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PREFACE

The following report has been prepared in accordance with the

terms of Contract No. riA-36-03^-ORD-1023 and constitutes the Final

Report called for under the terms of that contract. It is divided

-V into two parts (I and II) covering the salient engineering work and

" the mathematical investigations for the period July 1, 1952 through

June 30, 1953. The actual carrying out of the calculations indicated

in Part II was done under the terms of the contract. The mathematical

preparations, i.e. the numerical analysis, progreumning and coding

'^ were carried out under the terms of Contract No. N-7-ONR-388, T. 0. I

r and Contract No. N-6-ORI-139, T. 0. I between the Institute for Ad-

vanced Study and the Office of Naval Research. Since the objectives

of the three contractt are substantially overlapping it was felt

desirable to include all this material in one report. In this fashion

it is hoped to give the maximum possible information to all interested

agencies.

f^ John von Neumann

^ Project Director

Institute for Advanced Study

x;^
fT

K
38651
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I. INTRODUCTION

This report describes the operation of and engineering improve-

ments on the electronic computer at the Institute for Advanced Study

during the period from 1 July 1952 to 30 June 1953- The engineering

discussion is restricted to those features of the present machine which

were added during this period. The underlying design philosophy and a

full technical description of the machine prior to this period is given

m the final report on Contract Nos. W-36-03l4--ORD-7l4.8l and DA-36-03l^-

ORD-19 (Project No. TB 3-000? F)

.
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II. SUMMARY

At the beginning of the period covered by thia report the computer

was in operation for two shifts each weekday using teletype tape as an

input -output medium. In October 1952 a regular series of routine tests

wes instituted to provide a daily check on the operating state of the

machine. In November 1952 a punched card input-output system was placed

in operation using an IBM type 51^ reproducing punch to accomplish a ten-

fold increase in loading speed and a twenty-fold increase in punch-out

speed. A 20kQ word Magnetic Drvun memory was developed and operated on

a limited test basis in May and June 1953*
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III. ENGINEERING WORK

A- IBM Input -Output and Magnetic Drum.

1. IBM Reproducer (Model ^ik) . In order to be able to

transfer information into and out of the machine at a rate faster than

that obtainable with the teletype equipment it was decided to incorpor-

ate a standard IBM 51*+ Reproducing punch as a part of the input-output

equipment. Using ko columns of a standard IBM card and allowing each

row (i.e. each emitter position) for a different Uo-digit binary word,

we can pack twelve IfO-digit words to a card. At a speed of 100 cards a

minute we are then able to read in or punch out a complete memory load

(1021*^ words) in less than a minute.

Magnetic Drum. In order to increase the size of the available

memory, it was decided to add a 20i^8 word secondary magnetic drum memory

to the machine. This auxiliary memory communicates only with the main

Williams memory so that under orders from the main control, information

is read into or from the auxiliary memory, from or to the Williams memory.

A magnetic drum five inches in diameter had been built earlier and is

described in the "First Progress Report on a Multi-Channel Magnetic Drum

Inner Memory for Use in Electronic Digital Computing Instruments". A

simileo- drum eight inches in diameter was finally built and is presently

being used.

This section then shall cover the complete circuitry for the IBM

and Dnun equipment.

Since use of these two pieces of equipment are mutually exclusive

events (i.e. at any moment only one or the other operates) much of the

new circuitry is shared by both units. For instance, the digital
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information for the IBM and Drum is obtained from exactly the aamo place

in the machine bo that only one information cable connects both of these

units to the machine. Similarly, since the control functions required

for the operation of both the IBM and Drum are identical (this will be-

come clearer as we go on) one control circuit operates both (except for

such things as processing the synchronizing signals from the timing

tracks of the drum and the emitter pulses from the IBM)

.

We shall cover first the circuitry for the digital information.

To do this we shall have to describe the processes of reading and writ-

ing onto the drum and the method of punching and reading IBM cards

.

2. Drum recording heads . Early tests showed that a pack-

ing of 50 digits per inch is very feasible (and with proper adjustments

75 digits per inch can also be reliably handled) . With an eight inch

dr\un and a spacing of approximately 45 digits to the inch, we pack 102^^

spots around the periphery. To attain a capacity of 20^8 IvO-digit words

it was decided to use 80 track* (i.e. two groups of ko each) with 1024

spots around each track and to switch as required between the two groups.

In order to arrive as soon as possible at a workable solution com-

niorclally available heads were used. Several types of heads were tested

as follows: The magnetic material was first polarized by letting the

drum rotate while biasing the magnetic coating with D-C througjh the head.

Then the drum was stopped and signals with the opposite polarity and vary-

ing current strength were recorded in various positions. The head was

then connected to an amrolifier and the drum rotated. The graph below

shows the amplitudes of the reading pulses as a function of the recorded

current, obtained with Ratheon head RX3009»
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Oiifpuf
Signal
mv.

roo 150

Eccoi-ding Curren+
ma-

Figure 1

One half of the head was then revound with five times the number

of original turns, and essentlallj stronger signals were obtained. How-

ever, the resulting higher inductance would have necessitated voltage

during writing that would have been too high for the simple writing

circuits proposed. In any case tests dons at the same time with heads

described below, showed them to be better adapted for our use.

Tests on the Brush heads of the BK-I500 series gave the following

results.

Ov^tput

Signal
mv.

5 10 16 1-0

Eecord'vng Current
mc^.

Figure 2
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It waa decided to use this type of head, and six multiple units

of lU heads each (or Qk total tracks) were obtained (these are standard

units except for a two mil air-gap) . In addition, a multiple unit with

three heads was obtained for Timing-Track use. For oi)eration, the

tracks are originally erased to a magnetically neutral position (by a

continually decreasing A.C signal) and and 1 information are stored

on the drum by pulses of opposite polarity.

3. Magnetic materials . Two types of magnetic materials

were obtained from the Minnesota Mining and Manufacturing Company, a

black iron oxide and a red iron oxide. It was found that the red iron

oxide saturated at lower fields but gave weaker output signals than the

black material. The signal-noise ratio was the same for both materials.

By noise here is meant the output voltage obtained after erasing a track

with currents that just produce saturation. The red oxide was selected

mainly because of the smaller writing currents required to produce satura-

tion, the smaller reading signals not being so great a problem.

For coating, the drum was first slightly etched with dilute nitric

acid. Then a primer was applied by allowing the drum to rotate slowly in

a lathe while the spraying gun was moved automatically across the drum.

This priming coat then was "baked-in" by heating with an infra-red lamp

for several hours. Finally the oxide was sprayed on to a thickness of

about one mil but waa not "baked-in", as per supplier's instructions.

Experiments showed that the thickness of the magnetic coating was not

too critical, except that for thicknesses above two mils the tracks

became difficult to erase.

k. Pulsers (or writing units) . Information from the machine
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ia fed into the pulsers which in turn issue writing pulses at the

appropriate times. These times are defined by the synchronizing pulses

derived from the timing tracks. The heads obtained from Brush had the

center tap available which made the pulser circuit extremely simple.

+160 f ' "'head

r ',

t — I I
~i

I

OV ^0

+W . r &«:<>•! c 2 ML-

'

J I >
-I tref. = -lOv

-50 '

'

.-ZOK

zxi-aAU? I

-JOO

Figure 3^

The pulser is essentially a transfer gate with three inputs. Two

12AU7'8 comprise the tube complement of each of the ko pulsers. During

standby the grids of tube 2 are at about plus 20 volts, so that tube 1 is

completely cut-off and no current flows throu^ the heads. During a Sync

2ML pv^se the grids of tube 2 drop to about 30 volts negative, so that

the current is switched to one or the other half of the first tube and

therefore through one half of the head. The left grid of tube 1 has a

fixed voltage of -10 and the right grid has a level of volts for a

zero digit and about -30 volts for a one digit. For a zero then at Sjmc

2ML time the right half will conduct and for a one the left half thus

writing the appropriate information on the drum.
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The writing current of 15 ma is enough to drive the magnetic

material from saturation in one direction to saturation in the other.

The use of the full double triode to act aa a standby tube is a matter

of history. Initially it was planned to use 30 ma writing current (and

5687 tubes instead of 12AU7'fl) and under our design considerations for

tubes a single section could not handle this amount of current continu-

ously.

5- Reading from the drum - Amplifier . Experiments showed

that an amplification of about I5OO is necessary with the head and mag-

netic material chosen. The simplest solution seemed to be a condenser-

coupled two-stage amplifier using a double triode. Several amplifiers

with different tubes were built. A 12AX7 amplifier was then adopted —

circuit is shown below. The amplifier does not have very good high

frequency response, but it was felt that this would not be a serious

drawback, since even if the packing of the drum could be increased later

by careful adjustments of the heads, the heads themselves and not the

amplifier would be the limiting factor. In this case the drum would

have to be run at a correspondingly slower speed.

+ioo

X

1

420- ^tqK

\'(.r\K7

1

n
L_-

Line

E-rtf.

Figure k
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6. Reading and Punching IBM cards. There are two feed

unite in the IBM 51^ reproducing punch -- the read unit and the punch

unit. Cards may be fed Into either or both of the units according to

the operation being performed. The relation of the two units to each

other, and the sequence in which the cards pass the operating stations

in the two units is indicated below.

*
'~ -^ *- ' - -^f^ ETL-^-r-

—

r.

!?ep<"0. Coirip.

Bru%Vi Brush

RtAO

S+QCker

A __/___ £^K_, ._

Punch 7
Dies //

Brush

PUMCH

Stacker

Figure 5

Cards fed in the punch unit first pass the six punch X brushes.

The following station is the punching mechanism, consisting of 8o pxinches,

or one per card column. The card passes the punches with its "12" edge

first, so that all the appropriate columns of the card are punched in

their "12" position first, followed by punching in the "11" position,

etc., up until the last or "9" position. Thus the caxi is completely

pvinched in twelve steps of the card cycle. A card passes the X brushes

and punch dies during one card cycle as it passes through the unit.

The next and last station in the punch unit la the Punch brushes.
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A caxA passes tlie punch brushes on the next card cycle as it passes

through the unit. Thus when the "5" position of the first card is being

read by the punch brushes, for example, the "5" position of the caxd im-

mediately following is under the punches.

Caxds fed in the reading unit first pass under the read X brushes.

At the following station are the 80 Reproduce brushes, or one for each

card column. A card passes the X brushes and reproducing brushes on one

card cycle as it passes through the read unit. The next and last station

Is the 80 Compare brushes, or ag^in one for each column of the card. The

card passes the compering brushes on the next card cycle, as it passes

through the reading unit. Thus, when the "5" position of a card is pass-

ing over the Compare brushes, the "5" position of the card Immediately

following is over the Reproduce brushes.

When both units are used together for any operation, the cards feed

simultaneously through the two units in such a way that at the same time

that the "5" position of a card is being read at the Reproduce brushes the

"5" position of another card is being punched at the punch unit. As the

ceo'd In the reading unit passes on to the Compare brushes, the card in the

punch unit passes on to the Punch brushes — and at the time that the "5"

position is being read at the Compare brushes, the "5" position of the

other card is being read at the Punch brushes.

The Comparing unit of the Reproducer makes it possible to compare

the punching in two cards (one in the read unit and one in the punch unit)

for purposes of verification. When on "verify" if the punching in the two

cards is different, the machine will stop and the comparing indicator unit

will point out the column(s) in which discrepancies exist.
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7- Digital Information Circuitry . All the dlglta of a

complete word are read from or written onto the drum at the same instant

from terminal equipment in the main machine which is ko digits "wide" . As

noted above the drum has two groups of tracks {kO tracks per group --or

a total of 80) . Therefore it is necessary to switch between one or the

other group. Further, the sane heads are used for both reading and writ-

ing so we must also switch the heads to the appropriate circuitry for

either case. Since the magnetic drum forms an auzlliary memory to the

existing high-speed Williams memory, speed is not of primary concern.

Approximately 200 milliseconds is the total time required to transfer a

complete memory load to or from the drum (the drum rotates at approxi-

mately 600 RPM) . Since the necessary switching indicated above appears

rather bulky and complex if done with tubes it seemed rather reasonable

to tolerate the relatively slower switching facilities of relays (adding

25 milliseconds or ao to the total time) . Therefore IBM "k point" wire-

contact relays were obtained and used for this purpose.

To read or write kO digits simultaneously requires kO Amplifiers

and i4-0 Pulsers . The required switching between groups of heads and between

amplifiers and pulsers for reading and writing, respectively, is indicated

in the drawing of the Digital Information Circuitry above (Figure 6)

.

The output of the Digit Eesolver in the main machine is a high

impedance source that feeds the Green Gates of R . This is an excellent

place to either remove from or introduce Information to the machine.

With E- cleared the output of the Digit Rasolver displays the

information held in R . After an RII -Load-Clear order, then, the output

of the Digit Resolver displays the binary number just taken from the given
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Williams Memory position. A cathode follower hooked on to the digit

reaolver output (B.S. relay operated) then pipes this word over the

digit information cable to be recorded either on the Drum or IBM.

With the B.S. relay deenergized the cathode follower on the digit

resolver output looks electrically like a diode, and in this capacity

can only pull the digit resolver negative. To transmit a word to the

machine from the Drum or IBM, then, it is only necessary to arrange that

the output of the digit resolver (R^ + R ) be zero (positive) in every

stage, and let the digit line fall (negative) in only those stages in

which a one is to be presented. Under these conditions the correct

number is impressed upon the green gates of R so that a simple Green

Gate Accept followed by a Zig-Zag will bring the number into R^ from

where it is stored in the correct address in the Williams Memory. To

insure that the digit resolver output is zero at the proper moments , the

Complement Gates (from R ) are nulled throughout the entire order and R^

is precleared before each new word is brought in. Of course, the words

brought in over the digit lines are obtained from the reading amplifiers

of the Drum or the Reproduce brushes of the reproducer.

To elaborate then, we see from the drawing that a single wire is

used (per digit) to serve the multiple purpose of reading into or out of

the drum, or into or out of the IBM. At the "bumper atrip" (output of

the digit resolver) the cathode of the triode acts as a terminal point

for the information wire that connects through a cable to the external

equipment. During normal operate (or compute) the plates of all these

li-O bumper strip triodes are returned via a relay point to -20 volts , so

that all these tubes operate as diodes (the grid acting aa the plate)

.
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Hovever, the diode la cut-off since the upper level of its grid is bumped

at ground, and the cathode of the bumper strip triode is maintained at

about +10 volts. Thus during "Compute" the external circuitry is com-

pletely dissociated (electrically) from the main machine-

a. Punching out to the IBM . (Note that for vrritlng

out on the drum or IBM the B.S. relay is energized making the bumper strip

triodes look like full-fledged cathode followers piping information from

the output of the digit resolver out onto the digit lines.) For this

operation relays BS, IBM, IBM^, E and others are energized. With the

cathodes of the 5687 "punch relay" tubes grounded this tube responds to

the information on the digit line, operating the fast acting relay in

its plate which in turn, via the Summary Punch Cable of the Reproducer,

controls the punch magnets.

b. Writing on the drum . For this operation relays

BS, E^ , Rrj/op a-n<i others are energized. At Sync 2ML time the information

residing on the digit lines is written onto the drum aa previously discussed.

Note - Sync 2ML signals come only during MD write orders.

c. Reading from the IBM . For this operation relays

IBM, R^ and others are energized. Each read brush from the reproducer is

connected, via the summary punch cable, to an inverter which makes a posi-

tive-looking "1" coming from a read brush (hole in the card for a 1) into

a negative -going "1" in order to feed the digit line in the correct sense.

For reading into the machine from either the drum or IBM, the register R

is precleared to I's (green gate transmits O's) and the bumper strip tri-

ode is made to look like a diode. If a digit line is negative, then the

output of its corresponding digit resolver is made to look negative, and
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that digit in E is not turned into a at green gate. However, a

positive digit line will cause its corresponding digit in R to turn to

a at green gate. The network in the grid circuit of the read brush

inverter insurea that during all tlaes other than an IBM read order, the

inverter conducts and therefore presents a negative signal to its cath-

ode follower, so that it is "out of the way" for other operations.

d. Reading from the Drum . For this operation

relays R^, Kp/yp and others are energized. Reading a previously-stored

"0" from the drum will result in a positive signal (and from a "1" a

negative signal) at Green Gate time so that as in (c) above the correct

information is gated into R .

To repeat then --to read out of the machine, E, is cleared to

and after an RII Load operation the digit resolver output holds the

number to be "taken out", either to be translated in the relays for IBM

punching, or translated in the pulser for writing on the drum. For this

process of reading out of the machine the plates of the bumper strip

triodes are placed at plus 110 volts so that they act as cathode fol-

lowers to drive the digit line according to the appropriate information.

To read into the machine, the output of the digit resolver is made

to looklike zero (positive) so that information placed on the digit line

by the read brushes of the IBM or the reading amplifiers of the drum, can

be accepted into R at green gate time, zig-zagged into E^ and stored

away in the Williams memory.

8. Sync Tracks . There are 102^ locations around every

information track, at which information is stored. It is necessary to

know when a head is exactly over any one of the 102^ spots so that we





I-16.

may read or write at that spot, as the case may be, at exactly the right

moment. To control this, a separate "sync" track (and head) Is provided

which has 102^- essentially equally spaced spots magnetically scribed

airound its periphery. The sync head signals when it is exactly over one

of the 102^ "sync" spots, and it is only at these tiasi that any reading

or writing operations are done on the infornatlon tracks. That Is, all

tracks are so ^tled together" that when an output pulse is obtained from

the sync head we know that all other heads are in such position ("llned-

up" on a complete to-diglt word) that we may read or write at that Inatant.

The wire narked Sync 2lfL (to the pulsers) is the output of the sync head

amplifier after appropriate shaping and gating.

Just knowing when any spot is exactly under its reading head li

not enough. We must also know when any partioular spot it ezaotly under

the reading head. That is, we must keep traok of the addresiea of every

spot. This problem Is discussed below.

Since the drum will be used to load or unload the hlgber ipeed

William's memory it seems that the most flexible type of operation would

be as follows: Allow the drum to have connand of the machine (i.e. by

code), reading out of, or writing Into the Wllllam't memory a nuidber of

words N, starting at any position in the William' i asmory. This would

be either to or from the magnetic drum, again itarting at any position on

the drum. The number N could be specified directly in the code or else

an Iterative routine could be made whereby one word ii transferred at a

time, the code then calling for the next word, etc. The first method

would be difficult to handle because of the address requirements. That

is, the order would require 10 digits to specify the starting William's



:



1-17.

address, 10 digits to specify the starting drum address, and 10 digits

(or less, depending upon how large N could be) to specify the number

of words N. This would require the equivalent of three orders or one

and a half words just to specify the one order. This would be very

awkward to handle circuitwise. The second method indicated above could

be handled in two ways -- neither of which seems too desirable. We

could handle Just one word at a time — that is, oi)erate on one word,

then have the code determine the appropriate addresses for the next

word, resynchronize the drum, etc. word by word. As noted above, syn-

chronizing the drum for operation requires the switching of appropriate

relays for either group of heads and for read or write. To s3nichronize

for each word would not only be wasteful of time but would reduce the

expected life of the relays by excessive cycling. However, for this

method, the address requirements would not be so severe since complete

specification of the order would require only 20 digits (10 for the

starting William's address and 10 for the starting drum address). This

could be rather simply handled circuitwise in two half orders or one

full word. As an embellishment of the last method we could transfer

words one at a time but maintain the synchronization between words if

we had special orders to define the beginning and end of a transfer of

N words by iterative code. The requirement of these special orders

makes this method undesirable.

The method actually adopted is a combination of the above methods.

It did not seem necessary to allow N (the number of words handled at one

moment) to take on any integral value between 1 and 10214- . Without much

loss of flexibility it seemed as though we could restrict N to take on
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only values which were some multiple of another number B, which we call

a block. That is^ the minlnnim number of words which can be communicated

in either direction is a block B, but we can allow any number of these

blocks to be transmitted at one time (up to a full memory load or 102^*

words) • Considerable discussion bore out the fact that a number B as

high as 32 did not seem unreasonable. Using this figure, address require-

ments are now 20 digits: 10 digits to specify the starting William's ad-

dress, 5 digits (i.e. to be able to specify any number from 1 to 32) to

Bpeclfy the starting block number on the drum, and 5 digits to specify

the number of blocks to be handled at one time (again up to 32) . This

total of 20 address digits can be easily handled in two order spaces.

The magnetic drum now needs not only a track of 1021*- synchronizing

pulses around the drum (as noted above) but also something special to

denote every 32 word, to be able to detect the beginning of each new

block. Also we must be able to identify the addresses of each block so

that we may synchronize on the correct block. Two obvious ways of doing

this are Indicated in the sketches below.

^)
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As indicated in the first sketch we may use five other sync tracks

(besides the one mentioned above) with magnetic pulses so laid out along

these five tracks that at the beginning of each new block the output of

these five reading heads will have in binary form the number of the block.

This information along with the number of the block to be recognized fed

into a coincidence circuit would be sufficiem; ror proper synchronizing.

As indicated in the second sketch, another method would be to use one

extra sync track with a marker magnetically scribed at the beginning of

each block. These marks would be counted in an external counter circuit,

so that the counter then keeps track of the block addresses. Component

and circuitwise the selection of either system is not too exciting as it

stands. However, one other fact enters which rules in favor of the latter

system.

So far we have discussed only the requirements for the magnetic

drum. However, the case for the IBM order is exactly the same. We read

or punch only an integral number of cards, so that when we operate on N

cards, we can say that we axe handling N blocks of 12 words per block.

To count the number of cards processed we could again either count the

cards in an external counter, or we could put identifying numbers on

each card. This latter system, however, is not only wasteful of card

columns but also is inflexible in the sense that existing cards might be

reshuffled into new decKb in which case the number punchings become mean-

ingless.

For this reason, an external counter system was adopted. Two sync

traces axe required for the drum, then, one to define the position of

every word around the drum (called aync 2) and another to define the
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beginning of each block (called sync 1) . In the reproducer the "Emitter"

plays the role of the Sync 2 of the drum, in that every time one of the

twelve poaitlona of the card is in a poaition to be read or punched the

emitter gives out a signal (there are twelve emitter signals per card).

Another cam in the reproducer labelled P3 plays the role of the sync 1

track of the drum in that it signals the end of each card (or block)

.

For a complete memory load we must use 102^/l2 or 86 cards. To specify

any number of cards between 1 and 86 requires 7 binary digits, so conse-

quently a seven digit counter was used, even though only a five digit

counter would be required for the drum. Note that in the case of the drum

the counter is used twice per order. Timewise, the operation of synchron-

izing on the proper block comes before the operation of counting the

number of blocks to be processed. Therefore, after synchronizing, the

counter is cleared and used again for counting the number of blocks to

be used. Of course, in the IBM case there is no equivalent process of

synchronizing on the proper card, since we are forced to take the next

card in the deck as it comes.

9. IBM and Drum Orders . We noted above that the complete

drum or IBM order requires two complete machine orders (in order to buy

enough address space) . We shall briefly discuss the requirements and

disposition of these orders. In what follows, for simplicity we shall

refer mainly to the drum, although almost whatever is said also applies

to the IBM.

Starting at a given William's address, the 32N (N = 1, 2, ..., 32)

words operated upon will be written at or read from the consecutive

Williams' addresses starting with the first given position. That is, at
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any point In the process the next William's address will be obtained

from the present address by adding a 1 to it. The present Dispatch

Counter in the machine performs Just this type function so that it was

deemed desirable to use this unit for such a purpose. Normally the

Dispatch Counter keeps track of the last position (plus one) in the memory

which was regenerated, and also the address (plus one) from which the last

order for the machine was obtained. In order not to interfere with the

ordinary processes of regeneration, it was desirable to use the order

rank of the Dispatch Counter for our purposes. The normal performance

of an MD order will be for the machine to "stop", the external MD cir-

cuitry to take over control of the machine until the operation is com-

pleted and then revert the control to the normal machine channels so that

it may go on automatically. Of course, for the machine to go on automat-

ically it must have available a memory position from which to get its next

order. However, use of the Dispatch Counter in the way indicated above

would wipe out this memory of where to carry on from. One way around

this is to separate the two orders required for one complete MD order

into different words. The first oraer to appear would be a sort of prim-

ing operation (to be specified below) to prepare the magnetic drum cir-

cuitry so that when the second order appears later on it will be ready

to completely execute the operation. This separation of the two orders

into different words allows us to place the second order into the first

phase of an order pair. This is followed in the second phase by an

ordinary Transfer Control order, which allows the machine to carry on

automatically after the completion of the MD order in the first phase,

by allowing the machine to transfer control to the address accompanying
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the transfer order.

