; the motion is essentially periodic by the sixth period.

The results show that, even with the simple model which we have chosen,

it is possible to account for the observed skewness of the velocity curve (as

a function of time) and for certain humps on the descending branch. Both of

these effects are very strongly dependent on the boundary condition, however,

and in further work on this subject it will be necessary to analyse in much

more detail the effect of the upper parts of the atmosphere on the character

of the pulsation. The travelling wave components which lead to the phase lag

are seen to arise quite simply from the standing wave fundamental of the interior,

but the magnitude of the lag is slightly less than that observed. It should

again be emphasized that the simplifying assumptions which have been made

-- notably the adiabatic approximation and the plane -parallel atmosphere --

probably influence the final results greatly.

1)

21,30

21.30 MAGKETOHYDBODYITAMIC THEORY OF SOIAR SPICULES

Originator and Coder; Eeimar Lust

During the last two years, calculations concerning this problem

have been carried out by Dr. Schliiter, Dr- Schwarzschild and Mr. Lautman

of the Princeton University Observatory. They have calculated pressure

waves which expand in an isothermal atmosphere from the base of the

chromosphere in the presence of a vertical magnetic field. An essential

simplification for this problem was the assumption of waves with small

amplitudes which allowed the basic differential equations to be linearized.

The aim of the present investigation is to calculate waves of arbit-

rary amplitude. Therefore, the non-linear differential equations have to

be integrated. In the equations of motion an artificial viscosity term was

introduced in analogy to the method of von Neumann and Eichtmyer 'in order to

allow for the possibility of considering the transition of a wave with finite

amplitude into a shock wave.

21.31 Basic Equations

The basic equations for this problem are the following?

Momentum equation:

(1) ^^ =]:*. H - c^rccclC P+q) - ^^ c^rv^\<^.

Equation of continuity;

ct(2)

Energy equation; ^p _ f P .
,
3 "l dg

(3)
^t -

i ^7^ ^^ '^_p J ,(t

Ohm's law (with (S' = oc):

i^) E = - 7^ H

'"^ For detailed description of the astrophysical problem of spicules see

Final Report on Contract No. DA-36-03^-aRD-1330, 11,56 (195^)-

2) von Neumann, J. and Richtmyer, R. D. , A method for the numerical

calculation of hydrodynamic shocks. J. Appl.Phys. 21, 232-237 (1950).

21.31

Maxwe 11 ' s equat iona

;

(5a) VxE = - 9t

(5b) v-H = 4tuJ ('^ IIt'^^'I'^

where

o = density, p = pressure, v = velocity, ^ = gravity potential,

E = electric field, H = magnetic field, j = current density,

>r = ratio of the specific heats, t = time.

q is an artificial viscosity term and is given by the fcllcwing

expression;

[3 is a constant, and .^ x is the interval length in space used in

the numerical computation.

21.32 Assumptions

The same assumptions as in the previous investigation have been made^

namely,

a) plane parallel chromosphere,

b) barometric density gradient (p --- e ;
^= 9-J>f>.= Ccrv_ .)

c) small vertical extent (VCJ) = g = const.),

d) axial symmetry (H^ = v^^ =0; Eh = Jz = Js = °) y

e) homogeneous vertical magnetic field of value H^,

f) all changes adiabatic, apart from the artificial viscosity term.

21.33 Axially-S ymmetrical and N on-Dimensional Equations

With the assumption of axial symmetry all independent variables should

be only a function of the two space variables s (distance from the vertical

axis of symmetry) and z (distance from the horizontal base plane) and of the

time t. The velocity v and the magnetic field H are given by the horizontal

components v^ and H^ respectively, and by the vertical components v^ and H^-

21.3^

The following non-dimensional variables are introduced;

Dq = undisturbed density; p = undisturbed pressure.

With these variables one gets the following equatiorB after eliminat-

ing the electric field E and the current density j: and wr^Kn^j f/p, <^i

\<^^ ^.i°/M

ax dr ^'-^, ^ ^ "(^ or cij /

(6a)

(6b)

(7)

''' t --^t--^t^--[^P^^^-'^^](^^-|7-a^-)-^Pv

(9a) AS _.„ _v^_S9v^^|2^2|^

I dr ^ ^^ ^

(10, ^ = .p(,,3-p(^.|^,|^),|^_.|_w,^^

21. S**- Boundary and l-nitial conditions ;

To simplify the problem it is assumed that the wave is travelling in

a "box". Therefore, the normal components of the velocity shall vanish at

the boundaries. For the top the assumption is made that both components of

the velocity are zero in order to avoid incoming waves. Besides, boundary

conditions for the magnetic field have to be introduced. As a simplification

it is assumed that the magnetic field is always perpendicular to the bottom,

and parallel to the vertical boundaries.

A3 initial condition a "pressure hump" is assumed which should start

from the origin. The initial values for the 6 variables are then given by

21.35

w = V =

p=^= 1 + C.exp[-a*(At^^)]

S =

Z = 1.

Here, C gives the amplitude of the pressure hump and oc^ ia inverse

proportional to the decay length.

21.35 Difference Equations

To convert the differential equations (6a) - (10) into difference

equations, the space differential quotients are replaced by difference

quotients correct to the second order, while the time differential quotients

are replaced by difference quotients correct to the first order; r, y, and

Z are introduced as independent variables

•

T = -R A r 0<E<iP
y = T>4y < Y < Tl

The differential quotients are then given by

'cT |,^Y
" 2Arr''?*'.Y-^^i^-i,Y

) ' 5^U^4^^^'--"-'-^

and analogous for the other variables.

21-36 Coding and Numerical Computation8_

The problem could not have been treated without the aid of the new large

magnetic drum. With this appreciably enlarged storage it was possible to in-

crease the number of points in the grid, which was chosen to be 19 x 30 points,

(J5 = ^9f Xl' ~ ^^^ ' ^^ ^^^ drum, the values of the 6 variables w, v, ^ , p,

S, and Z for each point from the preceding time step T were stored. Further,

the values of the next time step T + 1 were stored at those storage places where

the values of the time step T - 1 had been before. The values for one point

were stored in successive places. The values for three lines of the grid, namely

for R - 1, B, and E + 1 are needed for the calculation of the line R for the next

21.36

time step. Since the Williams memory was not large enough to store all the

values of three lines, each line was split into three parts which were separate-
ly shifted from the drum to the Williams memory and back.

The whole code was also stored on the drum because the Williams memory was
too small. The code for the six difference equations was divided into three

parts; part one for the calculation of the values at the bottom, part two

for the main field including the two vertical boundaries, and part three for

the top. Further parts of the code contaiced the calculation of the initial

values and the orders for punching out the results.

For reasons of checking every time step was calculated twice. The cal-

culations were only carried on if both results were in ag;:eem.eiito if the

results differed, the machine stopped to provide information for the operator

to the effect that an error had been made. Eestarting caused the time step

to be repeated again. The integration of one time sxep for all the points of

the grid took about two minutes. The magnitude of a "cime interval determined

how often the results were punched out, and the values for every second

point of the grid were punched. The time needed for punching out the values

for one time step was about k 1/2 minutes. Extensive restart procedures

were incorporated into the code so that, in principle, no more than about

10 minutes of computing time would be lost due to machine errors.

21.37 Results

So far, for two sets of parameters lUo time steps have been calculated.

In the first case, the amplitude of the pressure hump was small (c = 0.01)

and resulted in waves with small amplitudes. In the second case, the amplitude

of the pressure hump was equal to the initial pressure (C = 1) and led to waves

with much larger amplitudes. In both cases, the strength of the magnetic field

was chosen in such a way that the magnetic pressure was equal to the gas pressure

in the middle between the bottom and the top. Though according to the computa-

tions which have been carried out until now the wave has not yet reached the

top of the grid, one can see the influence of the magnetic field. The magnetic

field has the effect that the waves are strongly guided into the vertical direct-

ion.