So far then we have arrived at the following disposition of the

two orders comprising a complete MD order. The two orders shall appear

in different words; the second order to appear in the first phase of a

word followed by a transfer control order; the first order to appear in

some preceding word in a way not yet specified. From hereon in we shall

refer to the first and second orders as orders A and B- V7e must have

some comibination of digits in orders A and B that sets them apart as MD

orders. The second digit of the ten available for the order code was

previously not used and had been arbitrarily made a 1 in all codes. It

was decided to use this digit to specify MD operation, and further, in

order not to obsolete the existing tapes it was specified that a in this

position shall indicate a MD order. The presence of this zero digit in

order A and order B shall be required to initiate different functions;

namely, for order A the priming operation (not yet specified) and for

order B the actual carrying out of the operation. It would be easiest

to detect these two f\inctions based on the presence of the same zero

digit in each order if the zero appeared once in one phase and then the

other. Since the execution order is a first phase order, then the prim-

ing or A order is made a second phase order.

To distribute the 20 digits of address required between orders A

and B, two possibilities would be to put the starting Williams address

(10 digits) in the A order or the B order. The first possibility leads

to far greater complications thfl.n the second- The priming or A order

has no function in life other than to cause the priming address to be

stored in a 10-diglt register in the MD circuitry. If it were the
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Vllllama address that was stored In the A order, then when we arrived

at the B order we would nave to be able to communicate this address back

to the Dispatch Counter while at the ssune time would have to communicate

the address of order B to the drum circuitry for synchronizing to the new

block, and detecting the proper number of blocks. Circuitry already

exists in the main machine for communication between the first and second

phase addresses and the Dispatch Counter (called B^ gate) so if we put

the stetrting William's address in order B, and the ateurting-block number,

and number of blocks in address A, then all we need is the external 10

digit register to store the address of order A. Althoug^h it la true that

communication also ezists between the second phase address and the Dispatch

Coxinter, if we put the Willlajn's address in order A and stored the address

in the Dispatch Counter, then by the time we came to order B this address

would have been wiped out. We have then the following disposition of the

orders

.

Block*t 6lock.S
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The ijarticulsr digit combinationa used to specify these orders

were chosen so as to allow use of already-existing circuit facilities.

The comparable IBM and Drum orders are identical except for the Wm/NWm

digit which was so chosen that a "1" in this digit location specifies a

Drum order and a "0" an IBM order. One further difference is the use of

the L^ digit to specify, in MD orders, whether the first or second group

of reading heads is to be Involved in the order. Aside from these, the

input orders for both IBM and Drum are identical. Also the two output

orders are identical.

An input order is essentially an addition followed by a storage,

repeated for each word transferred. The Sximmation digit sets up all

the circuitry required for the addition process, and the combination of

Summation and Trivial sets up all the circuitry required for storage.

An output order is essentially a series of RII Load orders. The

combination of Non-Trivial, Summation and Eound-off automatically sets

up the circuitry required for carrying out RII load orders. The Clear

digit provides for the proper clearing of R. to zero.

^* IBM and Drum Control.

1. General. There are fo\ir functions that the external

circuitry must be capable of carrying out — these are the "read-in"

and "read-out" functions for both the IBM and MD units. The following

discussion shall apply to the dnm only, followed by a discussion of the

additional features necessary for the operation of the IBM.

This will not be an exhaustive description of all the control

circuits, but rather a guide for anyone who wishes to plow through all

the circuitry.
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First, let us state that the control distinguishes five main

instants of time: (1) the initial request for a Drum order, (2) the

first synchronizing instant when the "zero" position of the drum is

under the reading head, (3) the beginning of information transfer when

the drum reaches the first block to be dealt with, (k) the end of in-

formation transfer when we have gone through the last block to be handled,

and (5) the shift back of control from the external circuitry to the main

machine, for automatically carrying on the problem.

It would be too difficult and confusing to completely describe

from beginning to end the operations involved in executing an order.

Instead, each signal or unit as it would normally appear in the execution

of the order is described in sequence below.

2. EX-G2 signal . The STEP and INTERNAL-EXTERNAL digits of

the first phase order digits (G2 gate) are mixed in such a way that a 1

and 0, respectively, in these digits causes the EX-G2 signal line to go

negative indicating the request for an external order (occurs for any of

the four external orders)

.

5. RELAYS Rl through R6 . These six relays operate in

sequence for all external orders and provide a delay of six relay-operate

times during which the appropriate head switching relays, etc., operate.

The first relay Rl picks up ct EX-G2 time.

h. ^MD Signal . The William's digit in the first phase

order is used to specify whether the external order is an IBM or Drum

order. A 1 in this digit specifies a Drum order. This digit is mixed

with the EX-G2 signal, so that a 1 and negative signal, respectively,

cause the I MD line to go negative hence initiating a Drum order.
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5- ^ IBM Signal . A in the William's digit specifieo

that the external order is to be an IBM order, and the V IBM line goea

negative for this case at EX-G2 time, initiating an IBM order.

6. R/nR Digit. Note that in the list of external orders

described previously, a r/NE (Roundoff/No Roundoff) digit of 1 implies

that information will be read out of the mtxchine to the Cruai or IBM; a

implies that information will be coming in.

7. L/R Digit. This digit is used to specify (for Drum

orders only) which group of ko heads on the Drum are to be used for that

particular order.

S-
^^/o' ^/wc 5;v/rc' — ™ "^^II- '^^® Ex-a2, md,

L/B,and R/NR (actually Inverted and called r/nR) signals are mixed to

energize the appropriate master relays; the R-, /^ relay energizes for the

use of the group-1 heads, and is de -energized for the use of the group-0

heads. The Rp/ur. Relay is energized for Reading from the drum and is de-

energized for Writing and norm/il Compute. The Sy/pr Relay is energized

for Writing onto the drum and is de-energized for Reading and normal Com-

pute. The IBM relay is energized for all IBM orders. Note that the

"safety" relay has no logical function except to prevent the I^ /^p relay

from operating (and hence preventing writing power from being applied to

the heads) at any undesired moments, such as during power turn off and on,

etc.

9. Seven-Digit Binary Counter . (Similar in design to the

Dispatch Counter in the main machine, which is described in a previous

report.) This counter is used to count Sync 1 pulses (i.e. blocks in

the case of the Drum and cards in the case of IBM) . The counter is used
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twice per MD order, once to 83nichronize to the proper starting block,

euad following that, to count the number of blocks being handled.

10. Coincidence circuit . This circuit like wise is used

twice per MD order; once to compare the output of the first five stages

of the counter with the starting block number stored in the 10-digit

register (and issue a signal at coincidence) , and secondly, to compare

the counter with the second five-digit number in the register (which

specifies the number of blocks to be handled) , and again to issue a

signal at coincidence.

11. T„_^ Toggle . The Recognition Circuit noted above is

of a simple design which allows coincidence signals to be issued for

many numbers after the first legitimate signal (but never before) . On

account of this feature we must insure that the counter always starts

counting from zero, so that its count is always less than (or equal to)

the desired number (in order not to get any false signals) . After the

completion of the Relay Delay time (signified by a point of the R5 relay

operating in the T^^p turn-on circuit) we know that we are ready to start

operations at will, so that at the very next Sync 1, 2 signal (which

states that the drum is at its zero position) we clear the counter to

zero and turn on the T„,j^ toggle. This toggle in turn, opens the path

between the output of the coincidence circuit and the '^oTj-^y '^°&SX^ turn-

on circuit so that at the first coincidence signal (the drxim at the pioper

starting block) we turn on the T_j_^^ toggle.

12. T!-DTr^v Toggle. This toggle actxially controls the

digit information transfer circuitry. It comes on as indicated above

and stays on until the second coincidence signal is obtained which
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indicatea that we have completed the required information transfer.

13. T^fx/o Toggle . As Indicated before, the Dispatch

Counter in the machine controls the V/illiams addresses associated with

the information transfers. The first Williams address to be handled

comes to the Dispatch Counter from the address digits of the first

phase order via a B^ gate signal. The next Williams address is obtained

by adding a one to the first address via B^ signal operation. All fol-

lowing addresses are obtained in the same way, that is, for any external

order there occurs one and only one B^ signal. By the time that the B^

signal is obtained the counter and recognition circuits have completed

their first task (i.e. synchronizing to the proper starting block), so

that this signal is piped over from the main machine to the drum and is

used to clear the counter to zero and to turn on the T_ /-. toggle. This

toggle has several functions, one of which is to "swap" the input of the

Coincidence Circuit from the "left" five digits of the priming register

to the other five digits of the register which specify the number of

blocks to be handled. It also controls the routing path of the coinci-

dence signal from the compare circuitry. That is, with the toggle OFF

the coincidence signal, when it comes the first time, is used to turn

on the T^^^_^ toggle. With the toggle ON, however, the routing path is

switched so that the second time a coincidence signal is obtained (at

the completion of information transfer) it is used to turn off the T-^^^^

toggle.

Ik. Null Order Gates. At the unique combination of T^ /-

ON and T^_-^„ OFF a Null Order Gates signal is sent to the machine which

kills the request for either the G<i or G^ order gates (which are used to
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read the first or second phase orders Into the main control) . This in

turn kills the EX-G2 signal requesting the external order, so that the

six Delay Relays begin to fall back to normal. v;hen the fifth relay

has returned to its original state it turns off the T toggle which

in turn turns off the T^^ / toggle. The turning-off of this toggle

kills the Null Order Gates signal, so that the main control in the ma-

chine can now read the second phase Transfer Order and carry on the rest

of the problem. Note that during the Null Order Gates signal the main

control internally "switched" the order request from the first to the

second phase.

15. Reading into the Williams Memory . As described in

a previous section, the digital information enters the machine at the

Digit Reaolver. It is arranged that at these times the digit resolver

output is zero so that the input information overrides the reaolver out-

put. This information is then "accepted" into RI upper and zlg-zagged

down to RI lower, from which place it is stored. As noted before, at

Sync 2 time the digit-information lines hold the proper information

from the drum (voltage-wise), so that to accept it into RI it is only

necessary to turn on the "^-q-^^ (in the main machine) toggle; this in

turn with the Summation = 1 digit of the Read-in order, is enough to

carry out automatically the normal arithmetic processes of addition.

V.lien the information has reached RI lower we are ready to request a

storage of it at the proper VJilliams address. This is accomplished by

piping over to the drum, the shift counter satisfy signal (which signals

the end of the arithmetic process) and using it to turn on the T tog-
YES

gle of the drum, which in turn Issues a Williams request to the main
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machine. The memory Sync signal which signals that the Williams request

has been accepted by the Williams Local Control, is piped back to the

drum to turn off the T^g toggle, so that only the one Williams request

per word is obtained. The next Williams request comes when the next

word is brought up from the Drum and is accepted into RI, etc.

To insure that the output of the digit resolver is zero (inter-

nally) it is necessary that RI lower be zero and that either RIII upper

is zero or the complement gates are nulled. The same signal that is

used to turn on the T^^^g. toggle (at drum Sync 2 time) is used to pre-

clear RI lower, which wipes out from this register the previously-read

number. Note that this is an early enough time to clear RI since Green

Gate (which accepts the information into RI) does not occur until about

15 microseconds after T^^^j^ turn-on, because of the imposed Carry Delay.

The RIII condition is taken care of by nulling the complement gates.

One other factor that mat be taken care of in the read-in process

la the Shift Counter Clear. Every time the Memory is used the Sync Sig-

nal cleai«the Shift Counter to zero in preparation for the next arithmetic

process. However, in the read-in order, since an arithmetic process oc-

curs before any memory process, we must separately insure that the Shift

Counter starts out cleared to zero. This is accomplished by the separate

circuit shown in Figure 10.

l6. Writing Onto the Magnetic Drum . As noted previously,

at Sync 2ML tine the Pulsers write onto the drum whatever information is

present on the digit-information lines. During external orders that take

information out of the machine the information wires hold whatever informa-

tion is residing on the output of the Digit Resolver. The operation then
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is to place on the output of the digit reeolver, at any instant, the

correct word to be written onto the drum, call for a Sync cML signal,

and at the completion of that to call for the nexi; word to be brought

out of the Williams memory and be made to reside at the output of the

digit resolver in preparation for the next Sync aiL signal. However,

this case is slightly different from the case of reading from the drum,

in that a machine operation must precede the first drum operation, i.e.

the correct number is sitting at the digit resolver ready for the first

Sync a4L signal. In the case of reading from the drum, the first Sync

2IMS signal from the drum calls for the first main machine arithmetic

operation. For writing on the drum then, as soon as T^ ,..„„ comes on, we

must ask for a Williams request (as indicated in the timing chart on the

drawing) , and irom then on get Williams requests only at the end of each

Sync 2ML signal.

Cieqr -•

* "'"Block ON

Syncl,2l^

IM

Figure 10
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17- Special IBM c ircuitry. Operation of the IBM unit Is

not as flexible as the operation of the Drum in that one cannot synchro-

nize at will on any card with which to start the operation (as one can

call for any block with which to start a Drum operation) . In view of

this fact, after T^,^ toggle comes on we turn T„.__^ toggle on immedi-

ately instead of waiting for the first counter-satisfy signal (as we do

for the Drum) . This is accomplished by the extra diode which via the

I IBM signal opens the path for the T ,^ toggle to turn on the T_,^-,^

toggle as soon as T _, comes on.

The Sync 1 and Sync 2 signals for the IBM are obtained from the

Cam P3 and Emitter, respectively (their relative timing is shown in the

Drawing No. 0-15^^) . Because the Sync 1 signal comes only after the 12

Sync 2 signals for a card, the 7-digit block or card counter was arranged

ao that Sync 2 times the counter counts from the False to the True rank-

Therefore after the very first Sync 2 signal of a card or block, the

counter holds the proper count. This is important in the case of the

IBM since in order to stop the Reproducer on the right card, the 3TT re-

lay must be dropped out before Cam P5 time. The Cam P5 timing and the

STT relay circuit are also shown on the Drawing No. 0-15i+lt-.

The STT relay is "picked up" for every IBM operation by the IBM

relay. It remains energized throughout the order by one of its own

points and the 5687 tube. The grid of this tube is kept positive through-

out the entire order until the very first time that the Cam P5 sensing

signal is accompanied by a counter satisfy signal at which time the hold-

ing triode grid goes negative causing the STT relay to drop out, and no

cards beyond the one in process are fed through the unit.
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l8. Sync Signals . There are various sync signals used

throughout the unit. The code used for the name of these signals is

as follows:

I stands for IBM
M stands for Magnetic Drum
S stands for Short pulse
L stands for Long pulse

During a Drum or IBM order Sync 1; Sjmc 1,2; and Sync 2 (long and short)

pulses are generated. The lengths of these signals axe approximately as

follows

:

Drum IBM

Sync 1,2 20 microseconds 20 milliseconds

Sync 1 20 microseconds 20 milliseconds

Sync 23 2 microseconds 2 microseconds

Sync 2L ^0 microseconds 15 milliseconds

In the Sync Chassis these signals are mixed to form the following com-

posite signals:

Sync 1 IM - This wire carries Drum sync 1 pulses during a

Drum order, and IBM sync 1 pulses during an

IBM order

Sync 2 IML - Similarly for the long sync 2 pulses

Sync 2 IMS - Similarly for the short sync 2 pulses

Sync 1,2 IM - Similarly for the sjnic 1,2 pulses

Sync 1,21 ;1M - This wire carries Drum sync 1 pulses during

a Drum order, and the IBM sync 1,2 pulse during

an IBM order

Sync 2 ML - This wire carries only the long Sync 2 Drum

pulses during a Drum order.

NOTE: It is proposed to build a graphing unit capable of transcribing
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from the maf^netic drum to an external cathode ray tube for the purpose

of plotting (graphing) computed information. This shall vork automatically

during machine computation, and shall be in spirit a pure accessory, not

Interfering with machine operation. Because the necessary equipment is

neither built nor even completely designed as yet it is impossible at

this time to give an exhaustive report on it. However, at a very few

places on the drawings references to a graphing function will be seen.

C Cathode Ray Tube Testing Prograjn.

1. The Williams memory uses standard 5CP1-A cathode ray

tubes selected from regular manufacturer's stock. This selection is

done in our laboratory with the very helpful cooperation of both Allen

B. DuMont Laboratories and the Radio Corporation of America. Such

selection is made practical because the qualities tested for have no

effect on ordinary usages.

All tubes received are first subjected to a "flaw" test. Flaws

are local inhomogeneities in the phosphor surface, probably due to

minute foreign particles, which reduce the dash signal available from

the point.

Flaw Location

A flaw location test is used first to discover where on the

phosphor surface the flaws, if any, .are situated. Figure 11 shows a

block diagram of this tebt. Kote that the beam current of the tube

under test is held constc^nt and that the deflected spot will in general

trace an ellipse. IT the path of this ellipse changes very slowly

between successive tracings and if the secondary enission properties

of the phosphor struck by the beam are constant, we expect no A-C signal
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at the external pickup screen. However, if a diecontinuity in secondary

emission is encountered, an output signal will be obtained and can be

used as shown to intensify the trace of a slave viewing tube. A small

frequency difference between horizontal and vertical sweeps will cause

the ellipse to precess and cover every point on the phosphor within a

rectangle (approximately 3" x 3")

•

For maximum detail a slow rate of precession is desirable and a

camera is necessary to integrate the slow sweep into a continuous picture.

For the initial test, however, visual observation at a somewhat greater

sweep rate is sufficient to locate the more severe flaws. These are

marked on the face of the slave tube with a grease pencil.

Flaw Evaluation

Once the flaw locations are known they can be measured by storing

a dash on the flaw and comparing the signal obtained with the normal

signal. The need ror very precise preliminary location can be obviated

by the technique shown in block diagram form in Figure 12. The standard

routine for storing a dash is applied to the grid and horizontal deflec-

tion of the tube under test while a 60 cycle sine wave of variable

amplitude is applied to the vertical deflection. This results in a

stretched out dash covering all points along a vertical line. With

the use of D.C centering controls the "line of dashes" can easily be

centered to pass through a given marked flaw by watching for the par-

tial output signal deterioration on the oscilloscope. The magnitude

of the flaw is then given as the ratio of flaw signal to normal signal.

Thus an 0.8 flaw gives 80^ normal amplitude.

Spill Teat
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A certain number of new tubea are iamediately rejected by thla

initial flaw teat; these are given no more processing. The survivors

are next subjected to a spill or read-around teat. A block diagram of

this test is shown in Figure 13. The set up is actually a complete one

tube memory system with all points of a 102U raster uniformly regenerated

and with provision for variable frequency action references to five

selected points — typically the four corners and the center. The

raster is cleared to dots, dashes are stored at the five points, and

then each of the five bombarded with increasing frequency until one or

more of the neighboring dots changes to a dash. The failure frequency

at a point determines an arbitrary read around figure for the point ac-

cording to the following relation:

_, . action frequency -,„-^
R.A. = X 1000.

clock frequency

Flaw Re-test

Additional tubes are rejected by the spill test. The survivors

are again subjected to a more thorough flaw test in which a photograph

is made of the flaw scan and becomes a part of the records on each tube.

Figure Ik showu a typical flaw scan photograph.

Sparking

Some flaws can be removed by a sparking technique first described

by W. E. Mutter. A small tesla coil, or vacuum leak detector, is uaed

to apply a spark to the face of the cathode ray tube. The method found

1 W. E. Mutter, "Improved Cathode Ray Tube for Application in Williams
Memory System", Electrical Engineering , Vol. 71, April 1952, pp. 352-
356.
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FOCUS
TEST

Figure 13«

FLAW TEST - LISSAJOU SCAN

Figure ll4-.
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moat effective in thi9 laboratory is to place the tube in its carton with

the third anode connection grounded and to sweep the spark across the

entire face according to the following routine:

1) a zig-zag or television type scan from side to side,

2) a spiral from outisde to inside,

3) a spiral from inside to outside, and finally

h) a zig-zag from top to bottom.

The sparking technique has been found most effective for tubes

initially having quite numerous flaws. The tubes obtained in recent

months have relatively few flaws, most of which are not Improved by

sparking, so this technique is not regularly used.

Screening

Tubes which have passed all the foregoing tests are prepared for

eventual memory use. This preparation includes application of the ex-

ternal pickup screen, cleaning and inspection of base pins, and installa-

tion of a short connection wire to the third anode snap button. The

screen application process used in this laboratory results in a good

permanent bond and is set forth in detail here for those interested:

Williams Screening Technique

a. Prepeire screens.

i. 3 T/i6 X 3 lA 80 mesh brass screens with small tab

on 3 7/16 side,

ii. Heated in air atmosphere oven until they turn blue,

to remove temper,

iii. Allowed to cool slowly in room temperature,

iv. Washed in diluted HNO,.
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V. V/eshed in MAHCO- solution,

vi. Rinsed in water and dried.

b. Tubes are cleaned with soft raj and GE gljrptal thinner ^fl'^llF

.

c. Three consistency r.lyptal aolutiona are prepared fron thinner

nnd ffl236 GE glyptal.

i. Sol. 1 for screens, very thin such that when screen

is dipped and drained, no cement remains in interstices,

ii. Sol. £.' is slightly thicker, to be painted on tube face,

iii. Sol. 3 is rather thick, being u.9ed to seal screen

edges in final step.

d. i. Soak screen in a pan of Sol. 1.

il. Paint a base of Sol. 2 on tube face and let dry.

iii. Place tube in test rack and adjust raster to tent

screen size,

iv. Place wet screen on tube.

V. Apply a domed, large coarse nesh screen and place

over this two 1/2." sponge rubber mats with a 1" cen-

tral hole for air circulation,

vi. Apply pressure plate to this sandwich. Pressure

plate has central 1" hole with small blower attached,

vii. In 1.0-15 minutes cement is dry and tube is removed

after screen centering is checked by raster,

viii. Excess cements is cleaned off by thinner.

ix. Fine emery cloth is used to buff screen surface.

X. Sol. 5 is used with a small brush to seal off any

loose screen edge.
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xi. Tab is pulled up for soldering-

1- Acceptance criteria-

The current acceptance limits on the foregoin,^ teats are

as follova:

Flaws ; 0-75 to 1.0, where the focus of the tube under test

is adjusted to maximize dash degradation, i.e. give

a minimum valuation.

Spill : R.A. = 100 or more for the five points tested. This

acceptance limit is not a complete guarantee of sat-

isfactory spill performance in the memory since it is

based on only five points out of 1021+ . However, it

is not feasible to apply the more exhaustive test to

all tubes received.

2. Test results.

More than 1000 ^CPlA's of various manufacturers have been

tested from the betjinning of the memory program. The original ko tube

complement in the memory was selected from a group of 86 obtained from

s.orplus. These were surprisinf-ly good, in fact, 10 out of the Uo are

still in service. However, operational test and experience brought

about a tightening of the acceptance specifications to the present

limits.

Detailed results on a recent group of 250 DuMont ^CPIA tubes are

given in t.he following tables:





1-1*3.

Total tubes in this test





1-1*1+

.

No- of tubes

10

11

15

k

Hrs. In Service

7500

5000

2500

< 2500

Table 1+.

CRT's in Memory - July 1953

No.
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IV. MAIKTEIiU'CE

.

A. Introduction.

The maintenance program for the machine io intended to

maximize productive operation time by minimizing time lost due to

troubles. The scheduled maintenance program aims at detecting weak-

nesses before they cause trouble and detecting actual troubles before

computation begins. Troubles not so predicted or detected must be cor-

rected by unscheduled maintenance as they occur.

It appears neither possible nor desirable to reduce unscheduled

maintenance to zero since this vould require an excessive amount of

routine test time. Conversely it seems very undesirable to reduce the

routine time to zero since some troubles may not be immediately detected

by the calculating group. Such a policy would lead to raiach lost time at

best and at worst to multiple malfunctions which greatly complicate

trouble shooting.

The maintenance policy chosen devotes a period of 1 to 2 hours

at the beginning of each day to a series of routine tests. The nature

and duration of the tests has been and will continue to be evolved ac-

cording to operating experience. Other tests are performed at less

frequent intervals such tliat a fairly comprehensive review of machine

performance is obtained about every three months. The results of both

scheduled and unscheduled maintenance are used to single out unreliable

components for redesign or replacement.

The most frequent, i.e. daily, tests concern the known most

critical components and parameters. The arithmetic unit and the arith-

metic processes in the memory were designed, as described in the final
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report, to be a£3 truly binary (go-no go) as possible with carefully

chosen margins on component and tube variations with the result that

in practice the routine arithmetic testing is confined to coded check

problems (Diagnostic code, Arithmetic Test code).

Certain portions of the memory, however, have a proportional

rather than a binary response. In the analogue deflection, or beam

switching circuits, a 50 volt swing per deflection plate is necessary

to produce a 32 step "x" or "y" display but a noise of 0.2 volts, pro-

ducing about a l/2 spot diameter disturbance, can cause an error.

Such noises do not occur as an unavoidable random background but rather

will be entirely absent for a period of weeks and then appear quite

strongly as a result of some more or less evident component failure.

Therefore a short check is made each day for memory noise. (Diagnostic

code.)

The video amplifier -beam turn on loop for the memory tubes also

has a proportional response in whicn the D.C state is of particular

interest. Conflicting requirements of read around and storage reliabil-

ity necessitate a careful adjustment of the focus, beam current, and

astigmatism parameters for each tube. Drifts or perturbations in these

parameters degrade the safety margin of the memory. Daily limit checks

and programmed tests are used to evaluate the centering of these param-

eters. (Discriminator bias test. Read around test code.)

Other routine testa are made on the machine supply voltages and

input-output equipment.

B. Scheduled Maintenance.

1. Routine Tests.
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The routine tests are performed once every 2k hours at the

beginning of each daytime shift. If the machine is not running a con-

tinuous schedule, this time coincides with turn-on for the new day of

operation. These tests comprise the following list in approximate

time sequence.

a. Power and heater checks.

i. Turn on computer heaters and check heater voltages.

The machine heater circuits are made separate for each logical sub-

group such as "Accumulator toggles", "Accumulator Gates", etc. and

each circuit is provided with a secondary voltmeter and a primary variac,

circuit breaker, and ammeter. The gross functioning of each heater cir-

cuit is checked at this time.

ii. Turn on main high current D.C. power supplies. These

are thyratron regulated units which furnish all the D.C. for the machine

either directly or through aiixiliary regulators. Their voltages at the

machine are checked to be +38O, +2^0, +110, and -300 volts, respectively,

within meter observation error. No day to day variation is ordinarily

found in these voltages

.

iii. Turn on computer D.C. while checking for the appear-

ance of a raster on the memory tubes. A majority of the important ma-

chine voxtages enters into the production of the memory deflection.

Observation of the raster gives both a gross check of the power system

and protects the memory tubes against thermal overloading of the phos-

phor due to an undeflected electron beeim.

iv. Observe with an oscilloscope the ripple voltages on

the +380, +2^0, +110, and -300 volt thyratron supply outputs. About
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3 volts peak to peak is the normal ripple for the heavily loaded -300

volt supply and about 1 volt peak to peak for the others. The ripple

magnitude is a check on the dynamic regulation of the supply, and the

relative magnitudes of the six ripple components gives a check on the

balance of the thyratrons and of the phase voltages

.

V. Auxiliary regulators of the conventional series type

are used to supply moderate current plate and reference levels. In

general, several criode units are connected in parallel to pass the

required cxirrent. One regulator each day is checked for approximately

equal current sharing ajaong the paralleled units as a way of detecting

emission deterioration.

vi. Read and record A.C. and D.C. running time meters,

vii. Check memory inspect (or "strobe") pulse. The effective

duration of this pulse is important in determining the read around i)er-

formance of the memory. Duration and voltage limits of this pulse are

measured at the distribution point with a D.C. oscilloscope.

viii. Observe and record bleeder current meter reading.

All memory CRT adjustment voltages -- astigmatism, focus and beajn inten-

sity -- are derived from the second anode high voltage bus by a bleeder

network. The current through this bleeder is indicated on an accurate

meter as a check on resistor or second anode supply voltage drifts.

ix. Observe and record "twitch" current meter reading.

Twitch refers to the separation of the double dots used in the Institute

for Advanced Study memory to store a binary "1". The switched current

which ultimately produces this separation is made adjustable to permit

a best average setting for the population of ^K) tubes. Drifts in this
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current will result In read around deterioration.

b. Operation checks.

i. Discriminator bias test. The discriminator for each

memory tube contains a time and voltage sampling gate system. If the

time parameter is left undisturbed, the voltage gating feature may be

used as a form of peak voltmeter. Figure 15 shows the nornal dot and

dash output signals as solid lines along with the normal time "inspec-

tion" period.

!

KK(-9)— -

^ /
/
/.
/

/\ \ \ / /

Mormal dqs>h

Figure 1^ .

A typical normal voltage sampling level is shown by the horizontal

solid line marked Kx(-l8). The attenuation factor K ia determined for

each individual stage by the bias potentioneter setting.
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If the common bus supplying all potentiometers is varied about

its nominal potential of -l8 volts, a very useful limit check is ob-

tained. For example, the voltage can be increased negatively until

some or all dash signPle fail to work the gate; and it can be increased

positively until some or all dot signals are interpreted as dashes (i.e.

work the gate) . More restrictively, a negative perturbation can be

chosen such that the weakest tolerable dash signal just works the gate

and a positive perturbation chosen such that the poorest tolerable dot

signal just fails to work the gate. Once determined, these limits can

be used as a rapid check for unfavorable changes in amplifier signal

output, since any decrease in output will cause some dashes to become

dots at the one limit and any increase will cause some dots to become

dashes at the other limit.

In practice, this test is performed dynamically. An 8o digit

word is circulated through EI and RII by means of the regular 2^

2 Ap left end-around gate and an auxiliary (test only) 2n --> 2~ E,

left end around gate. Store orders (using addresses from the order

counter) alternated by 1 S. L. orders are executed at a rate sufficient

to traverse all points in the memory about once per second. The 8o

digit word is made repetitive modulo 10 so that every 10th memory stage

receives the same information. The slave viewing tube is provided with

a comparing function such that with any two chosen stages as inputs,

the beam "brights up" only if the two inputs are unlike. With the slave

observing, say, stages and 10 and with the store -shift left routine

running, setting the discriminator bias bus to its negative limit (-28

volts) and then to its positive limit (-9 volts) should in neither case
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result in any disagreements, or errors, as shown on the slave. Ac-

tually, the upper (-9 volts) limit is set first and all comparisons

made: with 10, 20, 30; 1 with 11, 21, 31, •••; 9 with 19, 29, 39-

Then the lower (-28 volts) limit is set and all comparisons made again.

The comparing of equally perturbed stages does not lead to trouble

since even equally weak stages will rarely fail at precisely the same

points

.

For the bias limits chosen, no errors should be observed. Any

stage showing an error is given individual attention.

ii. Flaw scan. The discriminator bias test is intended

to check the major parameters which influence the dot and dash signals:

beam current and amplifier gain. The flaw scan is a more specialized

test directed at the local inhomogeneities of the storage surface known

variously as flaws, blemishes, or phoneys. The dash, or "1", signal

from a flaw is smaller than normal and may be zero for a severe flaw.

To test for flaws a word consisting of all "I's" is stored at each

point in the memory using the address from the order counter. The dis-

criminator bias is set at its negative (-28 volts) limit to make dash

recognition most difficult. The memory is cleared to zero and the pro-

gressive writing in of I's is begun. The slave is again used to compare

the stage under observation with some other one. The sequence: clear

to zero, write in I's is repeated 10 times for each stage with the

requirement that no failures to store I's shall be observed. If there

are storage failures, the raster must be shifted to avoid the flaw.

iii. Flaw survey. With ail I's stored in the memory, the

superimposed 102U^ dash outputs of each stage are examined on an oscil-

loscope for isolated low amplitude dashes. Even though such dashes will
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have passed the bias and flaw scan teats they are considered undesir-

able because a email raster drift may worsen them. Within limits, the

raster is shifted to avoid them.

iv. IBM tests. The IBM tests begin with a check on the

verifying (or comparing) circuits which should normally indicate by

column any discrepancy between a card from the read hopper as read by

the comparing brushes and the corresponding card from the punch hopper

as read by the punch brushes. The memory is set to all I's (or as left

from test iii) and punched out while verifying against a deck of cards

consisting of words (i.e. rows) alternately all I's and all O's to

achieve maximum loads. All Uo active columns in the comparing unit

should show errors. This test is repeated as above but with the memory

set to all O's. Failures to verify have been found due to card feed

misalignment and dirty or damaged brushes. Maintenance work on the

IBM machines proper, other than clearing card jams, must usually be

done by the IBM field engineer.

If the verification test is satisfactory, the alternate I's and

O's deck described above is loaded into the memory where it should form

a simple geometric pattern consisting of alternate columns of dots and

dahaes. The correctness of loading into any one stage is checked by

observing this pattern and then the other 39 stages checked, using the

slave, by comparison with the first. If the loading was correct., the

memory is punched out while verifying against the input deck.

V. Arithmetic Test. The arithmetic test code (see ap-

pendix) is loaded and allowed to run for a minimxun period of five min-

utes. If arithaetic troubles are suspected, the code, or a portion
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thereof, is run longer.

vi. Read Around Test. A read around test code, such as

code #13^ (see appendix) is used to test every point in the memory for

read around rates beginning with 16 and increased by increments of 2 up

to 32. Read around failures are printed out on cards as they occur.

At present the minimum failure level is 2h for the worst tube. Any tube

failing below this level is readjusted or replaced.

vii. Diagnostic Code Test. A composite input consisting of

five complete 86 card diagnostic code decks is loaded automatically.

After the fifth deck is loaded, the code is allowed to proceed at full

speed for a minimum period of five minutes or until the mathematical

operation begins for the day. This code is a meteorological problem in

which essentially all computations are done two different ways and re-

quired to check precisely. Also the data field is periodically summed

and compared with an established correct sum. The orders and data oc-

cupy the entire memory. Either memory noise or arithmetic errors will

produce an error stop.

2. Non-routine tests.

In addition to the daily tests which are intended to

check the operability of the machine at a given time, a less frequent

class of tests is made at intervals of one to three months which are

intended to check the safety margins or range of operability.

The most effective of these tests consists in a detailed set of

voltage measurements made on the registers, adder, and digit resolver

for the several possible per-stage digit combinations. These measure-

ments reveal both resistor drifts and slow tube deterioration very

clearly.
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The other infrequent teats consist of qualitative oscilloscopic

observations of the dynamic behavior of the machine, particularly the

360 gates associated with the registers. Here the interest is mainly

in looking for large deviations from the average behavior.

C. Unscheduled Maintenance.

The time devoted to unscheduled maintenance has decreased

rather steadily through the period covered by this report; partly due

to the adoption of the routine procedures already described and partly

due to circuit improvements. Apart from very infrequent tube failures

in the arithmetic unit, the major part of the actual down time is

chargeable to the memory. The principal trouble with the memory has

been with random errors, or noise pickup. Such noise has usually been

very infrequent for a period of weeks, then has risen to a relatively

high frequency of occurrence, and has in each case been traced tea

faulty component or components other than the cathode ray tubes them-

selves.

Probably the most significant aspect of unscheduled maintenance

is the proportion of total machine operating time it consumes. Basic

time records have been kept for the machine since 27 October 1952.

These aj-e presented in table 6. The categories listed are defined

as follows:

Routine ; All time spent in performing the tests described in

"routine maintenance" elsewhere in this report.

Engineering ; All time spent in engineering improvements or

additions to the machine.

Unscheduled Maintenance

;

Ail time spent in diagnosing and repairing





Table 6.
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conditions which have interrupted computation or threaten to cause

errors.

Operation ; All "machine on" time not accounted for by the above

categories. This would include input-output, code debugging, idle time,

and running time. The idle time has been kept to a minimum by the pres-

sure of mathematical work.
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APPENDIX

Arithmetic Teat Code ;

The arithmetic test code la Intended to teat for correct execution

of the major machine orders. It la eaaentlally a series of sub-routines,

one for each order. Within each sub-routine standard operands are used

by the order concerned and the result checked against a stored correct

answer. In almost every case, two sets of operands are used: one to

present maximum digit loads to the gate drivers concerned and one to pre-

sent minimum loads. From a gate loading standpoint all numbers which

may be handled by the order in queation lie between these extremes.

If a given subroutine elicits an error, a card (12 words) is

punched out identifying the tjrpe of error and the order concerned as

well as all quantities entering into the computation. Note that an oper-

and can be correctly stored in the memory but transferred incorrectly

into the arithmetic unit. Therefore the operands are first positioned

in the arithmetic unit (e.g. the multiplier la transferred from the mem-

ory into R in the multiplication cases) then are temporarily stored from

this position (by the two orders Ep --> E^, store for E quantities auch

as the multiplier) . It ia these temporarily stored images of the oper-

ands which are provided at the error punch out.

The sequence in which processes are tested Involves some important

considerations. The machine can detect its own errors only by uaing pro-

cesses which may themselves be in error. The comparison of the computed

value with the stored correct answer necessarily Involves a subtraction;

and the discrimination on the zero or non-zero error must be made by a
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conditional transfer of control. Therefore the transfer control orders

are checked first. If these are correct, it is then possible to check

the summation orders. If both are correct, then the other orders can be

tested.

The scope of this test is summarized in the following table:

Arithmetic Teat Sequence

Test

1. Total Sum of Memory =

2. Transfer control

3. Summation (Digit)

k. Summation (Sign)

5. R^ to R^

6. 1 Shift Eight
2 Shift Left
k Shift Risht
8 Shift Left

l6 Shift Right
32 Shift Left

7. 31 Shift Right

S. Gate loads

9. Multiplication

Remarks

Memory contents check.

Tests all cases of conditional
and unconditional transfers of

control.

Considering any stage of the ad-
der, tests the 8 combinations of
the two input digits and the
carry.

Tests the complement gate selec-
tor in the 8 combinations of the
sign of the incoming number and
the magnitude and +/- digits of

the order.

Tests R --> R gating under min-

imum ana maximum digit loads.

(R --> R^ transfer has already
been tested by k)

.

Tests individual digits of the

shift counting channel.

Maximum digit load on shift count.

Tests all RI and RII gates under

minimum and maximum digit loads.

Tests & combinations of sign of

nultiplier, sign of multiplicand,
and Roundoff -No Roundoff.
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10. Multiplication Teats special case of small
negative product which rounds

to zero.

11. Multiplication Alternating Accept-Reject (i.e.

multiplier alternates zeros and
ones) . Supplements 9*

12. Division Tests k combinations of sign of

niunerator and sim of denominator.

Read Around Test Code ;

This code tests the read around, or spill, proi)erties of each

point in the memory by clearing the four neighbors (left, right, upper,

lower) of the point to zero K times and then storing a one at the

point n times, after which the four neighbors are examined to see if

any have been changed to ones. If any errors are found, a card is

punched out giving the frequency n , the bombarding word (initially

all ones), the stage and neighbor failing, and the other parameters of

the code.

The code is stored initially in the upper half of the memory and

first tests all points in the lower half at the specified initial fre-

quency. Then the code transfers itself to the lower half and tests the

upper half at the same frequency. After this the code is re-transferred

to the upper half, the frequency increased by a specified increment, and

the process repeated until the given maximum test frequency has been

used.

When a given stage (i.e. memory cathode ray tube) has failed h

times it is removed from the test, as much as possible, by changing the

corresponding digit in the bombarding word to a zero. Another parameter

in the code determines by what integer the last bombarded address is
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increased to obtain the next test point. If this is other than one,

then the necessary several passes are made through the half memory

before testing is transferred to the other half.





PABT II - MATHEMATICS
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I. TOTAL DIFFERENTIAL EQUATIONS

1.0 Introduction . Integration methodB and accuracy.

In order to gain some feeling for the difficulties that

mi^t eirise in the solution of systema of total differential equations

a few diverse problems of this type vere handled. In each case the

problem chosen was considered to have some inherent interest from an

applied mathematical, from a numerical analysis, and from a machine

operation or maintenance point of view.

A large group of solutions of an astrophyaical problem whose

solution involved the integration of a system of three first order non-

linear differential equations was computed. The so-called Heun method

of integration was used in all of them. The group was determined by a

number of parameters which varied from solution to solution. By smooth-

ness criteria it was thus possible to check on possible errors in compu-

tation.

As a second step in this program a number of solutions of a

slightly modified form of the Bessel equation was obtained by means of

the well-known Runge-Kutta method. The primary interest here from the

point of view of numerical analysis was two-fold: the eqiiation has

singularities in its coefficients and the solution function varies over

a large range in a quite small interval so that in order to keep a fixed

number of significant figures throughout the calculation a "floating

point" system was adopted. The Integration disclosed a few errors in

published tables, which will be discussed below.

Some solutions of the wave equation were carried out by means of

the Eunge-Kutta method and were of a preliminary and exploratory nature.
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This work did not therefore reveal much of interest from the point of

iew of this report and will not be discussed further.

A problem in electro-magnetic theory involving not only the

integration of a second order differential equation but also the loca-

tion in the complex plane of the proper values of this equation was done.

In this problem the Milne method of integration was used as an experiment.

We describe below in the appropriate place the methods used. It is of

interest, however, to note that regions of the complex plane were examined

for proper values by means of the well-known theorem in complex variable

theory which enables one to count zeros and poles in a region by knowing

certain information on the boundary of that region.

The last problem in this group was concerned with the design of a

particle accelerator and involved the solution of a pair of second order

total differential equations. The problem had several points of interest

from our point of view and will be discussed in detail later. These

points briefly are that the total path of integration consisted of a

number of segments in each of which the differential equation had a dif-

ferent form and in each of which small random perturbations were imposed.

It was desired to know under what conditions the system would be stable

in the sense that small variations in the form of the equation would pro-

duce, after many revolutions, a small variation in the basic orbit.

The thj:ee integration methods.

We now describe, in an abstract setting, the three integra-

tion procedures to indicate the mathematical questions involved.

To this end we consider a system of first order differ-

ential equations
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subject to the initial conditions

where (^ . — cCyi /</*

The Heun method can now be described as follows: Let

{Xj<f) =; [x^ y, _y^ ")
be known at x^ x^ and let it be (^^ s ' i/ s) •

We describe how to form J/(^^s + d-yej by the Heun procedure where

d-x. > o is an arbitrary interval. Define

u- ^Xg-t-aCoc^ by the relation

This method clearly involves the evaluation of the functions xf
i,

twice in each interval doe. . We can estimate its accuracy in two ways.

First we give a heuristic discussion which helps reveal the nature of

the method.

Let us suppose that the functions :^i Cx,(f) do not involve the

vector function Cf , i.e. the problem is one purely of effecting a

quadrature. Then with the help of Taylor's expansion we have

since ^^ =r z^-{x) . Thus the error, i.e. the difference between

U. [•x.^+aC-ac) and the true value jf^ ^X^-t- e(x) is expressible as
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The error is therefore crudely proportional to the third differential

of the solution function.

We now give a more precise evaluation of the error. VJe ex--

pect this will serve only to bring out the dependence of the error on

the 'd :fi /^JO • I'^ ^^ '^o'^ difficult to see that

where repeated Indices indicate summation on that index. Thus

emd

For the moment we suspend discussion of the Heun method and turn atten-

tion to that of Runge-Kutta. We now define

and describe how to form ^ C^s '*^^'S/by the Runge-Kutta procedvire. Define

jf^c^j-^^^) - y.s-^ iC-^ci -^^<-* ^j-^.j -^^^t.) /r-z^j-^.-.^r

This method involves twice as much computation as does that of Heun

since the functions s^t must be evaluated four times in each interval

^X . We now give error estimates paralleling those above and also

estimate the relative size of the fundamental step for each method of

comijarable accuracy.

As before we first suppose the functions z/'i are Independent of

J^
. Then we see that
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y^C^S^^'^^ -J^.5 7- ?^ [A6r^; ^-fa^,^:*i^^; ^y=c^=c^r^^^;^

S V
jfcs ^ i<cr <^* ^i ^^V./ ^/ ^^'W ^^-^ ^^^VJ" ^^.^^y.Us -t-

Thus If, as before, J''^
(^x^-t-ofx) is the true value of ^ at ->c =• J:^-^<J^=c

then

Let us now compare the sizes of the fundajnental steps one can

take in each of these methods. I.e. for comparable accuracy what is

the size of <^^/^ , the step possible with the Runge-Kutta method, com-

jjared to ^^ ^ , that one for the Heun method? Suppose that #2 is

the precision desired, i.e.

where /5V measures the number of binary places to be kept.

We recall Markoff's theorem which states that if 7* (^c.) is a

polynomial of degree -n. and is such that / PQ*0 / •$ / on the interval

C"*
'

J
"^

' then /
7>' (j>C)

\ ^ -yy.^ on this interval.

Let us therefore assume ^(^=c) satisfies the hypotheses of Mark-

off 's result. Then we may replace our inequalities by

Thus

and

ri
-' ^4
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For these values of V" we have

Thus we see that the Runge-Kutta scheme is considerably more efficient

than is the Heun method, which we recall involves only one -half as much

calculation per step, and the estimates above give a measure of this

efficiency.

We return now to the Runge-Kutta method to give a more precise

error estimate. It can be seen after a good deal of calculation that

the error estimate, for the case 1 - '^
, 1q

I

Che'
\ s'. ;r/, 5- . /o (3/, -5- )i"* io(i:»^ -^'i'l.I8S0

vhere

We discuss next some cases where these classical estimates must

be either viewed carefully or even abandoned. In obtaining these esti-

mates we assumed tacitly that the contributions of the terms omitted

from our series expansions were negligible. This is not always the case.

Suppose for example that
'jf'^^^-

^ • Then

That

and we may therefore expect that for "X, near ^^^ the estimates involv-

ing (M^ , d'X. are to be replaced by ones in '*oc . in fact, we

see that all terms in the Taylor expansion of jf about ^ =6^ are of

the seime order, namely <^^ . We shall examine this situation in a

little more detail below.
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Suppose then that our differential equation is

^'. ax-'

Then the Heun method --in this case the trapezoid rule -- gives

and the Runge-Kutta method -- in this case the Simpson rule -- gives

Thus the absolute error for the former method is

^^{ "''^"X̂ l^-'i]c^)
and for the latter is

These confirm our previous remark that the error estimates are no longer

proportional to t^^ or ^^*" but to -^ ; this is particularly severe

when a, <~ I . In passing we note, as expected, that

6^ = o for u = o^ i,x and £((,• o for >-t xr o, /, a,, 5, t^

It is possibly of interest to see what happens when

y - 'u

Then the Heun method gives

and the Runge-Kutta method
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ThuB the true eatimatea i^ , t^ become

These are independent of cCoc , the interval length, so that no refin-

ing of the integration interval can improve the absolute error.

The classical estimates £^ , £^ give in this case near jc=^^

Let us next tvirn to a consideration of what can happen when y

contains Xa . To this end we consider the differential eqxxation

Here + , the quantity entering both the Heun and Kunge-Kutta classical
i

estimates, is proportional to /a: .

Since the solution we seek, ^ - ^ , is of the same form as that

discussed above we may again expect our estimates to depend not on <:*^

'

or ^^ but on c^ . Our main purpose is to investitjate what effect,

if any, the f has on the error. In this case the calssical estimates

£^ , £n for the two methods at hand are

We see that

£-fi
- <^ for a. = Pj I and a. = - / ^

E-B s. o for CL- ^ I and for an cl such that £> ^ <£ < / ,
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We go now to contrast these estimatea ^* , £ i^ with their

exact counterparts ^^ , S^ . By a simple calculation we find that

and that ,

li a^) = tC^ f a.''i- ^a\J^a.\ 7S-A -h/os) ^

108 X

Thus

t^ .. ua^fiS^i^^J^.,
) ^ ,^ . Ua^)U ^-!ti±''^-eiZ£^'r£* .
/ ^ '-ft.

---"v./ 1 ~ -/
'' / V ion- 2'^

We see that

t^^-o for (hz-Ojij-i and £xi=iO for a.-c^i^-/ .

In passing we note that on the interval (0,1) the expression

I C <Z^ -t- 3ti -t- H ) / ^ '^^ ~ ' I has its maximum near d- & where its

value is ^ ' '^' 7 . Thus the true relative error in the Heun method

near x : ^ is

^,\ ii. -on

the comparable expression in £«. has its maximum near Cl-J where

its value is '^^ 00O5i,
. Thus the true relative error in the Runge-

Kutta method near ocz-o is

=—7-7
t. ooos-:l •

From what has been said we observe first that the classical

estimates must be properly interpreted to be meaningful in certain,

quite reasonable cases, and that the presence of a singularity in
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may Lower the expected precis ion of either method.

We turn attention now to various estimates of comparative sizes

of integration intervals. We require that the true absolute error

should be '^'Z" ( /^ » / or -i/ are about the precision levels most

commonly of interest). Then for a.- 'A we have

showing an advantage of three powers of 10 for the Bunge-Kutta over the

Heun method in this case.