21.14-0

2lA0 AN IMPROVED SOLAE MODEL WITH THE CAEBON CYCLE INCLUDED

Originator and Coder: Ray Weymann

A recent model of the solar interior by Schwarzschild, Howard, and

Harm ^ in vhich all energy was generated by the proton-proton reaction,

appropriate for dwarf stars, indicated that the central temperature was

approaching the point where the carbon-cycle (which provides the energy for

more massive stars) would contribute significantly to the total amount of

energy generated. In the present study, the effect of the carbon cycle was

taken into account. In addition, an improved distribution of the variable

chemical composition of the sun was used.

The equations involved are those of mechanical and thermal equilibrium,

with two-point boundary conditions, determining two eigenvalues. These are

the first-order non-linear ordinary differential equations, whose form varies

in different parts of the star. In the outer portion, the envelope, the

2)
equations are those appropriate to convective equilibrium (cf. and Section

21.5 of this report, eq. (1)), while in the central region, the equation for

the temperature distribution is that appropriate for radiative equilibrium.

Since the envelopes had been previously integrated, it was now necessary to

integrate the equations for the central region and fit the two solutions

together at the point at which convection seta in.

The entire series of integrations, including computations of the start-

ing values (which must be done by series, due to the existence of singularities

in the coefficients at the center) was performed on the computer, using the

FLINT code, and was fitted to the envelopes by hand. The results for this

improved solar model differ only slightly from those obtained previously.

'•^ Schwarzschild, Howard, and Harm, Afltrophys. J., 125, 233(1957)

2) Osterbrock, Astrophys. J., II8, 529(1953).

21.50

21.50 ON THE PULSATIONAL STABILITY OF STAES WITH CCNVECTIYE ENVELOPES

Originator and Coder; Irving N. Eabinowitz

In order to study the possibility of cepheid pulsations being main-

tained by thermonuclear energy generation in the deep interior of the stars,

it is necessary^ first to construct models of cepheid variables, and second,

to solve the pulsation equations arising from a perturbation of the model.

In this investigation, three models were constructed which differed from

those studied by previous investigators in that they had convective envelopes

rather than radiative ones. Such envelopes are described by the equations

These are the equations for conservation of mass, mechanical equilibrium, and

convective equilibrium, respectively. Integrations of these equations had

been previously performed by Harm and Schwarzschild on the IAS computer,

but not to depths great enough for the present study. It was therefore

necessary to extend the integrations for the three envelopes which were used.

The wave equation derived from linearizing the general perturbation

equation was broken down into two first -order equations for the radius change

and the density change, respectively:

g\ ?'-^3r' =0
^

(2)

|f'-V(y)p' -Y{y)[2.k.^lc^^] r' =

where y = logx .

The quantity CO
^ is an eigenvalue representing the period of pulsation,

and these equations have well-behaved solutions for only discrete values of OJ
.

1) cf. Osterbrock, Astrophys. J., Il8, 529(1953)'

2) Harm and Schwarzschild, Astrophys. J.Suppl. Series, 1, 319(1955)

21.51

21.51 Methods of Computation

The method of determination of the eigenvalue was as follows: several

integrations of (2) for various values of OJ were done on the machine and

plotted by hand. From the graphs, it was possible to choose another set of
2

CO values more closely approximating the desired value. This process con-

verges quite rapidly, since by interpolation in the graphs it is possible to

guess at the eigenvalue with perhaps one-and-a-half decimal place accuracy

in the differences, so that no more than six runs on the machine, each requir-

ing about an hour, were necessary to determine the eigenvalue to nine places.

This procedure was carried out separately for the three models in question.

The method of integration used was an extremely simple one, namely

Heun's method, in which the value of the function at the forward point is

determined by the trapezoidal rule, and is then improved by taking the average

of the two slopes and using this to determine a new va].ue at the forward point.

This is a primitive type of Eunge-Kutta method, of second -order accuracy and

rather high speed. It may be remarked that the small accuracy of the integra-

tion method does not conflict with the necessity of finding the eigenvalue to

full accuracy, the reason being that it is the shape of the density-change
2

curve that counts, rather than the value of CO . Thus, changing the truncation

error by using a finer grid, or a more accurate integration method has the

2
effect of changing the value of oj to which the well-behaved solution belongs,

but has practically no effect upon the solution itself.

All computations were performed using the floating-point interpreter

(section 12), and took a total of about twenty hours on the machine. A single

integration, including punching out a table of the results, took about four

minutes

.

21.52 Results

It was found that even for models with convective envelopes the energy

generation by thermonuclear processes in the deep interior was insufficient

to maintain the pulsations, since dissipative processes in the envelope lose

more energy than is generated as a result of the pulsations. The same property

has been previously found in models with radiative envelopes. Since the deep

interior is incapable of explaining the long-time stability of cepheid variables,

it now becomes necessary to study the mechanisms of energy storage and dissipa-

tion in the envelope.

22.10

22. ATOMIC AWD NUCLEAE PHYSICS

22.10 TEDS dROUKD STATE OF THE HELIUM ATOM

Originator; T. Kinoshita

Coder: Mrs. S. Bargmann

Prof. Toiciiiro Kinoshita haa carried out an elaborate and very accurate

recomputation of the ground state of the Helium atom ' in order to match the

improved accuracy of measurement of this energy level.

It is veil knovm that this three-body problem (nucleus + 2 electrons)

cannot be solved analytically*^ Very close upper bounds can be computed, how-

ever, by help of the EITZ variation method if a sufficiently large set of

suitably chosen coordinate functions is used. Two small corrections -- one

for the mass polarization of the nucleus, the other for relativistic terms —
may be estimated with sufficient accuracy after the unrelativiatic three-body

problem has been solved.

Prof. Kinoshita used more general, and obviously more suitable, co-

ordinate functions than his predecessors and he finally increased the number

of coordinate functions to 39. The major part of this huge numerical work

was carried out on the AEC-UNIVAC at New York University. Preliminary computa-

tions, with up to 10 functions, have been done on our machine in Princeton.

We wish to give a short description of the mathematical problem and the method

used for its solution.

22.11 Basic Equations

The original quantum-mechanical problem consists in minimizing the

integral
E =

under the normalization condition

2

(-y (Hv)^^

^=^11/ cloj = 1

Here, If is the (real) wave function of the Helium atom which depends on the

6 coordinates of the two electrons; H is the Hamiltonian operator, and d.oJ

1) Kinoshita, T. Phys. RgV. 105, 1^90 (1957)

I
22.11

indicates iHtegration over the 6 coordinates. Tkree angular variables

are separated so that i» effect only three independent variables remain.

If ^ is erpreased as a linear conbination of trial functions Xi
with coefficients u. to be determined

,

a

y = 22u-J-,
,

(1)

the two integrals E and N are turned into quadratic forms in the coeffi-

cienls u. t

e' = ^cX'UiL'M = (uAu)

n' = ZI./^^j^^^-^j = i^,'\^^)

(u is the vector with components u. , A and B are symmntric matrices with

elements OC. . and p.. respectively, and B is positive definite).

The original problem is then replaced by that of minimizing e'

under the eiibsidiary condition k' = 1, which In turn leads to the eigen-

value problem

Au. — \Bu (2)

The lowest eigenvalue A is the minimrom of e', and for an appropriate

choice of the trial functions Xi it furnishes an approximate value

(in fact, an upper bouad) for the minimum of E. With the help of eq.(l)

the corresponding eigenvector furnishes aa approximate wave function.

In OTir computations, n was equal to 10.

We determined all the eigenvalues of (2) , not merely the lowest

one, and all eigenvectors.

22 . 12 Computational Procedure

Although the algorithm used here has been described in the Final

Eeport on Contract Wo. Da-36-03*<-CED-1330, December 195^> we shall short-

ly indicate it here for the reader's convenience. The main steps are;

1) Diagonalization of B, i.e. determination of an orthogonal matrix

U such that
D = U*BU

I
22.12,0

is a diagonal matrix (witla positive diagonal elements Si). Here, U* is tke

transpose of U.

2) Formation of D~ '
, tlie diagonal matrix with elements J''^'^,

-l/p
3) Formation of the matrix product UD ' .

h) Formation of the symmetric matrix

W = (ud"^/2)*a(ud"^/^)

5) Diagonalization of W in the form

A = v*w

where V is orthogcaal, and A is a diagonal matrix with elements A^ .