We now turn to the thirri method under consideration, that of

Milne. Per time step this method only involves about half the work of

that required for the Eunge-Kutta.

The Milne method presupposes as known the following data:

' / /

It then proceeds to determine a first estimate ^tv* for ^^^^-^-^ <xoc^

by means of the formula

I

With this an estimate for 3 t5 ^^ found by means of

and then a revised value ^^^ -^'^^a ^^ calculated as

finally a revised '^^. is obtained.

We see at once that if the functions f^; are independent of ^

.

then the value '^a, is formed by Simpson's rule and the error will be
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32 times the correepondlng one for the Runge-Kutta method. I.e., if

c^"^^ is the length of a step in the Milne method, then for comparable

accuracy

The amount of computation involved in this method is therefore comparable

to that for the Runge-Kutta for that method since no revision of ^^ is

needed.

We go now to give a more precise estimate of the error when .p

involves ^ . We do this in the case J* ' by parity with the com-

parable estimate above for the Runge-Kutta one. We assume the data

^\ , S^x , '^'^. > V'^-y y ^-»-i
are exact. Then the error in '-y^

is this:

the error in J^ is

and finally the error in * '^ is

We would therefore expect this method to be more precise than the

Runge-Kutta since the dependence of the error on f-y is less stringent,

in that in this estimate -ty is multiplied by d^ .

Let us apply the Milne method to the equation

d - y,

and compare the result with those obtained earlier for our other two methods.
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We assume the values at -<>= e> , • J a_> 3 to be given and find

We compare this to '^ h - '^*'^^^')
, i-e. we examine the difference

We see that t|> vanishes for a,= o, ', 2-/3,4- -- recall that the

comparable expression for the Runge-Kutta case vanished for 0, 1, -1.

Fxirther the maximum of <lpC^)/¥*' on the inverval (O, 1) is about

.0096. Thus

V (f^)- '^C'^^^) 1 OOC^^ .

Comparing this to our comparable estimate for the Eunge-Kutta scheme we

see that the bound of the relative error of the Milne method is about 20

times as large as that of the Runge-Kutta method. We go now to compare

in a crude fashion the length of the fundamental step for each of these

methods. Near ^=c it is easy to see that

^^/l ^ ^^H
tni - ''^l 10%

'/a

^ (&if'^cCjc,

(This estimate is valid for ^ .C ©a .) Next for CL-^ix. we have

Moreover, if we wish the error to be the order of ^'"^
, then for O.-'/^.

Thus for o <_ ^ ^ / the Runge-Kutta method would seem to be

superior to that of Milne. However, the situation for o- in the range

from 1 to 5 is as indicated below where we give a table showing the
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^. ,
s.relative errors <^»l ,
o^ for the two methods as a function of o~

0^





II-IU.

These equations may be expressed in at least one important case

in the form

where p ia pressure, ^ temperature, <^ mass and x radial distance;

A measures the ratio of radiation pressure to total pressure and °<.

the ratio of electron to ionization opacity.

With the help of the transformations

equations (1) become

^'-^

/f. '•

with

lu (.c<-i) -- 7i ^ - r ^ ^ ^^^ [ .- /i; -
/^fyC + h^i A -J* '/.

and with certain relations between jj. > '^o , -U > ^' > ^ > (From

equations (1) we have ^z » ^-^
, ^* - -2 ; however, in some problems

72./ , Tt^ were assigned different values. Again K^ K. - '3 = ^

but in some problems they were assigned other values.

For purposes of keeping all quantities in the interval (-1, +1)

\ > Z> , ^ , 'ji , /S , 0( were replaced by
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y.ji^ ,
n^ = h-^ . r^ = /b V . ^'^ To 3 , Z^"' th/^ , ^ '

It is convenient to let

In these terms the equations handled by the machine were

100
-<--'* ••^- y .*

The exponentials we handled in each case as series expansions

through terms of order ^^ . The integration method was that of Heun.

In all about 90 trajectories were calculated involving about 35^000

steps of the Heun method. Thus in all about 70,000 evaluations fo the

right-hand sides of the equations {k) was involved. Each such evaluation.
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however, involves the order of 30 multiplications and so the group of

integrations involved the order of 2 x 10 multiplications, irrespective

of those performed in the conversion of the results into decimal form.

The first group of about ^0 integrations were concerned with

those intermediate zones of stars where electron scattering provides

the main opacity. These trajectories are continuations of solutions

for the outer zones were photo-ionization ia the principal factor in

opacity. These solutions for the outer and intermediate regions are

then filled to a group of contracting cores. This gives a number of

complete stellax models cheuracterized by a large range of physical con-

ditions for the study of the evolution of bright stars.

Some graphs showing the nature of the solutions are included. In

these graphs the parameter

ia plotted as a function of ti - Xfo-x.^ f^^-

1.2 Bessel and Cylinder Functions .

At the request of Professor S. Chandrasekhar of Yerkes

Observatory, extensive preliminary tabulations were made, at convenient

intervals of k , of the functions

where J^Cx) and / , x,^ etre the Bessel functions of the first and second

kinds of integral order y\>c , and o^^,; , oc^; -- briefly, X
-- are the \ -th zeros of
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respectively, where .; is a parameter, '^ *"
'I

*• '

The variables Jw , Yk } C^ , are cylinder functions of x. ,

of order 'W , that is, they are solutions of the .x. -th order Bessel

differential equation,

in X ^ or letting x.sy./u ^ of the differential equation

-^V I ^ ^ f^>. ij', ^,^

in "V, (this equation involving oc as well as vu ) .

Specifically, Jw(ot^^ ^) and C-^j
^
^ota^^^^; (or their

constant multiples) are, for integral 'x ^ o , those cylinder functions

of order 'K which vanish at the initial point '^=0 for J^ tJ
" ^

for C , at the final point '-^ -- ' , and at ^ ~ ' points between.

The preliminary computations were made just before the Institute

for Advanced Study computer was dismantled for relocation. More refined

computations will be made when the computer is recommissioned.

The function ^yvL<^yvj H ) was tabulated at intervals ^u^Ol

for C i

-- ^ (OH- , for every combination of parameter values y>-- =

1> 2, 3, h, 5, 6 with -1 = 1, 2, 3, ^, 5- (These tables differ from the

usual tables of Bessel functions in being tabulated at equal decimal

arguments of li rather than of X = o^ m .) The function Cxj.i (.*^-k^
i ^

was tabulated at intervals >A^ =.0/ for n^'V^VO^-
^ for moat
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comblnatione of parameter -values H =1, 2, 3, *<, 5>6 with ^ = -2,

•3, '^> -5^ -6, .8 for A =1 (and In some cages for other j ). The

results were given to eight figures, but are not necessarily that exact.

The roots oi , used as input data, were available to us partly

from Watson's "Bessel Functions", and jjartly in manuscript. They were

given variously to about seven decimals (providing a natural limit of

Q
> 10 on the accuracy to be expected in the results)

.

METHOD OF COMPUTATION. The method choosen to compute these func-

tions was to integrate the Bessel differential equation (5) by the Runge-

Kutta process for second order differential equations.

The major points of interest in planning the integration are,

first, the singularity of the differential equation at •^ =. <? - >t
^

the lower limit of the desired range of 4. for J C <<
-g. ) , and second,

the consequence that the solutions of (5) which are bounded near zero

vanish there to order w , in fact

near 3c= o

We must consider the accumulation and propagation of truncation and round-

ing errors in the light of these peculiarities.

The main emphasis will be on the function ^
; the requirements

on C turn out to be less stringent.

EEIATIVE ACCUEACY. First we note that when a value CL (-<! is

to be found by integrating a homogeneous linear differential equation

L L /U^J i O from X-o to ^i , to attain a given accuracy in "-'^ '<-»,

it is, in general, necessary to maintain at least the same relative
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accuracy in tlu'oughout the ron^e <• r r '

For suppose that errors ure introduced into the values ,

t^ L 7C; at a certain , and that thereafter the Integration is

exact; then for ^ '-^ a solution of the differential equation

is produced instead of - i If the errors amount to a scale error,

so that

ac-'C, ^ '^
'-"^ -'-'-'-'

then the relative error remains the same, ^- , for x- > c as at "

But generally the solution is contaminated by other solutions, so we may

write (not uniquely)

where ^^-^ is an independent solution, and c/
, ^.. are small.

The relative error at '(-= - is





ec-x.^ .^ ^ --^"'

i^-tZ^

V

Thus an introduced relative error will generally not decrease, and may

be amplified. (This amplification could be serious, for example, if

Jh-^x-) were computed by integration toward \^-o where the contam-

inating solution y.i.l'X') has a singularity; it is safer to integrate

away from .

)

In fact, of course, truncation and rounding errors arise at each

integration step, and the total error, which is to be kept small, arises

from their combined effects. Hence the relative errors at each step

should be kept much smaller than the desired final relative accuracy.

FLOATING DECIMAL POINT. The Institute for Advanced Study computer

is a 39-binary digit fixed binary-point machine, with fixed and relative

-39 -11 7
accuracy of k , or about 10 .

Since J^ f-x""/ is small for X. near (for example, J-- '^''^^a^i =.

2_ lo~'^ i't i3 clear that maintenance of any appreciable relative ac-

curacy requires either multiple-precision or floating-point arithmetic.

A floating-decimal-point operation was adopted, each "floated" number ^

being represented as 2. = O. /O
^ where \<^>^i and io is an integer,

and <2-, ••- are represented in storage by the machine numbers <-
.

^~ '

'^

A complete floating point operation is uneconomical because of

the considerable machine time needed for the logical manipulations of

floating, relative to that used for useful computation — especially in

the case of additions, which are numerous in the Runge-Kutta process.

This situation was mitigated by "common scaling" whereby variables
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Zc to be added are scaled with a common exponent fo , and by "critical

scaling", whereby exponents -p are adjusted only occasionally; the bounds

for the <^c and the sequence of arithmetic must be designed so that

neither overflow beyond the machine capacity, nor undue loss of signifi-

cant figures, occurs between adjustments.

In this problem the quantities were generally scaled so that

I
?•

/ <!,; >
'/,o before multiplications, or V/o ;?•>«*« I a^ / J '/"o

^gfoj-e

-9
additions, so that the relative rounding error is < 10 . With this

scheme (and proper starting values and integration steps) it was neces-

sary to test and adjust the scaling only once during each integration

step.

For the functions ^ , the floating point operation is not essen-

tial.

THE RUN(2)-iaJTTA METHOD. For a second-order differential equation

yCc'^ c £ [ -^ J M, ^ 'X^) this method consists (cf. Collatz, Numerische Behand -

lung von Different ialyllchungen , p. 33) In advancing from x^ to ?c-»-<=^?c^

(knowing u.z /u(_->cj and aC4C = /^V^J)^*^ by the following algorithm:

Let

7 '^ '
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Then

Ma. ix* d/K) €i oiu * M.

Each Integration step requires four aubstitutions into the dif-

ferential equation.

TRUNCATION EREQR. The claasical estimate for the error of the

above method ia

where ^ ia a polynomial in lower derivativea of u. and in partial

derivatives of y . (The corresponding error eatimate for a first-order

equation ia ^JH i
*<-"+"+')^ ^ = (OIJm.^H'I i^'j .) Hence except

for fortuitous cancellation, the absolute error is at least

so that the relative error, which must be made small, is at leaat

(

^-^'J
The error is more critical in the case of J" than in that of C .

We know that Jy^.C'yc) has the power aeriea expansion

so that

^'"*^ ^'. C-n^^L).'

and the relative error is at least





11-25.

^^ J^Cx; /

.Tt r O

It Is seen, especially In the cases '^ =: D , that "^ must

be fairly small In order ther the relative truncation error be negligible.

This means, first, that the integration cannot be started at oc = & =. y,

(even though Xi (''«-} is not singuleur there) but must be started away from 0;

and second, that the integration step ^^^^ must be small compared to this

starting value:

To minimize the total number of integration steps, the starting value

# o
should be as large as possible, namely :« = << w where 'V is the first

tabular argument after (e.g. "^ =• • r/ ).

Since the desired range of *. for Cc-kT) avoids the singularity

of the Bessel equation at x.= (9 , the error integration procedure can

be expected to be much less critical than in "the case of J'^->c) , so that

an interval ii^x. which is adequate for ^ should suffice for C- .

INITIAL VALDES. To start the Eunge-Kutta process at tc = ><, cot x,

it is necessary to know A^i-xJ) and <=*-^ ^ '^, <'^) =x^V.'*'^^'^ -

For the code computes these from the first three terms of the
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power aeries expansions (20) and

>trAMa.

-mCx^s ^ J 1 »^ ,^ .' C >1 *- -*-J •'"

* -8
for a relative accuracy of 10 over the relevant ranges of -"n- and

of "*-
" ^y • the floatiniT point operation is needed to preserve this

r«»''«itive accuracy in computing «-> and T

Although the expression for C is Bore complicated than that for

ly , the integration is started more easily since we can use the natu-

ral initial argument '^ ^ 'n^yc ^^»'V.J=ot*^l rather than

avoiding the natural argument ^ - *^ as in the case of ^ . Then

where
[^ £ (UCx.) > -v-Cx) J

is "tti® Wronskian determinant of aa. and •

with respect to 'x^ (cf. Watson, "Bessel Functions" (I9W) p. 76.) •

Then the code for C will differ from the code for *J principally

in having a different starting value '^ , and in having a subroutine

which supplies C icLn^^ and C ((<
^l)

-- instead of JCcCi^) and

J ^0^ "^ ) --as initial values of A4, and /x. .

>

Since C C <^ 'yj ) ^ o , the zero of C at "M s y^ is only of

first order (instead of the ti -th order as for J" ) so that the "float-

ing" of /-t could have been omitted in this case if desired.
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CODING FEATURES. A basic flow diagram of the code follows.

Four features of the code are described below.

Subroutines . To avoid later duplication of effort, and

for convenience in checking and modification, the code was written

chiefly in terms of closed subroutines as follows:

General purpose routines: second-order Runge-Kutta integration;

decimal scaling and shifting of several quantities in common; binary-

to-decimal conversion of integers and machine numbers; formation of

"cea-d- images" and punch-outs of blocks of output data. These routines

are adaptable for re -use in other problems with various amounts of modi-

fication.

Special purpose routines: main control code; starting values

for J and C ; substitution in Bessel differential equations; rou-

tine for format of output cards.

Subroutine format . The subroutines were written in a

special format to facilitate re-use. It is desirable to write subrou-

tines in some "relative" notation so that self-references in a subrou-

tine may be properly adjusted depending on the differing locations of

the subroutine in storage during uses in different codes. It is also

convenient during code checking, and also in case relativization is

done manually rather than automatically, that the actual address refer-

ences in a subroutine shall be readily relatable to the relative form

in which the subroutine was written.

At the Institute for Advanced Study computer it is customary to

refer to each of the 2 = 102^ storage locations by a pair of "pentads",

where a pentad is a "digit" in the base 2 = 32, but is commonly written
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read in cooe
^adjust piirameters" /restarts

STAHT

ZJlZZ.

STOP

for^l = i(i)I :

read in I'th card of six zeros ;

compute y , dy (floated in common,
rlso not floated) ; reset output
routine; 0-^m° = (x/dx)°.

i.
Punch out
remcinder
of output

data

...rzxz
__ __^ for x/dx = a = a(l)8 :

compute y, aB; reset card format,
J

ZZZZIIf
for n = n(l)n :

"""——i ""..Z

I
aB-^m°

I

m

m°=0

jElS'^^i

I m^0

form Xjj, qXq—>cx
floated in common,
also not floated;

form J°_^Uj^—>u,

floated in common,
by pov/er series;

S —^m = x/dx

-fjniz:

r ir
1

iform C°-^u—>u, 1 J ->J, ;

<^C^^^u^-^<i^, |dJ„->dJ,;

floated in cora/iion;' Idx
BAB —^ m = x/dx

J

dJ

X

"n*
rtj ,n'

m —>m.

"T~

dx ->dXj^;

form part
dxj 1 of card

image;
punch out
as store
is filled,
^" f

as long as m ^ (aB-1) :

one Runge-Kutta step for m,u,nu: m+1—>m; adjust scaling

compute k=u"dx /2 by__substitution in Bessel equation
]

V

\

\
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decimally, i.e. 00 throu^ 31- Thus (29,0?) represents 29 • 32 + 7 =

935.

A convenient relativizing notation is then obtained by using the

first pentad symbol as a relativizing symbol — e.g. addresses of (0,15)

or (1,07) relative to the start of the subroutine will be written (
^

,

15) or (
R +1, 07)

.

If the subroutine is now put into the store starting at an address

N , then in customary fashion the symbol B in an address may be

used to discriminate on whether or not to add '^ to the remainder cf

the address.

The special feature of the format is that if the starting address

N is chosen as a multiple of 32: A^ - -w-^x « 0>»/»*) -- as is possible

if there is adequate intermediate storage, or if the code is not too

large — then the relativization consists in replacing the symbol "R by

the number /w . Thus if -Km I7 , from ( R , 15) we get (17,15)

where the 17 identifies the current location of the subroutine, and the

15 is still a relative address within it. For code checking, and for

manual relativization, this feature is quite a convenience.

Output and input. The output is on decimal IBM cards each

containing three values of '**' , in floating decimal form van exponent

and eight figures, more figures than the expected accuracy), as well as

identifications i^ > ^ > etc.). For tabulation convenience these three

values are for a common argument, and various parameter values, rather

than vice-ve:'sa.

This means that the several integrations for the different param-

eter values must be carried forward in parallel; in fact, for chosen A
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and the code carries forward the integration from <t^-^tj to m
,

in steps of otu , for each of ^v = 1, 2, . .
. , 6 in succession; that

is, six different equations are Integrated at a time.

The zeros Oc were supplied as intermittent input (as called for

hy the code) on IBM cards each containing up to six zeros oC for fixed

^ and tj (identified on the card) and various 4V , and having sum

for check purposes.

Parameters . It is desirable that the tabular interval

Aij
, starting value ^ , and integration interval ^ by readily

adjustable. Rather than being set as decimal or binary fractions which

would have to be known or computed, they were defined in terms of inte-

ger ratios A , A , S , from which the code computes, in floating form.

Thus for Am = .01, d^ = .0005, ^ = 'Ol, we would set A = 100,

L = 5 = 20.

These parameters, and others defining the number of input cards

to be processed and the ranges of ^ and < for which computations are

to be made, are contained in the code pre-set to convenient values, but

may be altered as desired before the computations. The code adjusts for

the current values of the parameters as necessary, each time it is run

from the starting point.

BESUIiTS. The preliminary results obtained were briefly catalogued

earlier. The integration steps doc* *^^^ ^^^ defined by a common ^^ ,
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which was tentatively chosen aa .001. (The computation time is inversely

proportional to ^^ .) From the previous error estimates it may be ex-

pected that the resulting accuracy for C will be good, and for "S will

range from good for *>v = 1 to fair for 'K = 6.

The first and easiest test on the output results, aside from their

general character and plausibility, is how well their values approximate

the expected value at ^ = 1.

The greatest errors at "^ = 1 were k.k x 10~ for ^ , at X . ,

and 6.1 X lO" for C , at C >• . But these figures are deceirtive

in two ways. On the one hand, these errors are principally ascribeable

to slight errors in the available values of the zeros oC which were

used as input data; hence the integration error at H = 1 is consider-

ably smaller. On the other hand, the accuracy at u = 1 is only a par-

tial measure of the integration accuracy, and at other values of H, the

errors axe several orders greater. These matters axe discussed in greater

detail below.

Suspicion about the accuracy of the available values of the roots

oC had been eu:oused by the erratic nature of the small errors at m. = 1.

Desk-calculator interpolation in standard tables of Bessel functions (where

the arguments are decimal fractions of x. rather than of h. ) confirmed

that some axe in error. The following values in Watson's "Bessel Fxmc-

tions" (I9W), pp. 7^9-750, need correction:

for 16.223U61*0 read I6.223M662

for 19.1v09lvl»i8 read 19-lK)9l^l52

for 7.58831*27 read 7.5883I+2IJ;

To test the accuracy of the values of T and C for arguments
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K> ^ 1, a number of values were computed to 8 or 10 declmala on a

desk-calculator either bj interpolating in published tables or by using

the pover series expansion for J . These laborious processes could

be carried out for only a selected few of the thousands of combinations

of peo'ameters and arguments.

In the case of C , the values checked (near meucima of C ) had

relative errors of less than 10~ . Since the largest computed C was

less than 10^ it seems likely that the results for C have absolute

errors of less than lO" .

In the case of J the errors are somewhat larger. As expected,

they are largest for "K- = 6 where over most of the range ot '^ , the

_l4.

relative error is nearly constant at about -k x 10 (giving a mnylimim

absolute eiror of about -1.5 3f 10 ). This is explained as follows:

Well away from H = the Eunge-Kutta method is adequately ac-

curate with the chosen interval ^'c = .001, as testified by the accur-

acy of C . But over a limited range near ** • ^ » .01, it is not so

accurate, as noted earlier. Imagine that the integration method is sub-

ject to small relative errors for '^ t ^ > not too far from 0, and is

exact for
?J
^ M • Then the function obtained for "^ 5 ^ > instead

of being 3iwC^^) > is that exact solution AXf (of the differential

equation) for which 4A* C'^'^/ and **» ^ •* ^ ) agpree with the results

of the approximate integration to H . Then, as a solution of the dif-

ferential equation,

£i C0C^)n (l*^,) JC**.^) 4t€^ "^ff^)'^^^^ )

Where 6 (ec>j)z t,*^* , so that 6", and 6.^ are small. Now
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^Ctc) ia very large for small sc , and moderate for larger ?c ; so

that for larger «. , and J* not near zero,

That is, if the integration becomes sufficiently exact before V becomes

too small, then when Y does become small (which happens rapidly for

^ = 6, more slowly for "H* = 1) , the error in <**» relative to J

amounts principally to a- scale error. This explains how the accuracy

of the results at )| dd * '^' and at n =1 are an incomplete test of

the over -all accuracy; the accuracy of the vanishing at *^ = 1 ia, in

this problem, rather a measure of the eventual accuracy of the Runge-Kutta

method for H, away from 0, and of the accuracy of the zeros ^

It is hoped that in the near future the values of 3" will be re-

computed with smaller integration intervals as necessary to secure

greater accuracy. To avoid too great an increase in the total number

of integration steps and consequently in machine time and in accumula-

tion of rounding errors, the code may be modified so that ^^ may be

varied, depending on the parameters O^ , Ov , A and possibly on * ,

being chosen very small only where necessary.

1.3 Travelling Wave Amplifier .

The extensive calculation described below was carried out

for Dr. W. R. Beam of the Radio Corporation of America's David Sarnoff

Research Laboratories in Princeton.

When an electron beam of high space charge density is collimated

by a large magnetic field, the velocities of all electrons within the

beam are not equal; for a beam of circular cross section, the centermost
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electrons travel at the lowest velocity since the electron potential

there is lower than at larger radii.

Any electron beam of moderately constant cross section, uniform

charge density, and uniform velocity will propagate waves of space

charge, at speeds nearly that of the beam. Thses solutions eire well

known. In the case of hlg^ space charge and resulting non-constant

velocity over the cross section the waves will be of considerably dif-

ferent form. This was the case treated by the code and the purpose

was to examine the space charge wave propagation in detail.

Since an electron beam consisting of two discrete velocity

classes of electrons is capable of amplifying any disturbance placed

upon it (signal or noise) , it is only natural to question whether it is

possible, in a begun carrying a continuum of velocity classes, to produce

amplification. Analysis of beams of this nature, where every velocity

class exists at any point on the cross section, have shown that no ampli-

fication is expected. This code was designed to determine if amplifica-

tion occurred in the important case where the velocity is given as a

single-valued function of the radial distance from the center of the

beam.

If we assume that the perturbations propagate as e. *'

then the perturbations equation (holding only for small perturbations

in the electron beam) is

4^^ + '
^^^ + u*- Y)r/- -7—^—uP c - c

}

where

£. = Perturbation of the electric field in the direction of
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motion of the beam ( z -axis)

f^ = radius from center of beam

4i. = ***/«.

UJ = angular frequency of distorbance

C = velocity of light in a vacuum

**i - propagation constant of the beam (to be determined)

l'J(A')= velocity of the electrons as a function of radius:

U)^ = ' , vhere P is the unperturbed space charge

dens ity,C and 'JQCI axe charge and mass of the electron,

and f the permittivity of free space.

The values of *>! are found by unpressing tvo boundary conditions:

1. £^ = at /7 = 0, required by the absence of a line charge at /i = 0-

2. £^ = at /2. = /2p , the requirement that the field reduce to zero

at the radius of a metallic cylinder surrounding the beam at A = /i.o .

The method of solution chosen is a straightforward one. Choose an

arbitrsLry -ti , set up the boundary condition E (o_) = 0, and integrate

in a forward direction until /i^ is reached. The values £o CAo^ '^ )

can be considered as values of a complex function of a complex variable,

^ , and its zeros in the '^ -plane are the values sought.

It can be easily demonstrated that £.3.(ll«, rj^ is an analytic

function of fj in the upper half plane. By taking a rectangular contour

C , in some -gaxt of the 11 -plane, it is possible to determine the

number of zeros of £j. C ^^} V) within the contour, C , simply by

counting the net number of times £2. ^ ^*^ '7-^ J crosses any

radial line in the complex y) -plane as ''>n goes around C-
, for they) -plane as 'y
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function will encircle the axis once for each zero contained within the

contour. A four -way check is possihle by counting the number of times

the four major axes are crossed. This is done simply by comparing signs

of the real and imaginary parts of ^z Cno,tj') for successive values

Of
I

.

This routine weia also altered so that it could record and print

^tL^O)'^] for values of 'y lying along horizontal lines in the

11 -plane. By study of these it Is possible to determine all the values

of If which satisfied the boundary conditions, and to catalog them.

The problem was run with a large selection of typical constants,

and all tests to determine whether amplification exists were negative.

In addition, sets of values of ^z C/^o/ Vl were calculated for a

large number of '^J 's, and the results showed accurately the position

of the various modes of propagation of the electron stream. A graphical

display of one of these outputs appears (together with explanatory re-

marks) at the conclusion of the discussion of this problem.

We now briefly describe the computational procedure. For writing

convenience let us denote ^ z 'bj '>> . In the forward integration of

the equation (for some fixed 'h ) we employ the Milne method:

to find ^\4t f then Simpson's rule

to find '^y^^i f having done this, ^<^j^, is found by substituting

the differential equation. We see that the first three values of -^ ,
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^ , and M are required in order to start the Milne method. These

are provided by using the approximations

for 2h steps of A .

The errors in this process are now discussed. The error in {k)

is i? V J J £i^ where -r-ri is a mean value of i^3 A-M ^.X
cU*

The error in the Milne method (3) is '^Gtk.y ^ ^ /

The interval ^ in (^) was chosen so that these two error expressions

should be in rought agreement. It may be remarked that since all the ac

curacy required was that the computed value of '^ ^A<») have its proper

sign, the matter of digital accuracy was not overly important.

We now discuss the methods that were employed to check the code

before the main calculations were made. Note, that upon setting yi

in (1), the equation reduces to

d}B, I tf6£i
+ M.^E^ ^

This has as solution Jo ( tA/)L) , where X C^) is the (Bessel)

solution of the zero order Bessel equation '^ "^ x ^' "^ ^ ^ '^
' This

reduction was made in the code and the machine results compared with the

V. p. A. Bessel Function Tables to five decimal places. The root count

was checked by inserting constant values of 1^© which gave predictable

zeros in the ^ -plane.

The details of the code are now given by the schematic diagrams
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(Figxirea 1 and 2) and the explanatory reraarka which follow. The numbers

in the remarks correspond to the numbers of boxes in the figure.

EXPLANATORY EEMABE3.

Figure 1. Boxes 1-9 set up the initial values of all

* _ . u/.
I

of the quantities and forms T» X where T ~ \- , , ,.tw +02 V;Cx:)J*

and t * t is the scale factor required to make I T- a** ) < '.

Boxes 11 - 19 substitute the values of ^ and -v' into the differ-

ential equation, yielding \" .

Boxes 20 - 25 are used in the starting calculation to obtain y, ,

3«. ^ '^% > '^1 J ^x f 'S» ^°r ^36 ^^ tl^e main calculation. The interval

in the starting calculation is /fi where A/ is the interval in the main

calculation.

Boxes 26 - 37 carry out the main calculation to the point x. = x^»>v.

Figure 2. In Box I ^ , Q. , U. , and V are the net

number of times ^ t'X.^ v) crosses the positive real f^ -axis, negative

real "^ -axis, positive imaginary ^ -axis and negative imaginary '*} -

ajcis, respectively.

By net number of crossings we mean that 1 is added if the crossing

is counter-clockwise, and subtracted if the crossing is clockwise.

Boxes 2 and 3 set up the new value of ^ = 7'»h./'k •*^ A ^« ^ f

V-7. t ^X-JH ^ . Figure 2' Ii^ figure 3 are shown modes of propagation of an

electron beam. These represent different waves which can be excited by a

resonant cavity at the input end of a drift region. The waves are char-

acterized by different wave velocities. In the case represented in (A),

the electron velocity at the center of the beeim was about l.^d less than

that at the outer radius. The resultant waves cannot have velocities
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within the range of electron velocities. In the case of a uniform

electron velocity, as in (B) , no such forbidden region exists. The

differences in wave velocities are thus the only effect of the electron

velocity gradient-

The points shown were obtained from solutions of the equation for

completely real values of '*?
, by determining values of "»; for which

the boundary conditions were satisfied. This was done following the

conclusion that no such solutions existed for complex ^ . This con-

clusion was verified by extensive experimental work with demountable

electron beam apparatus.

1.1+ Accelerating gradient accelerator .

A group at Princeton University under the direction of

Professor M. Vfhite has conducted an investigation into the design char-

acteristics of an accelerating gradient accelerator. An extensive series

of numerical calculations was carried out to investigate the stability of

particle orbits under vea-ious sets of physical conditions. Of principal

interest are those conditions under which the particle returns in the

same phase after each revolution around the machine. Most of the nu-

merical work was concerned with investigating the effects of small er-

rors in the gradients and positions of the focussing magnets on the

stability of the orbits. In addition, some calculations were performed

to gain some insight into the effects of non-linearities in the focuss-

ing fields.

In what follows ft, is the distance measured outward from the

center of symmetry of a magnet and z. is the vertical distance from

this point. The machine itself consists of alternate sections of
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four-pole focuaalng magneta and guide magneta. The components of mag-

netic field strength are of the form

and the equations of motion of a particle are then

where jp is the momentum of the particle, & the time, ifc. is the

particle charge, and V* is the velocity. If * measures distance

along the line perpendicular to the /t and x directions^ then

Thus we have approximately

in these equations the dependence of ^ on >C la neglected.

In a focussing sector the values "Ha. , "Hj, appearing in (2)

axQ given by (1) whereas in a guide sector they are considerably simpler.

In fact. If lit , tit } ^o > 2» *r® "tbe values of /v
, /u , Z > ^ t

at the beginning of such a sector and if the corresponding values at the

end are /t. , /t , 2 ,2 , then

with a pair of similar equations for 2>| , 2, , where H is the radius

of curvature of the orbit, o^ is a certain constant and cJ is the angle

swept out in moving from one end of the sector to the other.
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The calculationa themselves consioted of following the puth of a

particle througli alternate focussing and r^ide sectoro with nlternating

signs for the gradients in alternate focussing aectors. Kqaationa (k)

were integrated by the Runge-Kutta method. The coefficiento «
, 1 ,

..., /v were supposed to be subject to sr.:ill random irrors due *o

gradient and alignment discrepancies. To simulate this condition each

coefficient was subjected to a small perturbation chosen from a uniform

distribution. For a discussion of how 3uc)i numbers ma," be generat-. i

see the section on random numbers- Thus each coefficlcrit -^^ in (I)

was of the form

where "K is the random munber corresp'^noin;; -„o f..e (/i't:; 'jarjiiez , ^

is a factor determined by the tolerances set lor the machine and «<# is

the unperturbed value of the coefficient.

To ensure the accuracy of the results several checks were intro-

duced in the form of redundancies. The most important of theso -.r^s an

energy check. The force functions are derivable from a potential func-

tion V and thus the total energy could be expressed as V + the kinetic

energy (aJ + Z' ) /Xf , and this must be a constant over each i\'cussing

sector. The energy was calculated at the beginning and at the end of each

sector and required to agree to a pre-assigned tolerance.

About UOO integrations were done in all. Most of these were con-

cerned with the linear case, i.e. that one where tV^ ,
f^^ contain no

terms higher than the first in /t and z. • These recult3 arc new ov-

ing analyzed. Some work was also done wi'v,h the non-lin*=:ar cac-; but this

was not as complete as the corresponding set for the lii.e.ir or.e.
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II. OTHER MATHEMATICAL PROBLEMS

2.1 Flows past curved obstacles .

In the description of plane cavity flows past curved ob-

stacles there is a highly non-linear integral equation which G. Birkhoff

and E. Zarantonello showed plays a central role. To describe this equa-

tion suppose AC^) is a real-valued function on the interval C^t"^)

and let

with

Then the equation in question is this:

Xl(^) = M K [ (9'(0] v(r) e""^^^^
;

more precisely given the functions K , >^ ve wish to find a function

y\C^) and a constant M such that relations (1), (2), (3) are satis-

fied as well as a condition on M of the form

4CH;» 3 O

In solving this system (1) - (U) it is convenient to resort to a

Fourier transformation. The functions '' and ^ are simply expressible

in terras of the Fourier coefficients of A • In fact, if

then
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The method of solution of the integral equation la Inductive and

will be described below.

The continuous variable <r la replaced by the discrete variable

(T^ CM. = 1, 2, ..., 'A), AC<r) by X^ » \LC-^
,
^» ^<ri.

)

^^» %OS;J^ , where (^ = 3.75° + 7-50° C^'O • Then the Fourier

coefficients Ctj^ in (5) above are obtainable from the relations

We go to show the validity of these relations. Suppose that
»»>/

is a trigonometric polynomial which takes on the value /J^ at (T = C\^

(cf. above) ( 4^ = 1, 2, . .
. , ifw ). Then

4W ^IH ^i^M'

its I k,S| 4t«l

•»v

*A. Z Cfc,I ^/<^t/v-t)r^ -C^6A-e>t.)€V) =

Thus

^t.^^<^i^. '^t'*^;

= 4r.^-^ ^ =
*»**/

'VV/
/Wv/

,

and we then have established the relationship between (5) and (7).

It is convenient in what follows to define JtC. to be
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and its Fourier coefficients to be /fj^ . Thus

^iv ' 4/ ^ /^-^ ^^ ^^ ^* '^

'»^ v..
In terms of the m the condition on M mentioned above assumes the

form

Our numerical problem is now this: For a given K , V and 4S-

to find a A^ such that

where M is determined by (10) . Suppose A is an approximant to A^

and M>. to M . We then find the Fourier coefficients ft^ of A^^ with

the help of the definitions (7) and with these we construct 5^ , ^)^_

from (6). We are now able to form u, from (8) and also a>j^ frc

(9). In terms of these /•. we use (10) to form an error correction

•om

quantity

and a new approximant M^^, to M by means of the relation

where /^ , ^ and ""^ are pre-assigned by a human judgment as to the

rate of convergence of n^ and A^ . They may be varied as the com-

putation proceeds if it seems desirable. In practice this was seldom

done

.

We are now in a position to form A 4^
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ru- a wi-L-rtoJ Qvera/;e nf '^,.. + 1 , A<». and of '^^. . This com-

At thi:. I'uint vo remark that one can calculate 'Z^^ in

two different ways: given A^ we can use the equations (7) and

obtain one eatinate ^ and also

to obtain another one. Thus we are able at this point to check against

possible machine errors by forming the difference

i ^^ - ^^<. I

Two criteria were established for determining when the inductive

process would terminate. The first of these was concerned with the near-

ness of A^ to A^_ and consisted of measuring the difference

the second was concerned with the nearness of M^+, to ^ ^^ and consisted

of forming the difference

\ Ma^. - H^
I

.

The computation was concluded when the former error was less than

10 and the latter less than about 10 . This latter condition turned

out to be the more stringent.

A number of checking procedures in addition to the one mentioned

earlier were incorporated into the code for the problem. Due to the

symmetry introduced into the problem all "i*^ must vanish. This was

checked by comparing ' "^ivi at each stage to 2~ to verify that it

did vanish at least to this precision. Also since reasonable bounds

could be given for allrelevant quantities - /\ > "^ > ^ > >^ > M ,
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->' -- their sizes were monitored at each step. In all cases the cal-

culations were stopped when any of these "error checks" was violated.

The various kernels K (cf. below) were constructed, as needed,

by the code itself with the help of a few parameters which were fixed

on special input cards for each case. These functions K as well as

the sin -^ S\ , cos -^ (v were formed with the help of a table of

sin a\^ , cos (t-^ stored for the purpose in the memory.

All quantities were handled with a precision of 39 binary places

throughout the calculation and the relevant results were converted to

9 place decimal numbers at the end of each special case.

There were seven functions '^^ ^^ and nine obstacle functions

K C^) in addition a choice of five side-conditions was used to deter-

mine

2.2 Eigenvalues of symmetric matrices .

The proper values and the associated vectors for several

symmetric matrices of order l6 and for several of lower order were ob-

tained by msans of a procedure due to Jacobi. This method, which Is a

highly stable one (this has been shown in an as yet unpublished .paper

by von Neumann, Murray and Goldstine) brings all proper values into

evidence at the same rate. It is inductive in character. We shall

now describe it in some detail.

In what follows we shall have occasion lYequently to deal with

several quantities associated with symmetric matrices. If Jj-'C /^-t ,
)

is a symmetric matrix of order , we define certain quantities with

the help of the relations
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We formulate our problem in this fashion: Given a symmetric matrix /\

of order Oi/ we seek a unitary matrix auch that

where is the transpose of U and 3 is a diagonal matrix, i.e.

die
\

'-

We note at once that

Thus "5^0 and is zero if and only if J la of the form given by (3).

Our procedure will be to define a sequence of "simple" unitary matrices

U^_ and transforms of A

such that

We say that a unitary matrix tt z.[li.i^) ig simple In case there eure two

Integers X/ , 4 between 1 and tv with ** t i and a number ^ such

that

UJ
1

X/ f -o

/C e /O

<^»
1 1

*

If 11. is simple and (^ is so chosen that

A = U.'' A U
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has the element a.^- -. o > then it is easy to see that

•&*C A ) = %''C^) - at'j'

Thus simple unitary matrices of the sort Just mentioned reduce the value

of t' .

If in particular we choose ^ > i so that

i.e. if ^tj' is at least average in size, then (6) implies that

i'-CA ) i »Y>v)('-^,)<^"^^""-" ^'^*>
,

or

ta) ^ e-'^— > '^ca;

We see now how our inductive process proceeds. At a given step say that

A j^., has been defined, and that (^c'j' ) is an at least average-sized

element -- the larger it is the more quickly does the process proceed.

Then a simple unitary matrix is chosen so that the element ^i'j' In A
4^^

defined by (k) is null. We then have

Thus at a cost of ^i'^ y^ operations we reduce i> CA-) by a factor '« .

Each operation consists of altering only two rows and two columns of a

matrix of order 'Vu by forming simple linear combinations. In all about

^ov multiplications are involved in each operation and hence each re-

duce of 5 by a factor /c requires about 7 'H' multiplications.
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It ia important to see how the diagonal elements Qcc are

related to the proper values -^ ; of ''^ . To this end we note first

that the proper values of Ax are the same as those of A and second

that we can decompose Ak. into

where ^ is the diagonal matrix having ^c in the t- -th position on

the diagonal. Then by a well-known result of Hilbert and Courant

\A.-c^ \ t NC^- a'^T^CA^)

Thus ^ is a valid measure of the rate of convergence of the diagonal

elementa of /ii,^ to the proper values.

We remark in passing that the unitary matrix '^ in (^) will be

approximated by the product U,, , ICi. , ... of the simple unitary

matrices. Further we observe that this method is not an unreasonable

one to use for inverting a matrix since the inversion of ^ is auto-

matic and that of 3> requires exactly Oi^ divisions. With this method

we see at once the loss in accuracy which will occur since we can ex-

actly determine how much scaling must be performed to invert the diagonal

elements

.

The estimate given in (8) is apparently not a sufficiently sharp

inequality to give an accurate picture of the number of steps needed to

ensure a given precision. Some experimental work in this connection is

being done at the University of Illinois under A- H. Taub.

Two versions of the code were prepared. In one the numerically

largest off-diagonal element was located at each step and in the other

only one larger than average was located. In each code several checks
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were performed. The traces and norms of the ^^^ were evaluated and

compared to the starting values of these quantities and the calculation

stopped if either exceeded a pre-assigned tolerance. Also after the

calculation was completed and the matrices ^ and JP , i.e. —B^ for

some -t?. (cf. (9) above) obtained the expression

rJ (A-vLb^u.*

)

was evaluated to ensure that this was zero to the requisite precision.

^.3 Spherical blast wave .

Some exploratory calculations were made on a formulation

of a spherical blast wave problem. Since these indicated the desir-

ability of using different variables we give below an account of the

problem in terms of the new quantities. We interest ourselves in the

shock wave started by a very short duration impulse of finite energy

acting in an ideal gas in three dimensions with adiabatlc constant «

We assume that all motions take place in a direction we choose as the

/v -axis and we can treat our problem as if it had but one spatial

dimension. We further assume that at time t^ - o and at position

/!.=. o the Impulse acts. We wish then to study the motion of the

shock wave as it travels into the undisturbed gas. In the case where

the pressure In this undisturbed gas is zero there is an exact theory

for the motion given by von Neumann. We shall make use of his results

for certain estimates we make below.

At each point /fc^'t we denote by M" > 'f* > f 't^e velocity,

pressure and density of the gas and by ^
> J^» if, their values in

the undisturbed gas. We shall adopt a Lagrangean point of view and

shall study the history of that particle which at t. - o was at A- ;
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we denote its location at £ by R.C.\j-t-) . In the undisturbed

gas R. ~ A' . The equation of the shock wave we give aa A * ^Ct-J

The differential equation of motion in the region enclosed by

the shock wave is given by the well-known laws of hydro-dynamics to be

5 ^t*- ^(^
o ,

i.e.

Oil . i/lf.T' ii?
'31

Conservation of mass assures us that "^ it^\or\, /^ ^^ constant in

^ along each particle path, i.e.

Hence (2) becomea

at*-
~

?. A^ ^^

We find it convenient now to change variables from /i. to 5 = /x

.

In these terms (i*-) becomes

We next give the shock conditions, i.e. those conditions on a^ , ^ ,

P , which eire dictated by the requirements of conservation of mass,

momentum and energy across the shock. Let the values of *<
, ^ , ^

on the disturbed side of the wave \)& A^ , jo , P and let the value

of the shock velocity be V* . Then
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4 . JI±U£-^_Xi^a-^i_ . /c' . \/Cr. '>-^-
S. c^-o f» * C «•-./) >|o, ' /^ V ?. (rv.j^^cr-0/b.

'*^
' -\/re, • \/(:t^4,)f,f ^r-o^.

Next we recall that

where A is independent of "t along each particle path as long as

it does not corss the shock, i.e. it is independent in the entire region

behind the shock. Thus

provided both ^***) and (s,t') are on the same side of the shock.

We therefore have

Ve now formulate our difference equation system. We divide the

i -axis from to shock /i>C^y= ^ ^"^^ into 100 equal intervals,

each of length y4> it) /lOO and the t -axis into intervals whose length

will depend on t . This point is discussed in more detail below.

We now introduce some notations that will be advantageous in

what follows. Suppose that <!'^>v<-'/» ( = 0, 1, 2, ...) are the

intervals in t. . Then

6,^0^ t^,, -- t^ rcU^^,,^ ( -t^-'O^n-i., ... ),

yb ^/i>ct^)^ ds^ ^/>t^/,*o^ n^^d^^^ '/i

^; = f^(-i'=^^^, ^^), i=yy^- ^Or'/^)^s^,i^^)^
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mtd •

)

_ k*i _ ''f

nj-" =T^C}^s,^t,.,)^ ^r'-^-
« R, *

C g^A.r '/«

In terms of these quantities equation (5) has been written as

h '-^i "J.^^rv. -n-vj-jt -^7;7-( ^^^"^ -/

We go to show that (9) is an estimate for (5) • Consider first the

expression

^*
S.O

k»i ^

i-. i'^s^, *^''*.*"y
c =i«</k«v. fc=t^.'/v

^

'^Ir ^''*'/» -fel ^'^*''- (•>

9t^

i«n^i.. ,*"-*-

'^^.''l (^^"^:^^-"^]

Next

V/. - 4^^/,. - ^^ r '^^) ^^•«'> '^»«') -> '''i''^^^ ^'--^ ^--^ </) - 9>
3s

Finally we note that

-S= idi^^t = -tK

This completes our Justification for the estimate (9) to the implicit

i'^'^^t^ji^'^K,

ktl

equation (5)

•

Now we describe how we find ^ .

,,
given -io , ^, , > ^- > I

K.._ , "R. . .We make use of the adiabatic relation given in equation
3"' 3

(7) above as follows;

'3^y^ ~~ ^y'l- \a^
i^r)'-(K:)i:

-V^ - ( a;.)' J

.t^'
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To Justify this we note that
^, t

(«• j
)'- (-

R-V. )
-"

IT' ['l^*J'-C<3-o<=<V)^]-

We next explain the determination of d^K^-'U • It has been

shown by Courant, Friedrichs and Levy that the ratio of the interval in

"t to that in S must be less than the reciprocal of the velocity of

sound in order to ensure that the calculation will be stable, i.e. that

rounding errors will not increase rapidly. In the present case this

means that

It is with the help of this formula that we calculate c^/^+z^ . We

evaluate the right-hand side of this inequality at the shock, i.e. at

^= /^ty, . There R-= /u and hence relation (3) tells us that

Further the first of relations (6) gives us the value of f/f^ at

the shock. Thus

Now we define djtf.^^k with the help of the relation

We describe now the modus procedendi of the calculation. To

this end we first describe shock treatment. This is carried out by a
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method due to von Neumann. Let us assume that we have obtained the

values of "J^ and -fo at time "t^^ together with the shock position f^^^

and the shock velocities -^k-'/j , i^k-Vi. . Given these data we

make a first estimate to J^'i*'/, by a linear extrapolation and obtain

a value '-^
; we define Jj to be J>k-'/i. • With the help of

this ^ we find at ^k*'/^ the mass-velocity ^
, the shock pressure ^

and the shock density f . We are also able to find ^ ^^ , ^, from

equation (9) and -f^fj/z^, , 1^ m'/,. from (10). From '^f, - ^^^ ,

'^ f«
""

fi- ^6 can estimate the mass -velocities '^f^ , ^tu

and from these together with ^ we can estimate k',^ , This

latter quantity may now be used to obtain a value for '^^ and hence

for i^iiVj, • Given rny^ , 'f^tg'/ > 'f'li'r > ^^ can extrapolate

a value 'V(Ki%) for -f^ at '^i^ ^'^ cCt ^_^ ,^^
j X. . Note that

this point is in the s -plane directly above the point on the shock at

which IP was estimated. We have values 'fo for "fo and j° for <>

at this point and can therefore calculate a value ^A,*'4jfor 'h at

this ^ with the help of the adiabatic relation. We now have two dif-

ferent estimates n^-n/^) and t^p,^ '/^-jfoT the value of fo at this point,

and thus an error indicator A - io^t,* '/^f M^v,) • '''® can then use these

to obtain a new, improved value for ^ in this fashion: If ^ ,

-^ are known estimates for i-^^V sind if ^ , O are

the corresponding values of ^ , then

is a presumably improved value for 3^^y

This iteration is continued until JX*'/ ^^ obtained to desired

precision. In terms of this quantity one then computes
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and next %/ , 4a'^.*' ( 1 = 100, 99, •••, !)• We note that

TLCOj-f) =. o .It remains only to discuaa the method whereby we

go from the beared to the unbarred quantities. We do this by a simple

quadratic interpolation. I.e.

where

It is the intention to start the calculation with values of 7^ ,

-(o prescribed by von Neumann's exact theory for the infinitely strong

shock. These values will be taken as an approximation to the situation

that obtains when the ratio of the shock pressure to that of the undis-

turbed gas is 100.

Von Neumann showed that these values could be obtained simply by

integrating a first order ordinary differential equation. If

then £. satisfies

He also showed that this equation can be expressed in the following

pareimetric form
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and then that

We vlah, however, to find the values of R =^-f , p as functions of

oxir variable S A /». . To this end we introduce the new variable

/CC« i*

Then

Finally, since we are interested in ^ , 4^ only for one value of ^

we may express these equations as

.1

the integration to be carried out from S » '/x 38. to 5 = <? with

the starting values at /^ z. '/-u fV of R»/u» ^t^,
, ^ =100.