6) Formation of the matrix product

-1/2
Z = (UD ^''^)Y

Then the X . are the eigenvalues, and the columns z. of the matrix

Z are the eigenvectors of the problem (2)

To prove this, we first note that

* */ -l/2v* / -1/2, * A
Z AZ = V (UD '

) A(UD ') V = V W = A
Z*BZ = Y%-'-^^ U*BUD-^/Sr = V*D-^/^ D"^/^ = I

Setting u = Zy, and premultiplying both sides of (2) by Z we obtain

the equivalent eigenvalue problem

Ay = Ay

in terms of the vector y.. Since A is diagonal, its eigenvalues are X^,

the corresponding eigenvectors e. (e. has the i-th component 1, and all

other components 0). Thus the eigenvectors of (2) are Ze^ = z^, q.e.d.

The algorithm described here requires two diagonalizations which are

carried out according to the Jacobi method (see Final Report on Contract No.

DA-36-03U-aRD-1023,p.II-50, where also the checking procedures are described.).

22.12.1

We succeeded in somewhat improving the accuracy obtained before by-

increasing the number of rotations and by testing explicitly for the best

scaling factor at intermediate stages of the computation, readjusting our

numbers accordingly.

22.20

22.20 BELATION BETWEEN THE VIBRATION FREQUENCIES OF A CRYSTAL AND THE

SCATTERING OF SLOW NEUTRONS

Originator: G. L. Squires

Analyst and Coder: Hans ,T, Maehly

*)
Under this title Dr- G. L. Squires, has published a paper ' reporting

and discussing the results of computations which were, according to his

specifications, carried out on the Electronic Computer at the Institute for

Advanced Study. We wish to supplement this paper by a purely mathematical

description of the problem aad an outline of a few interesting aspects of

eur code.

22.21 The Computational Problem

The entire problem can readily be divided into 3 parts.

(i) Computation of the Frequencies

Given 5 constants a, b, c, e, f, compute the eigenvalues A and "frequencies'

M = J A for which the 3x3 determinant
/^m ^ m

I

T(a) -y?I
I
=

will vanish, where I is the unit matrix and

T.. = a + 2b - aC.C, - bC,(C^ + C,) + eS^ + f(S. + S,)

S. = sincx. 1 i = 1(1) 3

C. = coscx. I CK-- = O(^) ^-<5'

*) Phys. Rev. 103, 30^-312 (1956)

22.21

By making full use of the various symmetries, the number of grid point*

{Oi^} oC^yOC-.) ^^^ ^e reduced considerably, namely from 1000 to I52 for (f= l8°

and from 27.000 to 2792 for d'= 6°. These are the values of cT for which the

computation was actually carried out.

(ii) Computation of the Frequency Distribution Function

After arranging the frequencies Ufl,(0C, , CXp^ OC,) according to their size^

determine the number W. of such frequencies lying between u and n. +AJU< for

some given and finite value of 4;\ and aa a function of la . --This was carried

out for d"=6 , dividing the total range of u. into approximately 250 equal

intervals; u = (Alk) U ^ , u ~ 250. 4M- • As full use was made in (i)

of the inherent symmetries of the problem, every frequency must be multiplied

by an integer, which is k8 inside the reduced volume and correspondingly smaller

for the faces, the various edges and vertices . Finally, to reduce the statistical

fluctuations arising from the finite size of (f and ^aa , a smoothing procedure

was applied to the "curve" N. = N(yiA.) (cf. 2.'d.2h)

,

(iii) Averages of Various Functions over N(M^)

After the distribution function N(l/U) has been compated, the averages of

the following functions have to be found.

A, = J- ccf h 2^]
for 15 different
values of CX^t

22.22.0

sensitive to and greatly affected by the statistical errors of n. for small

i. A special smoothing procedure had to he developed to overcome this dif-

ficulty (see 22.2i<-)
.

22.22 Square Root Subroutines

Our code required the computalbion of very many square roots. It was

largely due to the development of fast square root subroutines that the run-

ning time for this problem could be kept within quite reasonable limits. The

total computing time, not counting in- and output, for oie frsquency distribu-

tion function ia just 9 minutes. During this time 2792 matrices are computed,

their eigenvalues determined, and the square roots of these eigenvalues are

taken anddi3tr5.butsd among -250 intervals according to size. The total number

of square roots computed during these 9 minutes is about ^0,O0Q<,

About i<-0,000 of them had to be evaluated for the diagoaalisation of the

matrix T by the Jacobi method. For every two-dimensional rotation^ tan2cp is

first obtained from which coa2a) , sin2ai , costp and 3in<^ must then be computed.

This requires the computation of ^ 1 + (tan2c£>) and \j 1 + cos2i5» where

|2(i>|< ""-/),• The radicand is thus known to be in a quite restricted interval in

which a reasonably good linear approximation may be used to reduce the number of

iterations to only two.

'

We shall show below how a best linear approximation for |x can be found

for a < X < b.

Another square root routine was written for part (iii) of our problem

where \lA,' was needed for equidistant points ^=A/U.m^ m = 1,2,..., ^njoy'

If m is not too small, rm'will be a reasonably good estimate for \l m+1", but

a much better one can be easily obtained as shown in (ii) below. As only little

*) The same technique can be used for the computation of square roots of normal-

ized floating point numbers, or of any number after sensing and counting by

how many places the radicand may be shifted to the left without overflow.

22.22.1

accuracy waa required for the amalleat values ofyu a suigle Iteration, usiag

the formula shown below, was sufficient in our case.

(i) Linear Approximation for ^, a < x ^ b.

Most square root subroutines are based on the iteration formula

- (w. + -) => w.
T2 ^ 1 w. i+1

1

It is well known that w —> fp for i —> oo and, in particular, if

w. ={T^(l+£.), £.« 1

then w^^^ a; >r? (1+ 2 ^)

IB any case, w (and hence w , w, , ...) is always too big and the error depends

omly on the relative accuracy of w .

Let us assume that we knew lower and upper beuads for x:

a < X < b

Then the best choice for a constant initial value obviously is w^ = (ab)

The error will have its maximum at the ends of the interval where

The next iteration yields for these points

Nfa" Pb 2 '/r ^(»^'1

IB order to get best relative accuracy over the whole interval we divide by the

square root of this expression viz.

lAl ") 1/2

e = (|[(V)^^(»^^1}^

22.22.2

We thus have

22.23-

Numerical example:

vflo^^ jZ9 '(i +
9J73-)

= 7.0710660

exact value = 7.07IO678

absolute error = .OOOOOI8

relative error = .00000026

A standard iteration vould bring this relative error down to one half ita

square, which is less than J+.IO for our example.

22.23 Checking Procedures

Particular care has been taken to detect and trace errors due to false

coding or machine trouble. We wish to outline some principles without going

into toorauch detail.

(i) No attempt was made to minimize the number of locations used for

temporary storage; on the contrary, as many different locations as feasible

were used for the various variables so that a maximum of information about

the immediate past was available at any given moment.

(ii) A subroutine was written and incorporated which would reconvert to

decimal and punch out on cards the whole field of temporary storage ("Post Mortem

Boutine")

.

(iii) Transfer to this subroutine was ms-de (a) manually during debugging

after each "portion" of newly tested code (b) automatically if one of the math-

ematical checks, incorporated in the code, would fail.

The most important mathematical check consisted of squaring each frequency

ix just after being computed and to test the vanishing of the determinant | T -/^ 1 1
•

-9
If the value was found to be bigger than 10 ^ , transfer to the Post Mortem Routine

was made. This happened just once, during production, and it was possible to trace

the error to a multiplication, though some hundred operations had been carried out

by the machine before the error was detected by the determinant check. Both factors

together with the faulty result could be found, thus providing the maintenance

engineer with accurate information.

22.2^.0

In addition to these automatic checks several mathematical checks were carried

out manually, to test the code and the accuracy of the various approximation

procedures. For example, the third part (see 22.21-(iii)) was run for a "distri-

bution" n. = 1 for < 1 .< . < a and n. = beyond >u. = a. The values of < F >

thus obtained were compared with the integrals computed analytically.