The calculation is to proceed until the shock pressure is about

l/lO.

2'h Random numbers .

In the numerical investigation of several types of physical

and mathematical problems it is necesseury to have available in a code, a

sub-routine which will produce, upon the demand of the main routine in
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which it is embedded, a number auch that long sequences of these numbers

have many of the statistical properties usually ascribed to a table of

random numbers

.

As examples one has the class of physical problems in which it is

necessary to numerically simulate the movement of a particle in a random

path, and as another instance there is the differential equation solution

scheme which is commonly called the "Monte Carlo" method.

We first discuss the numerical scheme of "random-number" produc-

tion which was the central object of our investigations.

The calculation stfiurts with some given forty-digit binary number

Clji . The sequence <X, , c^^ , •••, <:ivv is then calculated induc-

tively by the procedure now described: assume we axe at the c -th stage

(i.e. a, , . .
.

, a^ have been computed) then <?c+« is obtained from

^C ^y squaring ^^ ( «?^. is thus an eighty digit number) and extract-

».

Ing the middle forty digits of <<^ . This new number (namely the middle

forty digits of d^ ) is <^c*i . Thus if

then

and

^- =Ai /^^•• «̂ij

The code does the following: starting with ^, , it computes the

sequence ^i , 4^ ^ •••/ ^,<f then it recomputes this sequence check-

ing whether for any /<• (= 1, 2, . .
. , 2 ) , ^^ is equal to ^,'*"7 if

there is such an v- , (and there need by no meftns be one since there

are 2 distinct forty-digit binary numbers) we call it ^ and proceed
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to look for another value of 't^ (which we call *^ ) such that ^^m =»

0^1 = ^x'*" f'*' ^ /*'V. This determines the length of the repeating

block in the sequence A, , 4i , ..., ^j-*" ; namely ^ - <^* and

moreover guarantees that ^i , ^x, y •" > ^^ (where i^ = max
^ i,*

( /C - C * )
j ) are distinct. This sequence ( C, t ^x 7 • • • > *^k )

la the object of interest and the code gathers the following information

about it.

Each Cii = oC
j

o^|- ... o^v is broken up into four decades

<Xk_=o^- o/v ... oL^- , K=0, 1, 2,3 and a count

is made of the number of <^k 's having the value U. = 0, 1, 2, 3, • •
•

>

2^° - 1. Call the d. -count N^ , and let -n^ = 2" /^<»< and ^^ =

min (a.'; n^ 1 . (Clearly for K =2 ^, 71^ has the expected value 2"^

and the quantity '^4 is introduced simply on the grounds that '^A.

7
should xiaually equal oa^ and yv^ definitely has the bound 2' which

simplifies its handling.) The code now makes a count of the '>^«< 's.

The procedure in the running was to get a starting number *»

which produced a distinct sequence <*•< , <?,. , • • • , ^.t'«*>
then ^ther

the above information and then start again using dyC aa <*, in the

next run. In this way a distinct sequence of 2 -^ 's was obtained

starting from the number 010101... 01. Tables of the step-wise and

cumulative '>v^ counts (Figures 1 and 2) are given at the end of this

section. The tables seem to exhibit the expected distribution converg-

ence from binomial to normal.

Some statistics gathered by the computing group at the Los Alamos

Scientific Laboratory are enclosed (Figure No. 3) as being of interest.

The statistics are based on the method of random-number production
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described above. A total of ^l8,^26 distinct sequence elements was

generated before the repeating block vas encountered. The table list-

ings are as follows: The first entry in each column is the number of

counters with readings less than ten half-probable error deviations,

the second column entry the nuniber between -10 and -9, etc- The leist

two colxum entries are respectively the iteration nuzabers and the

integer £ which la related to the "^^ by

where ^ is the nximber of decades. No analysis of these statistics

was provided.

2.5 Solid diffusion in fixed beds .

The problem discussed below was done for Dr. J. B. Bosen

of the Forrestal Research Center of Princeton University.

The mathematical problem and resulting computation arise in con-

nection with the performance of a fixed bed chemical system such as an

ion exchange column or an adsorption column. In such a system a fluid

flows at constant velocity through a fixed column packed with solid

spherical particles. The fluid contains a concentration C of active

material which ia transferred reversibly between the fluid and the

solid bed particles. The rate at which this transfer takes place is

determined by the combined effect of a liquid film at the surface of

a peo-ticle, characterized by a film resistance parameter V , and

diffusion into the interior of the particles, characterized by a solid

diffusion coefficient J> .

The normal operation of a fixed bed system consists of feeding

an initially empty column with a fluid containing a constant concentration
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Co (Influent concentration). The quantity of interest Is then the

concentration flowing out of the other end of *he bed as a function of

time (effluent concentration) . This type of operation is known as satu-

ration. The reverse process to this, elutlon. Is also of Importance.

Because of the linearity of the system, the solution of the saturation

problem also gives the solution of the elution problem.

The desired mathematical solution gives the normalized effluent

*^- Ic, in terms of three dimensionless parameters: ^ the film

resistance parameter, 'X. the bed length peireuneter, and y. the time

petrameter. All three parameters are proportional to the diffusion co-

efficient ^ . The most convenient way of presenting the values of

/LLC V f
"^

' ^] is to plot curves of U. vs. 'O'/oc for a range of

values of X. . One of the five graphs thus obtained (covering the use-

ful range of peirameters) is appended to this report together with the

tables of values from which it was drawn (Figure k) . The 28o values

of /W- C'^
f
^ > ^^ computed were chosen with this method of presenta-

tion in mind. The parameter values chosen were /x. = 0, .025, •05*

0.1, 0.2; X. = 0.2, 0.5, 1, 2, 5, 10, 20, ^vO; and seven appropriate

values of tf/x for each of the preceding pairs of values.

«
The original mathematical formulation of the problem leads to

the following partial Integro-dlfferentlal equation for

^ ,>

Its solution by the Laplace transform gives

|3.-,£ j'[|..v,^Je--^^-»^.
tto«< f

• J. B. Bosen, J. Chem . Phys ., 20, 387-9'+ (1952)
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where

/^

4^.c>,-'^ -

—

— '

3CA)

and

It can be demonstrated that - 'V*- i Y ^ '^/-i^ , 3o that £p i yU. <

11 as it should be on the baals of physical reasoning.

The numerical representation is effected in two basic steps:
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1) Replacing the Infinite integral Y * j ^0*-^ "^(^ by the finite

one ) f'i(b) (^p3 , and then

2) Eeplacing { ^(^f»)'^^ by an approximating eum S . Here, of

course, fC/^) la the integrand.

and /S,^ is the finite upper limit of integration.

We thus have

Y -- S -r «T ^ ^5

where €j is the error in truncating the upper limit Y and G^ is the

sunsnation error. These errors will be. discussed and bounds derived for

them following the description of the integration technique.

The motivation for the rather complicated numerical integration

procedure (described below) employed is as follows. In numerically

evaluating a sinusoidal integrand the usual procedures dictate the

necessity of maintaining a minimum number of points of evaluation of

the irttegrand per cycle (of the integrand) . In the integrand {k) it is

cleeurly seen that (k) oscillates infinitely often as H-/^ increases.

Thus if one were to determine a fixed number of evaluation points so as

to guarantee a pre-specified minimum number of points per cycle, the

total number of points to /^y^ would be prohibitively large (e.g. some

of the integrals would take over an hour to calculate)

.

This difficulty is avoided by employing an integration procedure

in which the interval of integration is a variable which increases as

permitted by decreasing sunmation errors for increasing ^ , and in

which the integration formula is Weddle's rule (6) at first, but changes
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to a series (7) of formulas which are more efficient when -J^Hj^^fh jV^

Is small relative to ^A . The particulars now follow.

The range of integration is broken up into intervals, each of

six finite difference steps of '>v . For each value of the parameter

k. the formula (6) is employed (see below) during the range for which

Aj A f 4. >1 -HxC ^j"^) , i.e. while the oscillations of (U) are still

being influenced heavily by the term ycH^, • ^^
'^

f^ becoming greater

than 't-x.'Hji, the formula (7) replaces formula (6) to the conclusion of

the integration.

where

The r^^ are stored constants and the ^j* and Bv are sets

of constants which are different for each value of ^ = 0, 1, 2, 3i, ^f

5. The role of -lo and the method for determining -C are now given.

The following definitions will be needed.

Let K be the integer such that



I
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and let K be

K K < «>

Thus K (and K* ) are determined by the choice of parajneters m and

X. •

Now let "fvu be the greatest integer such that

K*. 1
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ia an Integer.

If It Is 80, then the new -1^ Is alloved to stand and Is used In

computing the next contribution (i.e. for ( ^,
(^*(f^ ), if not, ^w

is restored to its previous value and the next step proceeds using the

previous ^ • This process is then continued after each integration

interval ( /i
,
(hik'U/) up to an upper limit /i,w (The value of /*-»»*'

ia motivated by error considerations and will be discussed in that sec-

tion of this report.)

Formula (7) is derived using the identity

and takes advantage of the periodic oscillations of the /ivW «* /I and

d-ib'V} /t terms to increase the interval 6-^ to include from one up

to as many as 32 complete cjrcles of these oscillations: these correspond

to ? = 0, 1, ..., 5. For each value of -P , six each of the coefflci-

ents b; and C- are used, thus requiring a total of 72 coefficients.

It is tedious but quite easy to show that the scheme described

above guarantees that

a) While using formula (6) there are six evaluation points

per cycle of the integrand.

b) The transfer from formula (6) to formula (7) occurs at

the end of a cycle.

c) f is related to the basic period v^^^'v) by a power

of 2.

d) The interval A/ is doubled as frequently as possible

consistent with the above, and
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e) -Cc '6
^ finally

f

)

The error in f is leas than .005 (see below)

.

We now proceed with the discussion of the error terms ^t and £_5

(5). First, we define fh,^ :

/h^ • 'Hw^j/'^if^^ auch that :>c^,C^,^)l "> \ '

The desired accuracy was to have H' (2) computed with error less than

.005, thus the required bounds on 6j and ^r are

le^ f
^ I^T ' ^ -0025.

Now,

A bound for this latter integral was obtained by an asymptotic expansion

of ^(/^) (^) in inverse powers of A (for certain cases it was found

necessary to actually compute the first term of this expansion as a cor-

rection term in order to keep fht^ from becoming too large) and it was

demonstrated that the choice (12) of /i,^ kept £-r ^ .0025. In some

cases it was possible to use A^ as small as - 1.

Now,

and clearly the magnitude of I £4 1 depends on the formula used ((6) or

(7)), the values of the hi^er derivatives of ^ (/i) and the size of

the step length w (10). The error per 6 A/ interval for formula (6)

is < 9/1I+OO U,^ ^ '*^
and for formula (7) is <:i/lo)<. Y^ P^"*!-^

' ^''^O,

where the quantities f , P , (i? ^ are the evaluations of the
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derivative of the order of the auperscript at some intermediate point.

An estimate of these derivatives together with the requirement

I £fc I < .0025 determine a bound for the maximum step length -^ (deter-

mined by (10)). The values of ^ actually had the range .00^1 < '^ <

Before the problem was run, a great many check-runs were made to

determine the correctness and accuracy of the code; principally these

consisted in the following: Y (2) was calculated with the imposed con-

ditions ti. (//*,>')= O
,

-HxCv/^
i
V;='o

, thus yielding

C l*"*^ jLj 4a. A
)

" -— '^/i . The machine-computed values agreed (to well past
/h

the desired accuracy) with the W. P. A. tables of this integral. Values

of Hp, , fl^^ , -H, and "Ha, were computed by hand and compared with

the machine results. In addition, three non-trivial values of 'V^ were

hand computed and checked against the machine. For several values of

V the integral was re-run with the step length halved, with good

agreement

.

The full details of the code are now given in the following dia-

grams (Figures 1, 2, and 3) and the explanatory remarks below;

EXPIANATORY REMARKS

.

Figvire 1.

LA. To achieve maximum flexibility in the use of the code it was

decided to make each computation of '^C'Xj^^^^ independent.

A given set ( "X ; -^ ^) is punched on a card which the code auto-

matically reads in. 1 ^ -'Vy ^ is then computed and its value

punched out on a card. The process is then repeated until all

the cards with the triples C'^y^y'^) punched on them have been
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read in and the correaponding ^ 'e computed and punched out.

l.B. The indicator G" is aet equal to 1 if formula (6) ia to bo uaed

in the next step of 6 "C .

1-C. Similarly ff- ia aet aqual to zero if formula (7) ia to be uaed.

l.D. Here the discrimination on C is made.

Figvire 2.

2.A. fc^:, .
e-x^cv7^,v; A<^C'^n>' ^'^'^C^,^))

and a ready computation yields

2.B. Ao* Aa 5 -F*-, - f/

2.C. The aymbol{S/ meana that the subroutine S (Figure 3) is entered

and returned from. This subroutine is entered in the usual fashion

from any memory position X- , it then computes +fi ( ^j ^^
,

'

flfcCvT^, '^'l
, and e-**^'^^^^ and returns the con-

trol to memory position 'X4i

2.D. ^ is a subroutine which is entered at memory position X- ,

computes the sine of the angle stored at memory position "Pt-t-/

(by the multiplicative form of the power aeries for sin) and re-

turns the control to memory position X.-t-a. ).

2.E. The indicator ^ is defined in Figure 3-

Figure 3.

3.A. For A < -01 the asymptotic expressions

«„-7?/^'
. «»- -"^^^

are accurate to six decimals.
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3.B. \S / is a subroutine which is entered at x, , computes

where e' Is the quantity stored at X-f/ (by multiplicative

power series expansion) and returns the control to x.-*-a- .

3.C- For Ai > Sh the asymptotic formulas -Hj, = A-' > -^^x. ' ^ are

accxirate to six decimals.

3.D. For V=o , fli'-^Di and -Hji. = +H3>i .

3-E. The indicator P is set equal to 1 if ?<• "H^ > 10 and equal to

zero if •>«.+(, < 10.

2.6 Bionumeric evolution .

Extensive experiments in a numerical analogue of genetic

and evolutionary processes were run for and by Dr. Nils Aall Barricelli

of the Mathematics Institute, University of Oslo.

Dr. Barricelli is interested in bionumeric evolution of numerical

organisms composed of numerical genes. By this is meant the experimental

study of a class of logical-arithmetical systems constructed to suggest-

ively simulate the corresponding biological system.

We give an introductory description of the model studied. (See

his earlier report, "Numerical models of evolutionary organisms".) The

universe is a linear array of ^ locations Ou. , studied during suc-

cessive generations o . Each content X^^- , of location <a- at

generation ^ , is either or a numerical gene, a small positive or

negative integer.

The contents of the various locations at generation ^ determine

those at generation 'V tl by reproduction and mutation rules. By the

reproduction rules, a gene X =- Xa^j. in location q, would be repro-

duced in one or more locations of the next generation: first, at
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location -*• = a,+ X • and also, If at location '^C , then also at

location Ac-^, * <-^ "* ^i
•

, * ) provided ^^c, ^ ^° • However, when-

ever two or more genes would "collide" in a location o^ under this

rule, one of various mutation norms ia invoked to define a single ^e^'j*-n

(or 0), depending on the colliding genes and on some of the A<»,'' -

for A' near <l,

Under such rules Dr. Barricelli showed, by hand methods, the

formation and growth of numerical organisms -- linear sequences of genes,

which reproduce themselves from one generation to the next -- and fur-

ther biological analogies such as peurasites .

He then turned to the Institute for Advanced Study computer in

order to perform more extensive experiments, with varied mutation norma,

a larger universe, and especially, many more generations.

As coded for the computer, the universe was cyclic with 512 gen-

erations, and each gene X , restricted so that 1^1 < kO, required

eight binary digits so that five generations of a location could be

packed into a single l^-O-binary-digit storage location.

The code was written so that various mutation norms could be

employed in selected regions of the universe. Special attention was

I)aid to coding for maximum speed of operation, and for the convenient

re-use of output data as input after interrupted operation.

The output cards, punched with the contents of half the memory,

when abutted top-to-bottom, present five generations of the 512 loca-

tions^ in proper array. Such arrays were reproduced photographically

and further assembled. A small sample of the results is reproduced in

the attached figure. The binary representation of the genes proved
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visually convenient, as well as more economical of output cards and

machine time than decimal output. For further economy in the consider-

able caurd output, only five out of each 100 generations were recorded

during reconnaissance. Interesting phenomena were then reinvestigated

in more detail.

Dr. BeoTicelli will present his results in detail elsewhere.

In the present report we wish only to indicate the trend of ideas,

and for this purpose quote some passages selected from his preliminary

report, interspersed with summaries of the omitted material.

Experiments in bionumeric evolution

executed by the electronic computer at Princeton, H. J.

Alms of the experiments.

The aims of the experiments eire of two kinds:

1) To find analogies or, possibly, essential discrep-
ancies between blonumerical and biological pehnomena.

2) To observe how the evolution of numeric organisms
takes place by hereditary changes and selection and to
verify whether some of the organisms are able to speed up
their evolution by gene replacements or by acquiring new
genes or by any other primitive form of sexual reproduction.

The latter aim can only be reached if we are able to keep
one or B«re species alive for a large number of generations
under conditions producing hereditary changes and evolution
in the species. But we must avoid producing such conditions
by changing the character of the experiment after the experi-
ment has started.

Methods

.

1. Employed norma ; The mutation and reproduction rules
(norms) employed are all of the kind which in the preliminary
communication "Numerical models of evolutionary organisms",
are called shift norms. The laws of reproduction are the
same in all these norms. The only distinction among them
concerns the law of mutation.
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There follows a deacriptlon of thenlne mutation norms (designated

either by a description such as "addition norm" or by an arbitrary name

Buch as "blue norm"), with a summary of their cbaarvfed evolutionary

properties.

2. Size and inputs ; In the experiments Just executed the
number N of cells used for the recordli " •nes has been
512 numbered from to 5II. This is t:! of our gene
universe. All rules are applied regarding position as
Identical with position 512. That meHna the gene universe
is cyclic. The input, used as generation Q, have been ran-
dom numbers obtained by different methods using a set of
playing cards.

Results.

1. Experiments by single norms . Moat norms have been tested
alone -- as single norm in the whole gene universe -- some of
them (red, yellow, green and purple modified) by the computer,
some others (addition, exclusion and blue norm) were tested
before.

All experiments have shown that the use of a single norm in
the whole gene universe leads -- in most cases in less than
500 generations -- to uniform conditions in the whole universe,
for instance, by progressive disorganization or by a single
species expanding to the whole universe.

Where uniform conditions are established every further
evolution stops.

2. The combination of different noi'ma. A way to prevent
uniformity is to use different norms in the different parts
of the gene universe, each of them favoring a different kind
of organization or disorganization.

Several experiments with combinations of different norma
have been performed

These experiments are then described , and the detailed outputs

are reproduced.

3. Some resulting organisms and their properties . One of
the aims of this research has been to find possible analogies
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between blonumerical and biological phenomena. This can be

done by studying the properties of the resulting numerical
organisms

.

In this and the succeeding two sections, a few of the resulting

organisms are discussed as to their properties, especially as to being

independent or dependent ("parasites").

6. Vitality maxima . It may be expected that some combina-

tions of genes will produce organisms which axe stronger and

more fitted to the conditions prevailing in the gene universe

than others. In organisms with few genes, this circumstance

may easily lead to relative maxima of fitness; that means com-

binations of genes in which it is impossible to change only
one gene without getting weaker organisms

The evolution of an organism may for a long period of time

stop in a relative maximum of fitness. But a change in the

conditions of the universe, e.g. in the kind of concurrent

organisms may sooner or later level the maximum making fur-

ther evolution possible.

7. Observed evolution processes . Before the Princeton
experiments executed by the electronic computer, some experi-

ments with numerical organisms were executed manually. Many
of the bionuraeric phenomena hitherto described were already
observed in these experiments (cf . "Numerical models of

evolutionary organisms") . But no evolution process had been
observed in these preliminary experiments.

The most important questions to be decided by the Princeton
experiments were therefore:

I. Whether or not the numerical organisms are able to

undergo some evolutionary processes by hereditary changes

and selection.

II. If evolution takes place, what kind of hereditary
changes are working in the numerical organisms in order to

make evolution possible?

Some short evolutionary processes have been observed dur-

ing the Princeton experinents. In most of the evolutionary
processes observed only one or two hereditary changes have

been able to expand; but in some cases even four or five

changes have had the time to expand before the species was

destroyed by concurrents or parasites or by some kind of dis-

organization process.
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In no case has the evolution led to a degree of fitness

which could make the species safe from complete destruction

and Insure an unlimited evolution process like that which

has taken place in the earth and led to higher and higher

organisms.

The Princeton experiments have, however, shown that evolu-

tion is possible in the numerical organisms and has given

some information concerning the kind of hereditary changes

which maite evolution possible.

It will be one of the most important aims of the nert

bionujnerical experiments to find the way to start an unlimited

evolution.

There follows a description of some of the evolutionary processes

observed in the numerical organisms.

When a relative maximum of fitness la reached, the evolu-

tion process may stop for a long time.

8. The hereditary changes and the transfer of hereditary

characters in numeric organlsma . In the higher organisms

we are in the habit of finding hereditary differences between

progeny and parent organisms only as a consequence of cross-

ing or mutation. The crossing process -- sexual reproduction

--is highly specialized. The cases in which hereditary

changes may be transferred by virus -molecules able to leave a

cell and invade another cell are rare and may be considered

as exceptional.

In bacteria and lower organisms the situation is completely

different. Mutations produced, for example, by irradiation

in bacteria are normally transferred to the bacterial genes

by surrounding molecules affected by the radiation. The trans-

fer of hereditary characters from bacterium to bacterium by

virus -like molecules is very frequent. Cellular fusion is

never observed in bacteria and it is likely that all hereditary

interchanges between bacteria are mediated by virus -like peu:-

ticles of different size and with different tasks.

The surrounding material apparently plays an important part

in hereditary changes and transfer of hereditary matter in

the most primitive organisms.

We find a similar situation in the numeric organisms. The

hereditary changes and the transfer of hereditary characters

from organisms to organism are prevalently produced or
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mediated by surrounding numerical genes. There are also, how-
ever, many cases in which a mutation is not transferred by
external genes but appears in the organism, for instance, by
collision between two different genes -- when the purple modi-
fied norm is used -- or by loss of a gene, or by re -arrangement
of the existing genes.

The report closes with detailed discussions of the observed muta-

tions (classified as "internal" and "carried") and of crossings between

organisms (classified as "transferred gene (induced mutation)", "regular

cross" and "transferring cross"). These two types of hereditary changes

are compared in a transitional discussion:

All the mutations here adduced have been able to expand
and are most likely useful or in any case not injurious.
The reason is that we have chosen our examples from the muta-
tions which have played a part in some evolution process.
Injurious mutations rapdily disappear and cannot aid evolu-
tion. But is is ture also for numsric organisms that most
mutations are injurious. Every change in a numeric organism
may be considered as a mutation; but only a few of them show
the ability to expand. Also in numeric organisms therefore
it will be convenient to get hereditary changes which in
other organisms of the same species already have shown the
ability to expand.

We cannot expect to find a specialized crossing mechanism
or sexual reproduction in the primitive numeric organisms
which hitherto appeared. But the ability of the numeric
organisms to receive external genes, able to enter and to
reproduce between their genes, makes it possible to trans-
fer hereditary characters from one organism to another and
to obtain crossing results.

As may be expected, the crossing and gene transfer between
numeric organisms play an important part in the evolution.
The majority of the new variants which have shown the ability
to expand are a result of crossing-phenomena and not of muta-

tions, although mutations (especially injurious mutations)
have been much more frequent than hereditary changes by cross-
ing in the experiments performed.

2.7 Miscellaneous codes .

For efficient operation of the computing machine it is





11-90.

necessary to have in convenient form several "service" codes. These

perform such operations as the conversion of addresses and symbolic

orders to their binary forma as used by the computer and the arrange-

ments of decimal results on output cards so that these may be used

directly on an IBM tabulator to give special arrangements of the data

on the printed page. The two most important arrangements used were a

tabulation on a rectangular grid and the production of a graph. The

preparation of the former arrangement is given below.

The graphical output code converts numbers in the computer into

suitably punched cards so that the numbers can be plotted as absicissas

by an IBM tabulator, thus providing points which may be joined to form

a graph of the data.

The code has four parameters: integers A/ , A and machine

numbers C , '>w • For the contents "X.^ of each of the f^ storage

locations starting at A , the routine computes '^C ^ C'icc - cSyr)fy\y
^

rounded to the nearest tenth (where - 1000 < '^c < 1000), and punches

a card.