22. 2U Smoothing and Graphing

Due to the finite number of points for which the eigenfrequencles were

computed the statistical fluctuations of the n. were rather distuxblng because

they concealed the true character of the distribution f-inction. Therefore, a

subroutine was written which would replace each n by

tv = r (n. , + 2n. + n. ^)'H ¥ ^ 1-1 1 i+l"*

This "smoothing" could be repeated an arbitrary number of times, but after several

applications, and before the "noiae" had virtually disappeared, the characteristic

and desired "true" discontinuities of the curve were lost. The easiest and most

efficient way to find the best compromise was to use the graphing unit which had

just been completed for our machine. The n., n. n^ , . = . were displayed on the

screen of a cathode-ra5>- tube by help of an auxiliary code and the optimum amount

of smoothing could be determined by Dr. Squires himself by visual Inspection.

A much more serious smoothing problem arose in part (iii) of the code. It

can be sLoT<m from the power series development of the matrix T that the power

series for n(yU.) , at ^= 0, can contain only even powers of yU,
,

2 h
n(^) = C^^ + C^^ +

_2
On the other hand, the Ay and C _^

grow like ^ on approaching ^= 0. Hence,

the integrand theoretically tends to a constant, but numerically It does not

because of the "noise" connected with the n.. This noise is proportional to -fa^,

hence toyu. ; when multiplied by yU , for C_2,it will increase like yU^ for small

values of >Lt .

Some of these difficulties could have "been overcome hy replacing

the n. by n(/A) computed from the power aeries. The amount of work

-- coding and machine tine -- to compute the coefficients Cp^ o^ 't^®

power series is tolerable for k = but grows rapidly for positive k.

The second difficulty arisea at the joining point of the analytic curve

n(*x) with the original set of points. Let ua examine it more closely.

We recall that the eigenfrequencies u have been computed for the

meshpoints only. Each meahpoint ''represents" a certain volume, in gener-

al a cube. Each of the three eigenfrequencies of the matrix will be,

for all points of the cube, pretty close to those for ita center, i.e.

the meshpoint, but not necessarily close enough to be in the aame in-

terval {u ± a'^) ^^ ^^ corresponding eigenfrequency for the mesh-

point. This is -'ihe reason for the "noise" in our curve n^.

Let ua now look at our intergrala which are represented by sums

(see 22.21. iii). The straight intergral

\ r^f^ld/^ = 5;j'ZL*^^ — I

is not affected by the fluctuationa , as the total count '^loes not depend

on the esacx location where the eigenvalues are listed. If, however,
2

n(ix) is !Bultiplied b-w aome function as e.g. f(yCA-) =AA. , then

\ rvfyuUXhi^ "^
j:^^ "^v^'

will hold only approxissately. But even in this case, the effect of having

a number n of counts erroneously shifted to the next interval will cause a

relatively small error, viz.

Let us go back now to our idea of replacing the n^ by some analytic ex-

pression n(^^) up to, say, /a=/\ and let us assume again that a number

n of counts should be in the interval(/^±^<^but are, by error, in the

next one. In this case the error will be

22.21^.2

rtf/Au-t-c^) -^ ryxk

since ru has been replaced by the fixed value n(yU..) computed from

the power series. This error is much bigger than the first one since

Therefore, it was decided to join the analytic function n(/U^) to

the "statistical points" n. not in one point but gradually by blending;

the new values r. were thus computed as

rii = a- ^(/aJ + (i-(^) ru

where the "weight function" g(/><-) ia defined by

and ^ q_ — i^

C was computed directly by help of a modified code replacing each matrix

eleinent by the first term of its respective power series in o(-if ^o' '^

V

c^, however, is a "mean value" computed from the original n. (0 < i < k) by
2' Scune 1 - -

the least square method using the, weight fu/action gCu) as above.

A more detailed anfll3reis has shown that this whole procedure should

reduce the error for the first part ; < /(A < Aa, (actually about a quarter

of the whole interval) to roughly the same amount as for the rest of the

interval.

The development of this smoothing process, together with the special

for computing C , was rather time consuming, ye

to obtain the final answer with sufficient accuracy.

code for computing C , was rather time consuming, yet essential in order

22-30-0

22.30 NDMEEICAL CALCULATIONS OF THE ANOTLAE DISTRIBUTIONS FOR THE

DEUTEEON-PROTON AND SIMILAR REACTIONS.

Originator
AnaljTBist

Coders

William Tobocman
Hans J. Maehly
Sonja Bargmann and Patricia Eberlein

When a light nucleus (e.g. a deuteron) hits a heavier one with suf-

ficient energy to overcome the repellent Coulomb force, i.e. to enter into

the range of nuclear interactions, one part of the light nucleus (e.g. a

neutron) may be captured by the target nucleus, while the rest (the proton)

will leave, accelerated by the repellent force, and at an angle 9 with res-

pect to the direction of the incoming particle. In the experiment, a virtual-

ly unidirectional and mono-ea^rgetlc beam of light nuclfei is aimed at a

target of heavier one3 and the density (5() of outcoming residual particles

(protons) is observed.

This "differential cross section" <6i Q) could be computed if the

nature and laws of nuclear forces were known; as they are not, trial and

error methods are used to confirm, improve or reject initial guesses for

these forces. The numerical computation nec«ssary to determine (i{ 9)

,

even according to a sircplo "g'.ieaa" of the forces are, however, very tedious

in most cases. Rather rough approximations have been used to reduce the

work to a tolerable amount, and error eatiraatea are so difficult that the

conclusions drawn from such rough computations seem doubtful in some cases.

To overcome these difficulties, Dr« Tobocman made the following

suggestions :

(i) Not to start with the nuclear forces themselves, but with their

effects (phase shifts) at a certain distance R from the center

of the target nucleus, where R is approximately equal to its

radius.

"^
W. Tobocman and M. H. Kaloa, Numerical Calculation of (d,p) Angular

Distributions. Phys. Rev. 97 (1955), l,p. 132-136.

22.30-1

(ii) To prepare a moat general and very flexible code vhich can

be used, after its completion, for a wide range of initial

data (describing the experiment) and of theoretical aaaumpt-

ion».

Work for this code began in summer 1955 vith an extensive study

of the various mathematical problems , Programming and coding waa done

through the year 1956. The code is now in the debugging and testing

phase. It is expected to be in full operation in summer 1957=

About SQfjo of this work was supported by Contract No. Wonr-1358-(03)

,

the rest by the Army Contract for which this volume constitutes the Final

Report. We shall therefore prepare a Technical Report to the Office of

Naval Research at the completion of the problem.

22.1^0

22.i+0 DISTRIBUTION OF EIGENVALUES OF BORDEEED MATRICES WITH INFINITE
DIMENSIONS

Originator: Eugena P. Wlgner

The problem to determina the statistical properties of the character-

istic values of infinite bordered matrices arose from the consideration

of the properties of the wave functions of quantum-mechanical systems which

are assumed to be so complex that statistical considerations can be applied

to them. ' The mathematical problem together with an integral equation and

asjrmptotic formulae for the distribution of the eigenvalues and with a re-

currence formula for their moments are given in a paper by WIGNER ' , to

which we would like to refer the reader interested in Vopt details of the

following paragraphs

.

Our task was to find a method and to write and run a code for the nu-

merical computation of the distribution of the eigenvalues for various values

of the parameter q (cf eqs. (1) and (!)•) below). The results so far obtained

are not fully satisfactory, but other urgent work prevented ua from improving

them.

22.^1 Two Possible Approaches

(i) Method of the Integral Equation.

WIGNEE (log.cit.) derived the following non-lin&ar integral equation

for the distribution o(x): ^

L -to-' X — 2. -coy

where

1) J. A. Lane, E. G. Thomas and E. P. Wigner, Giant Resonance Interpreta-

tion of the Nucleon-Nucleus Interaction, Phys.Rev. 98 (1955), pp. 693-701 •

2) E. P. Wigner, "Characteristic Vectors of Bordered Matrices with Infinite

Dimensions," Annals of Mathematics 62 (1955), ?• 5^8'

22.1<-1

Not much, if anything, is known about thie kind of integral equation.

But it was hoped that the follcwing iterative procedure might yield an

adequate approximation to the distribution function.

We start with a trial function p (x) which may be constructed by

interpolating very roughly between the asymptotic solutions for very

small and very large values of q, respectively, these asymptotic solu-

tions being known frsmWigner's paper. We then compute E (x) from (2)

and
9i^-^^

from (1), substituting D and R for o and E on the right-

hand aide, and so on. The integrals are of course replaced by sums

(e.g. using Simpson's rule) and the limits in (1) by some finite values

±X. From the known asymptotic behavior of P (x) , X can easily be deter-

mined so that p (x) and E(x) are numerically negligeable for x > X.

The results of this approach were unsatisfactory. It was believed

that this was due to some basic difficulty in the procedure. Eencc an-

other method, described below, was devalopped; but it should be said

that meanwhile errors have baen found in the firat code so that, after

all, the iteration method described above may work if properly coded.

(ii) Method of the Moinentfl

The second method doss uot use the integral equations (1)

and (2) but a recurrence formrala foi* the moments of the di*itribution p(x)

which is also found in Wigner's paper (loc. cit.):

All odd moments vanish, as P (x) is an even function. It is easy to

compute yu for, say, V = O....5O from (h) , particularly since all con-

tributions are positive. However, the solution of the moment problem,

i.e. computing p(x) from the ytu , is, numerically, a very unstable

procediore. We finally succeeded in getting fair results for several values

of q, but the method would fail for both very large and very small values

(3)

(1^)

22.1^2-0

of this parameter. Fortunately the known asymptotic solutions just fill

thia gap.

2c;. ^2 Numerical Solution of the Moment Problem

Our general approach is to try to fit to the unknown function a

step function having as many moments as possible correct. We use step

functions with a fized length of step (denoted by h) and proceed in the

following fashion: for our first approximation we take a step function

with one step such that its integral is equal to the integral of the un-

known function. Next we take a function having three sttps such that its

integral and its second moment are correct. For our n-th approximation

we take a sjmimetric step function hs-ving 2n+l steps sach that its first

2n moments and its integral are correct. Thus, at each step, we are solv-

ing n linear equations in n unknowns. If this sequence of functions con-

verged, the limit would be a function with the correct moments, and there-

fore the unknown function. However, in practice it does net converge, and

therefore we will stop the process at some point where we believe to have

obtained the best approximation to the function. To det^raii* this point,

we use the following rather hsuristic argu.ment.

With our n-th step function we are matching the fiir-Jt 2n moments

of the unknown function with a function of extent approxiiau.tely from

-2nh to +2nh, constant over intervals of length h. The extent of our

step functions, therefore, goes up as 2n. With these functions we try

to approximate the unknown in that portion of its domain which gives a

significant contribution to the first 2n moments. This region does not

in general go up linearly with n. If this region of significance is much

smaller than the extent of the step function, it is clear that in effect

we have not enough parameters in the region of significance to graph the

function from 2n moments. Thia is why the infinite sequence of step func-

tions diverges, for we have good reason to believe that the region of sig-

nificance of our unknown function increases at a less than linear rate.

Hence our approach is to try and find a step function with 2n+l steps

such that its extent is approximately the same as the region of significance

22.1^2-1

of the unknown function for its first 2n moments. At the same time ve

want to make n as large as is feasible and h, the length of the steps,

small enough to graph the function accurately.

We start by choosing a, particular h, and proceed to apply the method

of approximation described above. But instead of using simple step func-

tions s defined by

s^ = 1 tf(.n-\}<l<(-n.^) or(n- |)<^<fn+i)

Srv = otherwise,

we take linear combinations of these with the property that the first 2n-l

moments are zero, while the (2n)th moment is not. This puts the system of

equations-that we solve at each step-into triangular form. A3 long as the

region of significance of the unknown function is larger than the exigent

of the approximation, the correction to the (2n)th moment will be positive,

that is the (2n)th moment of the approximation will be smaller than that of

the unknown function. As soon as this is no longer the case, we stop and

take the approximation at that step as our best fit for our particular choice

of the step len^h h.

For each value of q we have used several values of h, trying to obtain

as high a density of values as possible in at least the intermediate range

of X. The results were especially good in the range of q between .1 and 1.0

Since the value of h could not be taken too small (there seemed to be no

reasonable behavior at all for very small h) we could not obtain points close

to zero. However, in the range mentioned the points obtained seemed suffi-

cient to give a good picture of the function.

For very small q < .1, the behavior around zero is much more active,

the functicm acquires a steeper and steeper peak which is impossible for us

to graph accurately with this method. For q > 1, our technique works poorly

and we got fewer and less reliable, as well as less likely points.

22.50

22.50 MOLECULAB IFTEGRALS

Originator; R. C. Sahni

Analyst and Coder: J. W. Cooley

Many numerical computations have been carried out to determine the

energy levels of atoms from the SCHROEDINGER equation and the relevant

atomic constants, and the comparison of these accurately computed theoretic-

al values with the observed atomic spectra has greatly advanced our know-

ledge of the laws governing the electron shellj through tne analysis of

the hyperfine structure, it has been an important tool to determine the

magnetic moments of many nuclei.

The analysis of molecular spectra, however, has been hampered by the

fact that the numerical computations necessary to obtain, the required accur-

acy are beyond the limits of desk computing in all but the very simplest cases

(such as H„) . These computations constitute, therefore, a promising field

in which to use electronic digital computers. They are, however, by no means

straightforward. The proper selection of atomic orbits requires a great deal

of experience and thorough knowledge in this special fields careful and tedious

mathematical analysis is necessary to keep the numerical work down to what is

tolerable even for a fast electronic computer and to guarantee sufficient ac-

curacy by avoiding numerically instable procedures.

E. C Sahni and J. W. Cooley have attacksd this problem, using our

computer for the numerical work. While computer operation was supported by

Contract T)a-36-0'ih-ORI>-l6k6 , for which this final report has been prepared,

all analytic and coding work has been supported by Contract NAw 61+75 (between

the National Advisory Committee on Aeronautics and New York University)

under the terms of which technical reports will be prepared. Therefore, we

shall not report on the results of this work, but merely mention some aspects

of the computations which may be of more general interest.

22.51

22.51 Decomposition of Overlap Integrals

All molecular integrals have integrands which depend on the distances

r^ and r^ from f(fo nuclei A and B. A typical example is the overlap integral:

The meaning of the coodinat«a can beat be shown by a sketch

A ^ (j^ B

and in the simplest case, the functions -!> and li/, may be a pair of SLATER

orbitala such as :

v„ = i^At '-"
e

'4 ^^ k"*^

^.tc

The k's of "[y and Ij/, are sometirnes the same, but more often they are

different.

It would be possible, of course, to carry out the integrations "by

brute force", i-e. by computing the integrand explicitely in three-dimension-

al space for a sufficient number of points to achieve the desired accuracy.

This method would be neither attractive nor economical. Fortunately, the

angle CO is common to the A and the B systems and the integration with respect

to CD can be easily carried out. We are thus left with a two-dimensional

integral. For the SLATER orbitals, this can be further reduced to linear

combinations of one -dimensional integrals ^ A^v ^^ '^n. ,3^ f<^ exa^rvple :

1) cf. B. S. Mullikan, C- A. Rieke, D- Orloff and H. Orloff, Journal of Chem.

Phys., 17, 1214-8-1267, (19i*-9) where numerous further references are given.

22.52

Sr'Va.s.Ybis)=g^(i^t)^^(i-tf''^[A3Bo-A^lE,-A>S2 + AoB3]

k^.i-\<b

This reduction is achieved by introducing spheroidal coordinates

22.52 Computation of the Auxiliary Integrals A and B

The "maater formulae" expressing the SLATER atomic orbit overlap

integrals in terms of A 's and B 's are so simple that they can be handled

on desk computers. It is worth while, therefore, to produce tables of the

A and B integrals. Preliminary tables for n = (1) 5 and a wide range of

the argument have been computed and more extensive tables are pl8.nned for

publication. The following procedures have been employed in order to get

at least eight digit accuracy:

(i) The A (p) can be easily computed by partial integration, which

yields the recurrence formula

This procedure is numerically stable since all terms are positive,

(ii) By partial integration of the B integral one obtains

22.53-0

The recurrence formula contains both positive and negative terms and is

unstable except for large values of tke argument q.