The punches are such that the tabulator can be wired to print,

on successive lines, not only 'Jc in conventional fashion, but also an

entry whose horizontal location (column of the tabulator) depends on

^C • To achieve ultimate resolution finer than that of the solumn

spacing, the tenths digit of g.^; is made the entry, while the integral

part determines the column. It is thus easy, if desired, to interpolate

by hand on the tabulator sheet to a tenth of a column, at the location

of each entry. Because of peculiarities of the tabulator, a tenths

digit was made to print as 1 in the graph, with the correct indicated
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at the side.

The display Is 36 columns wide, corresponding to the range

O ^ '^ C ^ tCt . If "^j is outside this range, the routine trans-

lates the entry right or left by a multiple of 36 columns to bring it

within range (without affecting the conventional numerical display of

13c ).

If the code is started at an eeurlier point, it first finds and

displays the maximum and minimum of the H numbers "Kc , for use in

choosing suitable values of '^o and on^ .

Graphs of 10(1 + sin "JC ) and of 10(l/2 + sin x- ), produced

using this code are attached.
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CHAPH OF 10(1 + Bin )

10*0





CWAPH OF 10(1/2 + aln )
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III. METEOROLOGY

3.1 Mathematical Introduction .

Before proceeding to a detailed examination of the

meteorological problems that have been handled on the machine let ub

consider briefly a method of solution of elliptic partial difference

equations. This is desirable since the solution of such systems plays

a dominant role in what follows.

We describe first the work of S. Frankel (1950)* in connection

with the difference analogues of the Laplace and Poisson equations.

Suppose that the difference system at hand is

C i = ',A, ^-'t J = '»^. ^-0

subject to the boundary conditions

3C

where v ij ,
Aj

,
f^j

, 1^1 , ^l. are known functions of the vari-

ables indicated. In order to remove the implicit nature of the system

(1) we write, following Frankel, a new system which is an approximation

to (1). In this new system we assume that ^tj is an approximant to

Xcj , the solution of (1), satisfying the conditions (2) and define

a "better" approximant T^ij as

* References for Section III will be found at the end of the section.
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where

C'^"'' ^ X-/ ; J ^ '.^, 7--/)

and CO is an as yet unapecified parameter. We ahall see that by suit-

ably changing u> we can materially alter the size of the deviation

) ^cj - ^.i I

V?e note that the choice co = 1/2 corresponds to the method of

Liebmann (1918) • We now discuss the situation for a general (^ . We

therefore consider the deviations

of J/tj , ^ij from Xij the solution of the system (l) . These

deviations are related by the equations

(l^ /,:l,. ... x-/, j.- /. 5 x-/)

^aj = -^Xj = ^i^ = y^CT = O , t^oj - Uxj - -^'o - Oct- = O

We may consider this system (k) as being of the form

where L. is a linear operator. If we change notation for the moment

and let -C^^j = Ucj , -^^tj = -^cj - Then (5) states that

From this it is clear that to discuss the convergence of --*^ to the

zero function we must consider the behavior of the proper values and

vectors of the operator Z. . We therefore consider the proper value

problem

^ -^o - ^o f-^)
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or equivalently

Let "^^cj ^ given by

(tiv-j)/J

These (jL-i)C ^~0 functions of i- , j satisfy the boundary con-

ditions (8) . We shall now see that the parameter co can be so chosen

as a function of /^ , 9, that the -*^cj also satisfy (7), i«e« that

they are the proper functions.

It is not difficult to see that

/\ - Zco(^ ^ -f-^<^ ^) ^'^' - (^^-0
.
= a

Thus ve have an equation which will determine ^ P-'ir * This equation

will apparently yield two roots for each /t-
, ^ which would make it

appear a priori that there were not (jZ-i)(^— *) proper values but

actually twice as manyl However, we see with the help of the trans-

formations p- - T.- P" y f'
= ~~ ^ that the proper value

and thus there are only (X-O^J"-/^ proper functions. Thus the

numbers '^ p-^ determined by (10) and the functions -^^^ij determined

^7 (9) and (10) are the proper values and associated functions sought.

We see from (6) that the magnitude of each proper value must be
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less than unity to ensure the convergence of i^ to the zero function.

We shall therefore concern ourselves with the sizes of these quantities

viewed as functions of the parameter OO . It is not difficult to see

that the smaller are the sizes of these proper values the more rapidly

4^ converges to the zero function. In particular, the relevant

statement is that the smaller is the largest of the magnitudes of the

proper values the more rapid is the convergence. If m>cj can be ex-

panded in terms of the functions (9) , it may be seen that the rate of

convergence of ^tMij to the zero function is measured by the quantity

and by another factor depending solely on the initial approximant -t-^o .

In equation (10) we let

and consider the roots of the equation (10) aa functions of -t and caj

where O < 't <• tr^ - Ccsir/j -t-Cir>'^/T.^-^co-\>c

From what has preceded we see that we wish to make as small eis possible

the magnitude of the largest root, i.e. we seek to determine

to *

To do this consider two regions of the (^,'t) space: Region IT,

/o'^^ - f «3 -^ ' -^ <5 ; Region H ^
io^f^ - f^ -t I ^ o .We

see that
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and further that

u:) '^M ^('^^'^H ^^-'^<^) '' ^ {^^-')

Thus

where (^m is the smaller root ofM
6' ^^ - ^ o -f. / = o

We accordingly have found the optimum value of u^ , namely

<io5 + <=- fco= j:i- (¥-i^^)'^'}/^M , -^M

In terms of this quantity we find ^^MAy •

for large ^ , ^ . If we had chosen ^ = lA (the Liebmann case)^

we would have had

If now for the moment at least we choose X = T , and if we define

the rate of convergence C to be ] I
—

I ^nfin-jh then (12) implies

F

and (13) implies

dp ^ irr i:-'

Thus the so-called extrapolated Liebmann method of Frankel yields the

following conclusion: If the parcimeter OO is chosen to satisfy (11),
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then the rate of convergence of the iteration procedure (k) , or equiva-

lently (6) , has a maximum for the choice (11) of the peirameter c*J .

With this choice the measure of the rate of convergence varies linearly

with X ; in the usual Liebmann procedure -- oo = l/k -- this measure
-

1

varies quadratically with X
In closing this discussion of Frankel's work we discuss the so-

called Eichardson (1910) method. Here we have in place of {h)

For the proper value problem in this case we set

and find at once that

^ = i ^-' ¥̂ . ^ ^1-*
7* /

Thus

/ ^ MA. I
=

3^,

=. -L (fi^ 5 4 <2^?) - '- 5-'(^'"^^"^

and for I = J

1 _ a-
I

-rr — I

^a -r -I- ^L
"J-

In summary we see that the approximate measure of the rate of

convergence for the Liebmann case is twice that for the Richardson

case and it is ~n"/2I times that for the "extrapolated Liebmann" case.

We turn now to the work of D. M. Young (1951) on the general,

linear elliptic partial difference system. Such a system may be put
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We shall now consider generalizations of the Eichardson, Liebmann

and Frankel procedures for the Poisson difference system to the equa-

tions (16) . Since all our estimates involve differences between ap-

proximants and exact solutions of (16) we shall go directly to the

perturbation equations corresponding to (I6), i.e. to

whose solution is Uc - o .

The generalization of Richardson's method is then:

in which y<^c ia the -n, -th approximant and yt^/^*' is the (^^0 -th

approximant to the solution of (17)«

We shall assume the proper values and associated vectors for this

system, i.e. for

to be ^1^ . ^<^,^ . (s ^ = ^-'^^ ^)

The generalization of Liebmann 's method is:

i-l
_

N
C-nv-O

yOOi
^^^0 ^ 2 i>o ^r'^ ^ 2 ^'j

^'^'^^
.
6*- ^^ ^ ^-^

1*1

We shall now determine the proper values and vectors of this system in

terms of those of equations (19). The proper value problem at hand is

«-* ^

2 't>'j ^j ^ 2. ^'V ^j
,

(^" = '.-?. ^J
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Let
,

{<\-^ = Ai. ^)

vhere ^i is the L -th component of the vector ^ mentioned in (d)

above and -^tT^- ^ is the A -th proper value for the system (19)- We

now determine A*- so that (22) is a proper function for (21). Substi-

tuting (22) into (21) and making use of (19) and of the theorem stated

directly below (d) above, we find readily that

2

y^^ ' ^ik ,
-^^ i^, ^

Thus the numbers y^ are the proper values for the system (21)- corres-

ponding to the functions (22)

.

The generalization of Frankel's method is:

= /> -?, ^^

and the corresponding proper value problem is

We again let

and find

Thus — •/ ^ ^(^'''-^'^ >1^^.-^ - Ci^o.-d^'^^^''^^^
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JJ — 4c (x> ^^ 2J''^ -f (J^^-,) =-

the generalization of equation (10).

Before analyzing the roots of eqiiation (25) , we discuss the

reality of the ^^ -By (e) above the matrix (AijJ and hence (t^O^

is symmetric. Thus for eacn -^

N

^- ^ ^ NJ' - 2 ^c i>(j ^^ = ^ ^i ^0 ^^ = ^ 2 /^''' = ^
^

t = i J" ^^' '"""'

since "brj is real and symmetric. Thus each ^ ^ Ib real. We turn

now to a consideration of equation (25) and consider the quantity

as before we distinguish two regions of the 60 , A -space: Region I,

(^<o A-^) - ^^u)-i) ^ O J Eegion II, ^iO^^j -^fwj-/) ^ O . Then

we see that

and further that in Region II

Thus

tj ^ U. 1

Vhere ^0^ is, as before, the smaller root of

where '^ .. is the numerically largest of the /i yt .

^ *«^ ^
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We are now able to compare the convergence rates of our varloua

methods. To do this we say use Young's criterion or a somewhat simpler

one.

If "P is the absolute value of the largest proper value we may

define the "rate of convergence" as ) — "F . Thus for the Richardson

case ve have

(!^ = I- J^m)

for the Liebmann case

C^ = I

- IO^mN

and for the Frankel case

,.,), ^^[,-xfj<-ii->^n =
'"'>h

and thus we have for I ^ ;m near to 1.
# ,i

3.2 Meteorological Introduction .

The problem of primary interest to the Meteorology Group

during the year covered by this report was that of predicting the

changes in atmospheric flow over periods of 12 to k6 hours. The ac-

curate prediction of the field of motion is a necessary, though not a

sufficient, prerequisite to the prediction of the more commonly thou^t

'^f weather eleiaents such as rainfall, cloudiness, humidity, etc. The

difficulties associated with such prediction can be regarded as being

of two kinds; firstly, our knowledge of the physical processes govern-

ing atmospheric motions is limited and, secondly, even the differential

equations derived according to our present limited physical knowledge

present considerable mathematical difficulties.
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The physical aasumption usually made is to aBsume that the flov

la adiabatlc, quasi-static, quae i-geostrophic and frlctionleae. Apply-

ing these approiimationB to the equations of motion and thermodynamic

energy equation we can derive the folloving ajrproiimate equation for

the pressure tendency

In a rectangular coordinate system with ac pointing ea^t, M north

and ? upward. The quantity of -f- is the Coriolis parameter S.JI '»««^V^^

with -ft the angular speed of the earth's rotation and ^ the latitude;

fl is the pressure; o^ , 8 and V are functions of /^ and its

space derivatives; 6 is the potential temperature; and T^ is the

geostrophic vorticity:

where "p^ is the horizontal operator, /^ the density and for simplicity

of presentation the curvature of the earth is ignored.

Iq^uation (1) is clearly elliptic or hyperbolic in the pressure

tendency according as the factor miltiplylng the 2 -derivative terms

la positive or negative. In the latter case the integration problem

becomes very complicated and moreover there is some doubt whether the

geostrophic assumption applies in such cases. Assuming, however, that

the equation is elliptic everywhere and remains so we can, if we know

the three-dimensional distribution of p~ at time i: , by applying

the boxindary conditions that there shall be no influx or efflux of mass

through the top and bottom of the atmosphere, solve the equation (l) by
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some iterative proceea for the tendency ^/y ^C"
, Knowing this tendency

we can then extrapolate to obuain /T- at a subsequent time -^ -^ ^ ^

The process may then be repeated a sufficient number of time to give a

12 or 2k hour forecast as required.

The procedvire just outlined would, however, require such a great

amount of computation and storage that it was felt to be unwise to

start "numerical weather prediction" with such a complicated problem.

More simplified models have therefore been derived to test the validity

of some of the basic assvimptions. Three such models have so far been

used. These may be regarded as 'n. level models for '71- = i, 2, 3; '"'^

being the number of points in the vertical at which initial pressure data

is required. The derivation of the TL- level model will now be described

and then a description of the numerical methods used in each of the three

cases will be given.

3.3 The m -level Model *

The following notation in auidition to that given in section

I will be adopted: CP is the geopotential, ^ ?
, ^ the individual

derivative in an isobaric surface, "^ = "^ '^
-f.

^ / the vertical

component of absolute vorticity, Cv- ana <?/v. the specific heats of

air at constant volume and constant pressure, and oj the individual

derivative of {^ . Neglecting vertical advection of vorticity and the

conversion of horizontal to vertical vorticity, elimination of the diver-

gence term between the continuity equation and the equation for the verti-

cal component of vorticity gives

7>4 ^ = '^
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Also the energy equation for adiabatic flow may be written in the form

OO = ^^ ^ {- V^^)

Since -6*^9 ^ constant + {^^ ) -^/^ -t- -^ ^-^V^/V

Divide the interval /i-=Oto fi = p.,, in-"*^ equal subinter-

vals , i>
f^ , and denote qviantities at the mid-point of each interval by

the subscript "^
( -A = 1, 2, . .

.
,
"i^

) and points at the upper and

lower end-points of each interval by /€ - l/2 and i^ + l/2, respectively.

If we put -^ = 1 at p- ^ 1/2 S"p- , and 7^ = :«- at /^o - l/2 ^/*-
,

the points ft- = q, and f- = /^o correspond to 7e = I/2 and 7^ = >i-f 1/2,

respectively.

Expressing all vertical derivatives as centered finite differences

(and approximating when it occurs as a coefficient by its mean value)

eqxiations (1) and (2) become, for a lay^r centered at pressure /^A :

io

Approximating (^^ by (j2(^^,a -^ )^/-<a)A-
^''^ follows from the

geostrophic assumption that

fej„. s - (ftA ^ = in., 2
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where ^ - "(^(V^.- //•-«/) °^ -^(^4-'' '^ -k^ • Hence eliminating

^fk-'A *°^ ^Ti-t'/i between equations (3), (^) , and (5) we obtain,

for -^ / 1, -TV , (since ^ is a constant)

or

where

At the levels adjacent to the ground and the top of the atmosphere

we substitute the boundary condition ^*^;4 = = ^n.^.'/jL . For these

levels therefore

/ 7

t^), h'^t), ? ^'
^f,-<^.)^'^^

= O

m.{^^(^^->-^^f'-'"}-°

Equations (7), (8), and (9) thus give us -n- independent equa-

tions for the -^ unknowns (^^ > f^j ) • -• > P>- • I* should be

noted, however, that the solution of this set of equations as -n- tends

to infinity does not tend to the solution of the more general equation

(3«2.1) as additional assumptions have been made in the derivation of

the "TV -layer model.

SA Integration of the barotropic (one -level) model .

The barotropic model may be regarded as the tl -level
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model for which ''^ = 1. This gives ua the following equation at the

mid level of the atmosphere

To discuss the equation, we map the spherical earth conformally

onto a plane and introduce a Cartesian coordinate system i
^

, ^ )

in the plane. If -yn- is the magnification factor, the del operator on

the earth becomes multiplied by -th. in passing to the plane. Introduc-

ing the notation T?" =,^^ ^ rSTi for ^^ Laplace operator in the

plane and T(^''.,^^ ^ '^('^, /^^ /^^^> ij") for the Jacobian of o<

and /3 , ve can write (1) in the form

Two possible computation schemes can be set up in order to solve

these equations. Mathematically these are exactly equivalent, the only

difference being that in the first the history of the motion is ceirried

by p while in the second it is carried by J .

Method of solution A: The following computations leading from

time it to time -t -hS^i: are performed. Starting with a^

and p

1. Calculate (p ^/^V from the finite difference analogue

of

2. Solve for h)^ /btj from the finite difference analogue

i

1
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of the PoisBon equation

v^[^f>Mt = (^V^O*"

-t+^^t

3- Calculate d from

±

Method of solution B. Starting with J and S

1. Solve for ^ from the finite difference analogue of the

Pols 8on equation,

2. Calculate [j>S'/^tJ from the finite difference analogue of

3. Calculate J from

Procedure A was used when the first predictions were made in I950

using the Eniac and reported by Charney et. al. (1950)' I^i 'this report

it was shown that for a region hounded by a single closed curve the

boundary conditions on (12) are: p must be prescribed on the boundary

for all time: ^ (or T ) must be prescribed as a function of time

when fluid is entering the region, but must not be prescribed when fluid

is leaving the region. From the geostrophic assumption it follows that

influx or efflux is determined only by the boundary values of ^ . The

simplest condition on w is that it remain constant with time. For

short periods of time this rather unrealistic condition will not effect
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the internal motion. These boundary conditiona were uaed in the Princeton

computations for the barotropic and two-layer models but alternative ones

were experimented with on the barotropic model and used in the three-

layer model. These conditions will be described in a later paragraph.

The stipulation y = constant implies the homogeneous boundary

condition (^P / ^^J = on the boundary for the Poisson equation (U) .

With this condition, and with a rectangulej: boundary, the Fourier trans-

form method is well adapted to a computer with a small vajriable -storage

capacity such as the Eniac. This method is described in the above men-

tioned report and also by Charney and Phillips (1953). In the latter

report it is shown that for a grid of /•- '' 2^ points (jt/^ f^^ ' t) *

•' i(^'Olt~l^ multiplications are required per time step and that

storage must be provided for three quantities per grid point.

In procedxire B the boundary conditions on p for the finite dif-

ference analogue of the Poisson equation (6) are not homogeneous but

state that jZ^ be a given function of time on the boundary. Therefore,

unless we set S = on the boundary -- an obviously unreasonable pro-

cedure — the Fourier transform method is not conveniently applicable.

An alternative, however, is to use an iterative procedure related to

the Southwell "relaxation" method. It should be mencloned that, wheroas

the Fourier transform yields an exact solution within the limits of

round off error to the finite difference Poisson equation, the iterative

methods in general do not. If, however, extreme accuracy is not re-

quired, the disadvantage is far outweighed by other advantages. One is

that the methods are logically simpler and require few instructions in

the machine, thus taking up less memory space and also if too great
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accuracy le not required (or If the Initial guesa ia good) few Iterations

are needed, and the computation la correapondingly faater -- for the

fastest barotropic code the number of multiplications is approximately

10 /I'p- aa compared with (^A^^Jl- -'^)( P-'')^ ^ for the

Fourier aeries method. The principal consideration, however, which

led to the choice of an iterative method was that it could also be used

for solving the elliptic partial differential equations with variable

coefficients that occur in the more complicated models and therefore

its application to the barotropic model could be expected to provide

valuable experience.

The iterative procedure adopted was Frankel's (1950) "extrapolated

Liebmann method". Dropping the time subscript on / equation (6) may be

written

/^^ = /-.. ^A--'.. ^/s.v/ ^^^.^-' -^>^'> -(^^/-r.j

and Frankel's method is defined by the iterative equation

vhere the values of <p at the ^ -th stage of the iteration are denoted

by (i and where the double index ^ ,
-^-^/ signifies that t". j

index ^ or jJ-f-i is to be used according as the subscripts are ',J ;

c+i J ; '^iJ*i , or ^-1 , J ; ^' , J >-
' • Frankel (1950) has

determined the optimum value of the overrelaxation factor o< , together

with the corresponding convergence rates which are compared with those

for the method of Liebmann (I918) in which pC = l/U. In order to find

an ^ which is only a function of f^ and ^ Frankel had to assume
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nothing about the initial error distribution. However, in the first

few iterations the size of the residuals depends on the initial error

distribution which has in the meteorological problem some physical

significance and therefore certain predominating components. Thus in

actual practice a value of oL lying between Frankel's and Liebmann's

was found by experiment to give the most rapid convergence to the ac-

curacy warranted by the problem.

As many steps in the iteration process are performed as are

needed to reduce the absolute value of each residual below a certain

prescribed value. The number of iterations will therefore depend on

the accuracy of the initial approximation. In procedure B an obvious

initial approximation is the value of ^Cj at the previous time step.

If, however, the penultimate (^ cj is stored, a better approximation

can be obtained by linear extrapolation from the preceding two time

Bteps. Tests were also run using quadratic and least square extrapola-

tions from the preceding three time steps but without any improvement.

Whether or not Improvement takes place is clearly associated with the

time period of the motions being considered.

It can be shown (see Charney et. al., 1950) that the choice of

the space and time increments, As and At , is restricted by the com-

putational stability criterion.

where /"""I max la the maximxim particle speed in the forecast region.

This criterion must be satisfied if small perturbations are not to be

amplified exponentially. This ratio As /At does not, however, cor-

respond to the optimvun ratio demanded by consideration of truncation
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error. For this the incrementa As and Ab should be chosen so as

to give the same definition of the field of motion along the time axis

as along the space eixis since nothing is gained if the Increment in one

variable is chosen so small that the truncation error in the variable

is small, as long as the truncation error in the other variable remains

large. This requires that the ratio As/^t should be equal to the

local speed of propagation of the flov jiattern and not the local par-

ticle velocity, i.e.

where C- is the typical speed of displacement of the flow patterns.

At the 500 mb level /v I max is of the order of 50 m/sec whereas a

typical C is at most 20 m/sec. Hence, for a given As the A"fc

called for by the criterion (11) is perhaps two or three times too

small. The computation will therefore take two or three times as long

as it would if only (12) had to be satisfied.

There appears to be a way out of the difficulty. From the point

of view of computational stability, (1) behaves purely as an advective

equation when As is sufficiently small, i.e. as though the velocity

were a fixed function of space. It does not matter that ^ is itself

a function of derivatives of p . Hence in using the method of inte-

gration B, the stability criterion (11) applies only to (7) and (8) and

not to (6) . This suggests that a new field of ^ need not be calcu-

lated from "5" at the end of each time step. If, for example. At- is

required by (11) to be one hovir, we may advect the vorticities for two

or three one-hovir steps while holding ^ fixed as a function of time,

and only after the second or third step redetermine a new field of p
and therefore of velocity. Thus, the solution of the Polsson equation
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(6) need be performed only as often as is required by consideration of

truncation error.

The above method cannot be employed with procedure A, because in

this system it ia ^ and not -^ (or T ) that carries the history of

the motion and therefore <p must be determined at each time step.

We now turn more specifically to actual procedures used in obtain-

ing a series of 2l+ hour barotropic forecasts.

Forecasts were desired for an overall area of 5^*00 by 5'*-00 km,

with an interior region of 3300 by 3300 km which was expected to be

unaffected by the boundary conditions after 2l4- hours. This interior

region lay almost entirely between 30° and 60° N. For an area of this

size a Lambert conformal map projection with standard parallels at 30

and 60 deg. is well suited since it distorts distances between these

latitudes by less than 3-5 per cent. For its projection we can approx-

imate the mapping factor yt^ and the sine of latitude, both of which

are required in the computations, by

tn^ - /9.^^ ^/- ^A^V)

.^^ = ~B-~ <^ ( %)

where P is the polar distance on the map, /^b the distance from

pole to equator on the map and A, B, C are constants. These formulae

a.

give sin y to within 1.0 per cent and -^ to within 2.0 per cent.

The mesh size of 628.5 km at h'f N used in the Eniac computations

proved too large and for the Princeton computations it was therefore re-

duced to 300 km. This was justified by the following reasoning: con-

sidering the Taylor's series expansions of :^ (^ ^ Ab) and ^(x-Ab)
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we find that

let :f
- .^CoS\^ir:)^/u) then

Taking a value of L = 2000 km, corresponding to relatively small scale

motion, the percentage error introduced by evaluating a first derivative

by a centered finite difference with A ^ = 300 km is 15 per cent as

compeo'ed with 65 per cent for As = 628.5 km.

The corresponding value of A t was determined by the stability

criterion (II) . This led to a maximum value for At of one hour and

11 minutes and therefore the actual choice for A t was one hour.

The actual procedure used for the main series of forecasts is

now given in more detail.

1. With J ^j and Jfj stored for all grid points -- deter-

mined at zr = from ^ by (6) -- equation (9) is solved by means of

the iteration procedure (10) with use of f ij as the initial guesa.