(iii) For small values of q, B (q) may be computed from the power

series
PC •

These series are numerically stable but require much more work than the

recurrence formulae, especially if q ia not small. Experinents have shown

that the recurrence formula yields the same results, within the desired

eight digits accuracy, if q>l and n< 5, and,therefore, it will be used

for the final tables within this range.

22.53 Numerical Integration

We have seen that the overlap integrals can be expressed by the A^'s

and B 's, which are relatively easy to evaluate. Two other types of molecular
n '

integrals, viz. the Coulomb and Hybrid integrals, can be computed with the

help of the auxiliary function

where

^rv(t,T) =

1) Barnett, M. P. and Coulaon, C A- Phil. Trans. Roy. Soc. London 2^3 (1951)

p. 221

22.53.1

The computation of the Bessel functions I

difficulty. The recurrence formula

^n-l/2

n+1/2 ^""^
^1+1/2

Presents no

^n+3/2(^^ = K_, /^(z) +
2n+l

1-1/2
(2)

is convenient, and it ia stable for all positive values of z. The corres-

ponding recurrence formula for I
I

the power series
hl/2

I ,
=-(2z)

n+1/2

. n+1/2

(z) is not stable for small z. Hence

2L

172

was uaed for z < 10 and n > 1.

The integral Z p must then be evaluated by numerical integration. The

integrand ia positive throughout, except for t=o, where it vanishes like

z ; it will further decrease exponentially for x >oo . For t= r

the integrand is continuous, but the first derivative is not. Thus the

integrand has, roughly, the following shape

^ t

A number of integration procedures, such as Weddle's rule, Gaussion quadrature

and Euler'a formula, were considered, and the last one was finally chosen, as

it seemed to be not only the simplest but also the fastest procedure for a given

accxiracy. As is well known, Euler's formula can be described as integrating,

for each interval, a third degree polynomial whose values and first derivatives

at both ends agree with those of the actual curve, while the trapezoidal does

not adjust the derivative at all. Yet, the only additional terms for Euler's

formula are the first derivatives at the end points and, of course, at such

points where the first derivative is discontinuous. This was easy to code and

the results were fully satisfactory, as could be seen by recomputing the most

critical cases with narrower intervals.

22.5'*

22.5^ Coding Procedure

As usual, we first studied the question of whether to use direct

machine language or the FLINT interpretive routine. Since it was evident

that serious scaling problems would arise and that card punching would

take up an appreciable fraction of the total machine time, it was decided

to use FLINT, but to speed up the output by changing the output routine.

The flexibility of FLINT permitted a good deal of experimenting in

developing methods, and debugging was fast and easy. The numerical integra-

tion, however, required quite a lot of machine time. The tvo irinermost

loops which, of course, take up most of the running tiraft, vere then rewritten

in "direct floating point", i.e. retaining the floatiag pc5.nt arithmetics

but saving the time for interpretation and some unnessary no.rmalization by

recoding these loops in machine language. This proved ,0 cu^^ machine time

down to about one fourth without requiring too much coding time.

The normal FLINT output routine puts only two floating point numbers

on each card and punches only one card at a time. The new routine increased

these figures to three and eight, respectively. This not only reduced the

output time by appr. 6o^, but also produced a format far more suitable for

our tables.

22.60.0

22.60 NUMERICAL EVALUATION OP SOME DOUBLE AND TRIPLE INTEGRALS ARISING
FROM MESON THEORY

Originator; Hiroshl Suura

Analysis and Coding? Hans J. Maehly and Hiroahi Suura

Recent experiments on high-energy electron scattering by hydrogen

show that the proton has an extended structure, as expected from fneson-

theory, and that the measured cross -section can be fitted approximately

by assuming a certain distribution of the proton c^ge, and the magnetic

moment for this distribution. Dr. Suura has derived i'igoroua expressions

for these distributions from meson theory. Each distribution is expressed

as the sum of a double and a triple integral.

As an example we show one of the triple integrals

T/^) ^_L_ ^ ((fX cr(2; r_j 1 1

00 = J(M/;U)^H-^Jl-^^-^/^

and the region of integration is defined by the inequalities;

(q-x < y < q+x ^

0<x<b;J i50<2<t"
I

X < y < b
J

It can easily be seen from these inequalities that < q < 2b.

The integrals were approximated by sums of the integrand at points:

x= (i.|)cr1 s=l

y = (j + -)'<J > i> J- Is being integer and subject to inequalities

? (
analogous to those for x, y, z.

z = (k +|)-c^
J

22.60.1

For convenience, the same Interval J was used for q, i.e. the integrals

were computed for

q = (t + ^)'(^ ,i integer , < 1 < 2n-l

The integer n and hence the interval a vere not fixed constants but part

of the input; the code was run for various values of n and it was found

that the accuracy obtained with cT = 0.2 was fully satisfactory. The

computations were then carried out for b = 5oU and b = 6<,0.

At a first glance, the number of points for which ..he integrand
k

must be computed seems to be of the order of n , requiring about one hour

computing time. However, the integral given above as a typical example

can be written as

and CL= Ji-^k"^'
^

b=\|TT^
; C^nJT^-Z^

This decomposition brings the number of integration poiaxa down to the

order of n and the computing time to 3 minutes, excluding input and

output. This is so short that we decided to use the Floating Point

Interpretive Routine (FLINT) with an estimated running time of 30 minutes.

The times for coding, debugging and production are fairly tsrpical

for FLINT. Coding, from a finished flow chart, took one afternoon. De -

bugging was done for n=3, using the FLINT-TRACER. A few trivial errors

were readily found and corrected, all this on the evening of the same day;

machine times approximately 20 minutes. Production took place the next

evening requiring another ^-0 minutes of machine time. Dr. Suura watched

the coding for the first two integrals and then easily coded the remaining

two without assistance from our staff.

where

23.10

23.10 TRAFFIC SIMJLATIOK WITH A DIGITAL COMPUTER

Originator and Coder; S. Yo Wong

Every one of us has had the experience that the capacity of a

traffic system is determined by its weakest point. Millions may be

spent on the construction of a third lane, while the real cause of

traffic jams lies in a quite restricted area, say, one traffic circle.

It is possible, of course, to find and remedy these bottlenecks by the

method of trial and error. But it would be much more economical to re-

place at least part of this experimentation by automatic computing. The

two main difficulties hampering a computational approach are

(i) to determine the "input parameters", i.e. the expected flow of

traffic at all points and under various conditions (weekdays, holidays, etc.)

(ii) to develop a suitable "model" of the system under study in

terras of discrete variables including the mechanical properties of the cars

and the psychological behavior and reactions of the drivers.

It has been the purpose of the present study to demonstrate that a

fast automatic digital computer is well suited to carry out the actual computa-

tion after the above difficulties have been overcome. A very simple example

for which the difficulties (1) and (ii) are reduced to a minimum was carried

out numerically.

23.11 Description of the Simulation System

The read Section under study was a six lane one-way street, divided

into two three-lane sections. The dividing island had one gap which allow-

ed for changing from the right-hand to the left-hand side. Each lane was,

for computational purposes, divided into unit blocks (UB) of "unit car length"

(UCL) 3 l8'l4-" ,' while the tima step was chosen to be one second. This yielded

a speed unit of l8'l^"/sec = 12.5aph. For each time step the care were mov©^

by a discrete number of UCL's, beginning with the cars closest to the "exit"

im order to avoid double occupancy of UB's. The movement was further control-

led by some traffic regulations (such as v < 50mph) and a

23.12

certain probability distribution for the generation of random numbers

governing the input of cars, their respective speed and intention to

switch lanes.

23.12 Conclusion

The results show that the flow of traffic resembles the observed

behavior to a fair degree, in spite of all simplifications, and that the

distribution of transit times does not depend too much on the specific

set of random numbers even for rather short runs (several minutes). Much

longer runs would be required, however, for a realistic, i.e. more complic-

ated and extended road system. It is obvious, therefore, that faster

machines with larger high-speed memories would be needed to solve actual

problems. Such machines are, or will soon be available. It will be well

worth while, therefore, to further pursue this application of fast au-

tomatic computing and to focus some research on the problems (i) and (ii)

mentioned in 23-10 above.

23.20

23-20 A MIXING PROBLEM

Originator and Analyst; H. H. Goldstine

Coder: Mrs. M. Lamb

This problem is concerned with two compressible fluids, one on top

of the other in a two dimensional container with rigid walls. The only-

exterior force acting is that of gravity. At the beginning of the problem,

each fluid will be in hydrostatic equilibrium except for a small sinusoidal

perturbation of the interface.

If the upper fluid is lighter than the lower fluid at the same pressure

the problem is almost trivial. The aim of our computation was to determine

the sequence of events in the reversed case. We shall expect, of course,

that the lighter fluid will "break through" at a relatively small front and

then spread out on the surface above the upper fluid.

The problem was formulated in Lagrangian form. Accordingly, at each

meshpoint five quantities were stored, namely two apace coordinates, two

velocities, and the energy. It was found necessary to use about 600 meshpointa,

hence to store around 3000 quantities. As the new drum was not yet completed

at that time it was necessary to store two numbers (of 20 binary digits) in

each word.

In order to avoid the formation of shocks, which are not relevant to

the main study, the method of von Neumann and Bichtoyer ^was adapted to ©ur

case.

It was planned from the beginning to proceed step by step from a very

simple teat case (with the lighter fluid on top) to more realistic and more

complicated problems. However, great difficulties were encountered in form-

ulating this problem and the work was greatly hampered by the limited size

and poor reliability of the old magnetic drum. The problem was finally abandon-

ed when both Dr. Goldstine and Mrs. Lamb left this project.

1) A method for the Numerical Calculation of Hydrodynamic Shocks, J. Appl.

Phys. 21, 232-237 (1950)

23-30

23 "30 NUMERICAL UTTEGRATION OF THE NAVIER -STOKES EQUATIONS FOR
COMPRESSIBLE FLUIDS ~~

Originator, Analyst and Coder: S. E. Lam

It is attempted to obtain a numerical solution to the complete

system of partial differential equations governing the steady flow

field of a compressible, viscous and heat conducting gas in two dimens-

ions. The physical problem selected for study is the motion of a thin

flat plate moving with hypersonic speed at zero angle of attack. The

major interest of this problem is the behavior of the solution about aad

ahead of the leading edge, where no analytical solution, exact or approx-

imate, is known. The asymptotic behavior of the solution at downstream

infinity, however, is known from the approximate boundary layer theory.

The plate shall be insulated and of zero thickness, and the "non-

slip" condition on the plate is assumed to be valid. The plate is semi-

infinite.

23.31 Nature of the Solution

Since this is a physical problem, the general character of the

solution may be inferred from the experimental data. We thus expect

that the solution fields will be essentially undisturbed far ahead and

far away from the plate. A curved detached shock wave will stand at

some distance in front of the leading edge of the plate. A boundary

layer surrounds the immediate vicinity of the flat plate, on the surface

of which the gas velocity and the normal temperature gradient are zero.

At distances far downstream of the leading edge the flow field will be-

have according to the known boundary layer theory. Also the flow field

in front of the curved shock wave will be practically undisturbed. The

information to be obtained from the numerical solution concerns the shape

of the shock wave, the detachment distance of the shock wave from the

leading edge, the flow field about the leading edge, and the pressure

distribution on the plate surface.

23-32

23 '32 Equatlona Governing the Flow Field

Let the plate be situated on the positive X axis, with the leading

edge at the origin. Then

-I-

L ^c*^ > >ou) ' -J Vox- c-)/ -i V <?< °t)^ J

vhere u velocity in +x direction

V " " +y

t time

T temperature

p pressure

^ density,

y kinematic viscosity

k conductivity

and

C heat capacity
P

; = c (T)
^

k = k(T) ; V = V (T)
^ ? = P (P'"^^

are known relations.

23-33

In essence we have, therefore, a set of four non-lineaj aimultaneoua

partial differential equations for the four dependent variables, u, v, O , T.

The character of the equations is elliptic in space and parabolic in time, and

we must impose appropriate boundary conditions on a closed curve surrounding

the region of interest. The above set of equations contains three independent

variables, x, y, and the time, t. Although we are only interested in the steady

behavior of the flow field, we have been using the unsteady equations to facilit-

ate a scheme of successive approximation to be described later.

23.33 Main Difficulties

As was mentioned above, we expect a curved shock wave in the solutions.

A shock wave occupies a narrow region in which the gradients of all dependent

variables are very large. If the mesh of the flow field were made fine enough

to permit an adequate representation of this narrow region, then the number of

mesh points required would be prohibitively large. However, the structure of

the shock is of no interest in this problem. It is only required that the mag-

nitudes of the dependent variables before and after the shock can be related

correctly as a function of the orientation of the sho^i;. Actually, the exact

relations of the dependent variables before and after a shock as a function of

the shock orientation are known in analytic form. However, since the shape and

position of the shock are not known to us, -- indeed, they are the objective of

this investigation --we cannot take advantage of these relations.

Our first problem, now, is to find a difference scheme which represents

the derivatives in the equations such that the resulting system of difference

equations is capable of yielding correct relations of the dependent variables

before and after the shock for any shock orientation with a very coarse mesh,

perhaps with only two or three mesh points. Furthermore, the difference equa-

tions must be stable in flow regions away from the shock.

The second difficulty is the correct choice of the initial and boundary

conditions. If the mesh size selected is fine enough to be stable, yet coarse

enough so that, with a reasonable number of mesh points, the top, front and

downstream sides of the rectangle can be effectively considered to be y = +oC,

X = -cxD, and y: = + 00 , respectively, with the origin at the leading edge, then

the boundary conditions in the steady state would be essentially those described

23.3^

in 23«31« However, since we choooe to approach th© steady state solution

from an initial condition through a transient calculation, the appropriate

boundary conditions to be imposed during transient are not known. This pro-

blem is still being studied analytically.

23-3^ Simplified Problem

In order to gain experience and insight concerning our system of dif-

ferential equations, a much simpler problem was proposed and coded as a trial

problem. The dependent variable T, was assumed to be constant throughout

the flow field at all times, thus reducing the number of dependent variables

to three. Physically this corresponds to isothermal flow, or a gas of infinite

heat conductivity. This eliminates the possibility of a shock wave, therefore

the problem is much simpler.

The flow field is represented by a 32x32 grid, with the flat plate

situated at the bottom of the rectangle. The leading edge is situated at the

middle, and the flow is coming from the left.

The computation was started with the fictitious initial state of a uni-

form flow defined by u = l/U, v = and p = \/h for the entire region.

Using the time -dependent equations, one can calculate the flow field at

t = n+1, knowing the flow field at t = n. For the initial condition of uniform

flow the gas velocity on the plate is non-zero. As the computation begins, the

boundary condition of non-slip, i.e. u = on the plate surface, is gradually

imposed. We used u , = u -l/32, with u = lA and u = for n> 8. Then+ln'' o' n -
values of u = l/U, p = lA, v = are held rigidly constant with time on the

upstream and top sides of the rectangle. On the portion of the bottom side

of the rectangle in front of the leading edge, we require v = and -^ = v~ = 0*

The purpose of the trial problem is to study the stability of our difference

equations and to obtain information about the appropriate boundary condition

for the downstream side of the rectangle.

If n is the time index and k and m are the x and y space indices, res-

pectively, then the difference schemes to represent the partial derivatives used

are "

23-35

where V stands for any dependent variable. We always chose idx = ^y, but

ZLx/z^t was left free for adjustment as required for stability.

There is still very little known about the beundary condition t« be

applied on the downstream side, and before we know the analytical asymptotic

solution during the transient, any inaccuracies in the boundary condition

will generate errors which shall propagate upstream. In the trial runs

d V /<3x, -0 was tentatively used as a first approximation.

Ay".
The result of the trial runs for 2 = 2 showed signs of instability

in the difference scheme used. After about six or eight time cycles, it was

found that scattered negative values of u, v, and p began to show up in the flow

field, probably indicating numerical "overflew" in the machine, i.e. physically

unreasonably large values. Up to this time cycle the errors from the approximate

downstream boundary condition propagate about three mesh points upstream.