2

.

iy^/^^J tj is determined from

C^cf',j /c 'y Jj

CO-AeM.
z

^; - -^c. r -r^ /
re-, ^ ij

The quantities &Cj and *<<\/ are evaluated from (13) and (1^^)

The relevant quantity here is O = (^'^/ "s) which may be written
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^ -J

where the pole is given the integral coordinates ^ a. and J p-

3. At interior points 7ij is obtained from

At r =0 it is necessary to employ non-centered differences,

that is, to set Stj = ic^ and etc) = 1. At all other times

eC^) = 2.

At outflow points Z cj is obtained by linear extrapolation

from the two nearest points along the normal to the boundary at that

point, while at inflow points X cj is set equal to the initial value

it" J
(inflow or outflow is determined by differencing the ^ ij on

the boundary adjoining the boundary point in question)

.

k. Steps 1 to 3 are now repeated 2k times in order to obtain

the required 2k hour forecast.

The storage of data clearly depends on the amount of digital

significance in the data. In the baxotropic forecasts the 500-mb

height used varies by approximately 3500 f't- over the forecast area

and is probably only known accurately to within 50 ft. Hence the ac-

curacy is one part in seventy and if the height is expressed as a devia-

tion from the mean value, it can be stored in seven binary places.

Actually in the course of the computation more than seven digits must

be stored in order to allow for round off errors. Whenever a number

is stored to -n- places it is rounded off thus producing an error

lying between 2 ^^^ " <i .If the process during which
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the number is stored is repeated -rrv times, the probable error will be

'A
increased by the factor ryy- , provided the round off errors are random.

Round-off errors in fi and S also enter indirectly, as for

example, in affecting the accuracy of U'^/^^y»V in (15), which in

turn affects the accuracy of 1 cj in (l8) and therefore of ^ ^j

obtained from the Poisson equation (6). It should be pointed out that,

when an iterative process is used to solve (6) , the error in <p is not

only caused by round off per se, but is also a function of the accuracy

with which the final iterated solution satisfies (9)- The jp 's were

stored in the machine as scaled quantities ^ , such that i > p "> o ^

and d-^/df ^5-* 3500 ft. The iterative process was stopped when

i

2**^'— ^"^ N^ for all t and j . Clearly if o - A
, the

successive guesses of ^ must be stored to at least //y-ai places,

if the pure round off error incvirred in storing p is not to inter-

fere greatly with the convergence of (10).

To calculate the resultant effect of these errors ab initio is a

difficult, if not impossible, task. Accordingly a short series of 12-

and 2l|-hour numerical integrations were performed, with varying digital

significance for the / 's and J 's. A basic forecast was first ob-

tained with 0=2 and T stored to twenty places , and this was

then compared to forecasts from the same initial data where a was

gradually increased to 2" and the storage of T decreased to Ik binary

places. It was found that the error in ^ at the end of 2k one-hour

time steps remained negligible in comparison with the error of observa-

tion until £ became greater than 2 . On the basis of these experi-

ments , twelve places for S ^ i = ^ ") and ll+ for each IS were
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decided upon. (It later developed that aa few as ten placeo could be

used for 3" •)

With regard to the time trimcation error it waa observed in the

Eniac calculationa, Charney et. al. (1950) , that increasing the time

Interval from one to two and then three hours produced no appreciable

change in a 2U-hour forecast. The computation proved stable for even

the three-hour interval because the space increment was over twice its

present value, and the particle speeds were lower than 50 m/sec. In

the present case, integrations were performed for At = 1, k/Z emd two

hours to test the application of the stability criterion. Instability

manifests itself by the exponential growth of small disturbances in the

field of geopotential or vorticity. Their rate of amplification can be

estimated from the theory given in the above mentioned report. One ob-

tains the result that the maximum aunplification factor, after 'T^ time

steps, is ^ where 9= --<*^ '^'^ / -^^ /""^/th*,* ' "^ ^ • In

the example tested instability was observed for ^-b = k/3 hours and

^ ir =2 hours . In the case A^ = ^/3 hours , G was determined

from the rate of growth of small deviations from the computation for

Air =1 hour which was stable. With use of this value of ^ , the

corresponding value for the case A^ = 2 hours and the number of time

steps required for the amplitude of a given perturbation to increase

by a certain amount were computed and found to agree with observation.

As previously observed, the computational stability condition

permits the advection of vorticity for several (^j time steps in a

velocity field that is held stationary diiring this period. The veloc-

ity field is redetermined by (9) only at the end of the period. We
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will use the notation -nT/L — -n. Jacobian operations per extrapolated

Llebmann operation -- to denote this procedure. Two experiments were

made to test its accuracy. These consisted of the preparation of two

12-hour forecasts, the first by means of the ZT / L. procedure and

the second by the 3T/L procedure. These forecasts were then com-

pared with the I T/L forecast from the same data. In all these

forecasts Ab remained one hour. Although both the -ST/l and ST/L

forecasts were stable, they differed too much from the i 3"//. fore-

cast to warrant continued use of the process.

The following scheme, involving the storage of four quantities

per grid point, has since been found to eliminate the above mentioned

errors. At time "c , suppose we have the quantities J3 , JP , J

and S stored. In the first step J is calculated from (15) and

t-/ ^
(I8); the quantities T are replaced by J in the memory and

J is replaced by J . The value of ji is then determined

not by solution of the Poisson equation {9), but by linear extrapolation
jt--n. J t ty-2

from JP and ^ . With the aid of this new value J is cal-

culated, and o. <p is determined again by extrapolation from ^

and <P . The whole process is carried out '"' times, until the

quantities fP , p , J and J eo-e held in the memory.

At this stage <p is replaced by JP and f> is determined from

3r by solution of the Poisson equation. The induction is then com-

plete. Initially it is necessea-y to advance in single time steps,

until '71' time steps have been taken. Only then do we have two quanti-

ties for the extrapolation, namely (^ and p and are ready to begin

the induction.
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The above conaideratlona suggest an improvement of procedure B,

in which a new <p is computed at every time step from each new 3"
.

Assuming that it is possible to store four quantities per grid point,

jv-z jT-i ^r-/
we suppose that <p is stored in addition to ^ > o and

w r V ^ T- 2r

J at the stage Just preceding the calculation of /a from J

Instead of taking
<f as the initial guess in the iterative process,

we extrapolate linearly from a> and take instead S. p — ^

The initial error is thereby considerably reduced, and fewer iterations

are required to reduce the residual below a prescribed value.

The main series of six 2lv-hour forecasts was made using the

straightforward procedure B, a time interval of one hour, and a rec-

tangular grid of 19 X 19 = 3^1 points. These forecasts each took 1+8

minutes at full speed. (In actual fact the machine was run at half

speed most of the time for engineering reasons.) In each step the ma-

chine perforned 6h,Q00 multiplications, k,20Q divisions, 31^,000 addi-

tions and subtractions and 1,1^67,000 additional orders. Of the 61|,000

multiplications, 52,000 were used in solving the Poisson equation and

12,000 in computing the Jacob ian. Altogether, six-fold more time was

spent in the Poisson part of the calculation than in the Jacobian part.

With the <P 's stored as numbers smaller than 1, approximately I3 itera-

tions of ths extrapolated Liebmann process were required to reduce the

_> ^-f' ^ ^ I , -10
qixantity I <p —pi below 2

As it was felt that unless the simple code could be nm quickly

the more complicated methods would be prohibitively long, it was decided

to speed up the baxotropic code as much as possible. V/hile for research

purposes the speed is not unduely important, it would become a primary
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consideration in any routine use of numerical methods in weather fore-

casting. The first change consisted of adopting the modified procedure

B in which the d> guess is obtained by extrapolation, and by rational-

izing the remainder of the code. This led to a computation time of 2U

minutes at full speed for a 2'4--hour forecast. The code was then further

speeded up by storing, in addition to the quantities required by the

modified B procedure, the values of S- and n^f i at each grid point.

Further the differentiation made in stage 3 of procedure B between in-

flow and outflow points was removed and all boundary points treated as

inflow points. Physically it would seem that this condition is definitely

wrong but whereas the old one produced a certain amount of mathematical

instability near the boundary the new one appeared to be quite stable.

This fact was reflected in the decreased number (approximately three)

iterations required to solve the Poisson equation. This resulted in

approximately equal time being spent in the two sections of the code

and a total computing time of about six minutes for a 2l*^-hour forecast,

at full speed. In comparison to this time it is of interest to note

that the first 2U^-hour barotropic forecast performed on the ENIAC took

2h hours to complete.

3.5 Integration of the two-level model .

In the case -n. = 2 the system of equations (3.3.7),

(3'3'8)> and (3.3.9) for the ^n. -layer model reduce to the two equations

(^^' {l,-^:if ' °
'

^^'^^ L^'-^-)
X. = ^

where <^i and ^2 are the geo^otentials at the 250 mb and 750 rab

levels, respectively, and the exponent ^ has a value of approximately 9«
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The difference p,- <f>x la proportional to thecoean temperature

In the layer between 750 and 250 mb. Its deviation 5'2> (= ^, -^j -7>)

trcm its mean value 7) is not greater than 6 or 7 per cent. Hence,

we may write with fair approximation

The equations (l) then become

^' = o
. f^ )

_'^
- = o

We now, as In the treatment of the barotropic model, introduce

a Lambert conformal mapping and a Cartesian system of coordinates >^
,

H In the conformal plane. With the notation /^ = ^ > Pi = 'P >

"ix ^ } ' ^1 ^ ^ (2) becomes

^c^/^h ^ ^'^~' J-(fJ)

and

where

o
i/^(, = ^^^-' zr(^'jf^')

and _i

These equations, as stated above, refer to the 250 and 750 mb

surfaces which unfortunately are not standeo'd meteorological surfaces.

However, because of the crude manner in which the vertical scale of





II-L21*.

motion is treated, there ia no difficulty in deriving an equivalent set

of equations which apply at the standard levels, 300 and 700 mb, the

only change being that the quantity -^ is now given by 0.6U ^r / Oj ~ ^? ) ^

instead of the previous value of 9*

The corresponding lateral boundary conditions may be found using

the same heuristic reasoning as was used in thecase of the beurotroplc

model. This results in exactly analogous conditions the only difference

being that we now have to consider everything at two levels instead of

one.

The integration is ceurried out quite by analogy with the procedure

B used for the integration of the barotropic equation. At time "^
, we

suppose that the quantities ^' y %' > f'
*^*^ ^ ^^^ stored.

The difference analogues of (5) and (6) , namely

and

eire then solved for
<f>

and d subject to the conditions that ^ and

(h are constant on the boundary.

After ^ and j?^' have been determined, C^^ f^^J and \^/dt)

are evaluated from (3) and {h) , and ^.. and ^,,j are

calculated from the formulae

and

cj^'.^" ^ %;J" ^ ^^^ C^;7'^t^o
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Again, in the evaluation of the finite difference Jacobian at points

adjacent to the bovindary, we invoke the boundary conditions in ^

and iy .

The principax problem is the solution of (7) and (8). Subtrac-

tion of these two equations gives

Where '^ij ~ ptj - ^ij • This is a difference analogue of a non-

homogeneous self-adjoint linear partial differential equatiaaof elliptic

type in the single variable ~f\ ij , a solution of which in the continuous

case is known to exist. It can be solved for A<y' - ai,j ~pij and sub-

stitution of ^^j 9-iJ into (7) yields the difference analogue of a

Poisson equation in the single variable <^cj . Solving the latter for

0^- , we obtain ^/j by adding f>,j to jiij ^ 'J

With the definitions

and

A,- - - :f-^j "c -^; v^'^'';*: *- ^ ' '"^ ^
''^^~

(9) becomes

We may solve this equation by an extrapolated Liebmann process, exactly
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as we did the Polspon equation (3''+-9)' 3y analo';^ with (jl-'+.l.O) we

define the Iteration process

^,j = 4,^ ^ ^ X
(^

^/- J

It is difficult to obtain the optim\irn -^ and exact convergence

criteria, except where ?''ij is constant. In this case, setting

^ _. / ^ >'tj we can show by an adaptation of Frankel's (1950) njethod

that the optimum ?< is I Pa.p ^ v^e)j where -'.r-p 6> - {^a.} ^
>o ^- f '^

.J'

It was found experimentally that the y corresponding to the mean value

of Yij , ^ij ,
gives as rapid convergence for the solution of (12)

with variable iTtj as constant '^i'j . If '^ is appreciably greater

than one, the convergence rate of the extrapolated Liebmann method is

considerably better for (12) than for (9)

•

The computational stability criteria for the system (3) to (5)

may be derived in an analogous manner to that used for the barotropic

equation. If terms that do not lead to an exponential amplification

when /di -> O ar ignored, the stability criteria become

where jv'\ is the maximum wind speed at 300 mb, and )
J"

/ is the maximum

at TOO mb. Thus from the standpoint of computational stability the finite

difference analogues of (3) and (k) behave precisely as advection equa-

tions in which the velocity field is Independent of the quantity being

advected.

Because of the high particle velocities at 300 mb it was necessary

to take At = 1/2 hour for A^ = 300 km; but to shorten the computa-

tion time, the accelerating scheme outlined earlier for the barotropic
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integration was used; the potential vortlclties ^ and Q, were ad-

vected in their respective velocity fields for three successive half-

hour time steps, and only then were the new d and Jo computed by

solving the difference analogues of (7) and (8) (the 3'^/L. process).

Here, because of the small value of Ah it was thought that the trunca-

tion errors intr^uuced by using non-contemporaneous velocity fields

would be small. As a check, a single 12-hour forecast was made using

/ T'/l . The difference between the two methods was found to be

large. Unfortunately, this comparison was made only after the main

series of six forecasts had been completed. Those forecasts in which

the error was expected to be large, however, were later recomputed us-

ing the ; T/L method. A more accurate time saving method would be

to employ a procedure analogous to that recommended for the barotropic

integration, namely to store the penultimate <p and S and extrapolate

to obtain centered values for the Jacobian computation.

On the basis of the experience gained from the study of roimd-off

error in the barotropic integrations it was decided to allot twelve bi-

naxy digits for the storage of p , and ik binary digits each for the

storage of Q and T, at each level. It was thus possible to store

all the data pertaining to one grid point as two forty-digit "words".

With use of the saiae horizontal grid dimensions as in the baro-

tropic model the length of time required to compute a 2U-hour forecast

was a little more than twice that for the main barotropic model. Each

1 1/2 hovir forecast involved the calculation of three fields of Jacobians

for each level, and the solution by iteration of (9) and (7). With the

machine operating at full speed, 1 I/2 minutes sufficed for the six
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JacoDian calculations, 2 l/2 minutes for the solution of (9) and 3 l/2

minutes for the solution of (7)' Thus a total time of 7 minutes per

1 1/2 hour time step, or one hour and 52 minutes per 2U-hour forecast,

was taken. This time could no doubt be considerably reduced by the

use of proced' .. similar to those by which the barotropic forecast

time was reduced from k8 to 6 minutes.

It is not necessary to solve the system (7) and (8) by reduction

to two equations each for a single dependent variable. The system may

be solved implicitly by an extension of the extrapolated Liebmann method.

As this alternative method was used in the 3-layer model a description

will be left until the next section.

3.6. Integration of the 3- level model .

The system of equations (3- 3-7), (3.3-8), and (3-3.9) for

the -T^ layer model are clearly non lineeu: and therefore it is conveni-

ent for computational purposes to derive a linear approximation, to them.

This is done by replacing { 1> /l>tr ) ^tc by ( ' / 5t )( 'J>/Dt ) x

where logarithms occur in equations (3-3-3) > (3-3.^)^ and (3-3-5)- The

elimination of ^./^ and ^^^^^^ now gives

(^.),W

together with equations analogous to (3-3-8) and (3-3-9) for tC - /,"'*-.

The equations so far derived have been for an atmosphere divided

into 'TL equal pressure intervals. By transforming the vertical coordi-

nate and using centered finite differences in terms of -ru equal inter-

vals of the new coordinate a similar set of equations, differing only

in the value of constants from the previous set, can be obtained. A

•X.
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convenient transformation is cr = {T /l^") • Making the transforma-

tion and linearizing we obtain the set of equations

with again corresponding equations for -fi - I and '^

With either the /t or <r -coordinate system the linearized

equations for 3 layers can be written

where V^^ , ^^i ^ '^t^J ar© constants.

We now define

The assumption is now made that the {^/ rrJ-J in the expression for ^^

can be regarded as a constant. (This is equivalent to having a North-

South gradient of static stability.) We therefore have

/^ = yy^ ^/^. (^,-V') ^,'^^ (AV^) ^ '*^'^^-' '^^^
^

^-"''"'^

where /^^ , ^a^^ and if^^ are constants.

Equation (3) can now be written

We now approximate equation (6) by taking * / i- to be constant during

the evaluation of the left-hand Jacobian at a point ( L , j t T^ )

and -m- to be constant over the whole srid, i.e.
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a "t ~

Equations (5) and (6) together with the appropriate boundary conditions

form the basis of the forecasting system, the procedure being as fol-

lows:
6-1 h

1. With 9,1 J J^ and ^<;^ stored for all grid points -- deter-

mined at "t = from S" by (5) -- equation (5) is solved for pij-dt

using '^'pijk —Pcj^ as an initial guess and using the boundary

condition that <^i-j^ is constant on the lateral boundaries.

2. r^ii/^^cj ^^ determined from the finite difference

analogue of (7)

3. At interior points %iJi is obtained from

At "t = it is necessary to employ non-centered differences,

-/ o . .

that is, to set ^,jit = ^v*^ ^"^^ ^^^^ ^ '^' ^"^ ^^^ "^'^^^ times

t
6 (t) =2. On the boundaries ^I'Jik is kept equal to its initial

value of V 9>iik .

U. Steps 1 to 3 are repeated until the required forecast time

is spanned.

Two iterative methods are available for the solution of equa-

tion (5). The extrapolated Liebmann process may be applied either to

solving for all the a) 's simultaneously, or to solving a transformed

system each of whose equations contain but one dependent variable as

was done in the two layer integrations. This second system, however,

suffers from the disadvantage that more conservative scaling has to be
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used in order to ensure that all transformed quantities remain scaled,

that the transformation process gives rise to round-off errors and

that the resultant simplification of the equations does not compensate,

in the case of S-layera, for the additional time taken to perform the

transformation. For these reasons the method of simultaneous solution

was eventually adopted after trial computations using both methods.

Equation (5) can be written in the form

Where f>h.'H^ ^r^ and V ^rj^ = hi-;j,^ -i- <^<:-',j,^ -^ i> c^jt'.k -^ ^ i-,J - ,-k

We may now define an iteration procedure
- "^ ^.j ^

This procedure is applied in turn to each i^ level until / <^ij-k ~ rfj^ I < •-

Previous experience with the barotropic model showed that the optimum

convergence rate for the iteration process occurs for a value of the

relaxation constant V^ lying between those given by Frankel (1950)

and Liebmann (I9I8), respectively. Therefore, in the 3-layer computa-

tions the relaxation constant ^^ for each ~A level was computed first

on Liebmann' 8 basis (this gives no over -relaxation) and then these were

adjusted to give approximately 15^ over-relaxation. Owing to the satis-

factory behavior of this method no attempt was made to obtain better

values of the relaxation constants.

The time interval over which 9, /^ can be extrapolated by means

of equation (8) is, as in the previous models, limited by the necessity

to maintain computational stability. The criterion as before is that
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As/A-b ^ rs/a
I -^i .«aK

where /''-''
/m.^n is the maximum particle speed in the forecast area. As

in most of the 3-la-yer forecasts the -^ = 1 was taken to be 200 mb it

was necessary, for a grid interval, A b ^ of 300 km, to limit the time

interval Ah to one-half hour. No attempt was made to apply an y\.T/L

method as in the two level forecasts. A time interval of one -half hour

was thus chosen and in no case considered, in so far as the number of

iterations taken to solve equation (9) could be regarded as a criterion,

was the computation, for this reason, found to be unstable.

The lateral boundary condition stated previously was also, by

the same criterion, found to be stable. This was not the case with

computations made, as in the previous models, using an extrapolated

value of ^^ on the boundary at an outflow point when evaluating the

Jacobian in (7)

One memory word was used to store the data for each grid point,

t
the information being stored in the following way: ^ was stored in

ten binary places, ^tf, ~% / in 8 binary places, <p in 10 binary

places and (p in 12 binary places. For a l6 x l6 grid this means

that the storage of data for the 3 levels occupied three quarters of the

Williams memory. As the remaining 256 words were not sufficient to con-

tain the required code the code was divided into two parts corresponding

respectively to the Liebmann and Jacobian plus extrapolation sections.

These two sections were put on the magnetic drum and alternately read

into the Williams memory as required by the procedure previously out-

lined.

The iterative process was continued until \ y '
Y> I

'^ ^
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This ia equivalent to continuing the iterative process until the error

in the height deviation from the standard atmosphere height is less than

approximately four feet.

The main series of six 2^-hour forecasts for a l6 x l6 grid was

made using the (^ -coordinate system in the following way: Considering

the top and bottom of the atmosphere to be at 25 nib and 1000 nib, respec-

tively, the levels ~M = 1, 2, 3 correspond to I87.5, 512-5 and 837.5 ^t

respectively. Since these axe not synoptic levels it was assumed that

the height deviations from the standard atmosphere values at these levels

were the same as those at 200, 500, and 850 mb, respectively. The initial

data were thus taken from these levels and the resultant predictions as-

sumed to be for the same levels.

Two additional 24-hour forecasts were made using the (T -coordinate

system derived in the following way. Considering the top and bottom of

the atmosphere to be at and 986 mb, respectively, the levels i^ = 1,

2, 3 correspond to i4-02, 697; and 900 mb, respectively. Following the

procedure adopted In the p* -coordinate system it was assumed that the

height deviations at these levels were the seune as those at l*-00, 7OO,

and 900 mb, respectively.

The computing time for a twenty-four -ho\ir forecast for a I6 x I6

grid was k& minutes divided approximately equally between the Jacobian

and Liebmann sections of the code. As in the two previous models it

would no doubt, by a careful reconsideration of the code, be possible

to reduce the computing time. Owing to the limited size of the Williams

memory, however, any speeding up in the more complicated models is limited

by the amount of the memory which has to be devoted to data storage even
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when several quantities are stored per word, a process which In itself

is quite time consuming.

3.7 Summflry of results .

•

The period selected for trial forecasts with the various

methods was 0300 (2*1T 23 November to I50O Ott 2b November 1950, and the

forecast region was the eastern pai^ of the United States and southern

Canada, an area with a relatively dense network of observing stations.

This particular period was selected because of the unusually large

amount of cyclonic development which occured in the 2U-hour period fol-

lowing 1500 CMT 2U November. This storm, which was not correctly pre-

dicted at the time, caused a considerable eunount of damage to Princeton

and neighborhood. The Meteorology Group thus felt a personal interest

In this situation.

Twelve and 2il-hour forecasts were prepared using each of the three

previously described models from each of the six initial maps: 030O and

1500 GMT, 23, 2k and 25 November I950. Each 2l4-hour forecast from an

initial map overlapped the first half of the succeeding 2M-ho\ir fore-

cast, with the exception, of course, of the last. For each forecast a

chart of the forecast heig^ht changes of the relevant pressure surface

was made and correlated against the observed changes. These results

are shown in Figure 1 which gives the correlation coefficients between

the 24-hour forecast and observed changes from six initial maps for

each of the three methods. It will be seen that while all the methods

give reasonable results for the beginning and end of the period, only

the three-layer model gave a good prediction for the central period

when the storm was developing.
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As mentioned previously two forecasts were made using a three-

layer model with the ^ -coordinate system. Figure 2 shows the 2l4--hour

forecast from Noveniber 2k, 1950, 1500 GMT for the 900 mb level. (Charts

are of height deviations from the U. S. Standard Atmosphere values in

10 's ft.) Forecasts for 6, 12, l8 and 2k hours are given together with

the correct 2'i-hour map. It will be seen that a completely new center

of low pressure developed. The full line in (f) shows the actual posi-

tion and movement of the new center and the dashed line shows the fore-

cast movement. The differences between (e) and (f) are thus seen to be

due to the slightly wrong position of the initial development. The

intensity of the low pressure region and the very great increase in wind

strength (from. 30 to 100 knots) over the eastern United States are, how-

ever, correctly predicted. As this is the first case of development

being predicted by munerical methods it gives rise to the hope that more

physically correct models will give even better numerical predictions

and increased accuracy in the forecasting of the associated weather

phenomena such as cloud amount and precipitation.
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