23*35 Flans for Further Investigations

It is planned to continue the search for a stable difference scheme for

©ur system of partial differential equations. We hope to succeed in eliminating

the source of trouble at the downstream boundary by finding and using the analjrti-

cal as3nnpt©tic solution for x —> + oo. The present knowledge of the appropri-

ate representation of partial derivatives in this non-linear equation system is

very scanty and we have been forced to use trial and error methods. If a stable

difference scheme can be found, the computation of solutions to this problem should

be fairly straightforward. The experience and insight gained in solving this

problem should help us to attack successfully a variety of compressible viscous

flow problems in the near future.

23.1^0

23.*^0 AUTOMATIC NETWORK ANALYSIS

Originator: S» Y. Wong

Analyst and Coder; M. Kochen

The analysis of complicated electrical networks, for direct or

for alternating current, has long been considered a stronghold of

analogue computers since the construction of such network analysers

is pretty much straightfoward. The application of digital computers,

however, offers the great advantage that changes in the parameters

or even in the connections can be made much faster and easier, once a

general code has been prepared. It was the aim of the authors to

investigate the practicality and limitations of digital computing
*)

in this field. The method is explained in a Technical Beport. '

We therefore limit ourselves to a necessary correction..

As can be seen from page 9, "the "power dissipation" P is a quadra-

tic function of the voltages w^ The Taylor series on page 11 terminates,

therefore, with the quadratic term and so far no term has been neglected.

The statement on page 12 "Because the Taylor series was truncated

after two terms, the above expression is only a first approximation to

^V " i-B, therefore, wrong; actuallv ^V was deliberately chosen to be

parallel to grad P.

) M. Kochen and S. T. Wong, Technical Beport No. 55-02, August 1955

23.50

23.50 A TABLE FCB CUMULATIVE BINOMIAL PROBABILITIES

Originator: J. W. Tukey

Coder : H. F. Trotter

The probability that in n independent trials of an event having

probability p of "success" the number of successes will not exceed k is

the cumulative binomial probability

k
P (p, n, k) =2Z (?) P^Cl-P)"""^

This function is not well suited to ordinary interpolation procedures

and since it has three arguments extensive tables are necessary. The

object of our computation was to produce a short table in a modified form

such that simple interpolation will give results of reasonable accuracy.

Define K(p, n, k) , the "equivalent normal deviate", by the equation

J_.(''^
-.<%

Then

N(p, n, k) = 2
I

\l (k+1) (1-p) -v/(n-k).p"
}

is a fair approximation for K(p, n, k) and is used as an auxiliary variable

for the table listing values of K-K as a function of p, E = np^ and N, with

the respective ranges:

p = (0.1) 0.5

N = -1+ (0.5) -t^

2h/-E = 1 (1) 2k

As a result of our transformation, this rather coarse mesh will permit

fairly accurate interpolation for most values of p, n, k, with the exception

of a small region where a finer mesh would be desirable.

23.60

23 '60 Experiments in the Uae of FLINT

During the months of October, November, and December in both 1955

and 1956 experiments were carried out to test the effectiveness of the

FLINT language as a tool for the inexperienced coder. Graduate and un-

dergraduate engineers from Princeton University, without prior experience

in digital computing, were encouraged to code two standard problems in

order to find out what difficulties they encountered. They coded the

solution of n simultaneous linear algebraic equations and the intergration

of an n order ordinary differential equation (Milne, initial condition).

These routines are now available as service routines.

The experiments showed remarkably fewer coding errors than have been

observed in machine language codes for other machines — apparently attribut-

able to a lack of exceptions in the FLINT language. The errors that did

occur suggest desirable changes for any future external language that may

be devised.

23-70.0

{

23-70 HtSTOEICAL EPHEMEEIS FOR THE YEAE -600 to

Originator: Otto Neugebauer and A- Sachs

Analysist and Coder; Bryant Tuckerman

Among the tools of historical research ia the possibility of est-

ablishing chronology by means of ancient astronomical records. This

technique applies whenever it can be shovm, from modern astronomical

theory, that an observation or configuration recorded in an ancient

text could only have occured on a particular date. This dates the

observation, and hence generally the text, the calligraphy^ and any

contemporary historical and social records in the text.

Some ancient observations have even been precise enough to furnish

improvements in the values of some astronomical quantities - the empirical

secular accelerations - which cannot be predicted from theory.

Heretofore methods have not been available for directly choosing

possible dates from the given observations. Instead it has been necess-

ary to choose provisional dates, compute the positions of the desired

bodies from existing theories, compare the results with the recorded observat-

ions, and use the results of the comparison to estimate a new provisional

date, proceeding in this cycle until a satisfactory fit is obtained.

Each actual computation of a planetary position has been a fairly

laborious process. A book by P. V- Neugebauer, later slightly amended

by some improved coefficients, organized the procedures into a systematic

set of tables. While these tables were a real advance they still left a

large amount of calculation to be done in each dating problem, and the

computation of a single position might still take about twenty minutes

for a person acquainted with the process.

There are a large number of astronomical records and tables surviv-

ing from the region of Babylon in the period from -600-0. Professors 0-

Neugsb&uer and A. Sachs, faced with the problem of dating these records,

proposed to Dr. Goldstine of the Electronic Computer Project the production

of an Ephemeris -- that is, a table of planetary, lunar and solar positions

at regular intervals -- for the period in question. With the ephemeris

V. 23.70.1

available, the dating of a record would be reduced to lacating the desired

configuration in the ephemeris by inspection.

This problem was thought appropriate for the Electronic Computer

Project for several reasons. Primarily, it was an example of a novel

and useful application; while the amount of computation involved was of

such magnitude as to be completely impractical without an electronic computer,

it was of considerable but not excessive size on our computer- Secondly,

it presented a number of interesting problems in high-precision calculations,

error analysis, information handling, and methods of checking. Finally, the

results were of a non-commercial nature and would be of permanent scientific

value

.

A thorough analysis of the problem was made from original sources.

It was decided to use five-day intervals for Mercury, Venus, and the Moon,

and ten-day intervals for Mars, Jupiter, Saturn, and the Sun. Except for

the Moon the latitudes and longitudes are given in units of .01 , and the

intervals chosen are fine enough to permit interpolation with adequate accuracy

by means of Everett's formula (for which a simplified method of use will be

furnished). The positions of the Moon, whose motion is too rapid to permit

satisfactory interpolation if a reasonable time interval is chosen, will be

given in units of .1 .

Work on this problem was commenced in the summer of 1955* It has

inspired and been paralleled by the development of a number of coding aids,

such as an assembly routine, a system of computer operation using "control-

cards", and an assortment of utility sub-routines (see Part I). The problem

is expected to enter production in the summer of 1957'

It is anticipated that the ephemeris, when produced and thoroughly

checked, will be published by a scientific society as a monograph of about

300 pages of tables with accompanying text explaining the method of computa-

tion. To complement this publication, a Technical Eeport may be prepared for

Contract Nonr-1358-(03) , by which all mathematical analysis, programming and

coding has been supported.

ADDENDUM:

The following two Technical Reports were issued under Contract No

DA-36-03l<~ORD-l6li-6

:

Technical Report No 56 - 01, January 1956:

"A METHOD FOE FINDING THE GENERAL SOLUTION TO AN ARBITRARY NON-SINGULAR

SYSTEM OF LINEAR EQUATIONS INVOLVING n-^/2 MULTIPLICATIONS"

toy

J. Paul Roth

and

Technical Report No. 56 - 02, April I956

"ALGEBRAIC TOPOLOGICAL METHODS FOR THE SYNTHESIS OF SWITCHING CIRCUITS

IN n VARIABLES"

J. Paul Roth

This work is not included in our Final Report since full disclosure of

the results was made in the Technical Reports and no machine operation

was involved

.

r^-*'*; .'•'.?

(18)
51707

istitute-for Mvanced Study^-

ELectronic Computer Project.

^_Einal report-«B-PJ'€>5«e*-«^«^

DA-36-O3U-ORD-I6U6.

Institute for Advanced Stody

Math.
- Nat. Sci. LilKary

pjinceton, N. J. 08540

